Homework

- Reading
- Tokheim, Section 5-1, 5-2, 5-3, 5-7, 5-8
- Machine Projects
- Continue on MP4
- Labs
- Continue labs with your assigned section

Designing Logic Circuits

- We want to be able to design a combinational logic circuit from a truth table methodically
- Sum of Products
- Product of Sums
- Then we want to be able to simplify it to use the fewest possible gates to implement it
- Factoring the Boolean logic equation
- Karnaugh Maps

Maxterm / Minterm

Product of Sums/Sum of Products

(a) Maxterm Boolean expression: $B+A=Y$
(b)

(c) Minterm Boolean expression:

Fig. 5-7

Product of Sums

- Also known as Maxterm expression
- We take each line of the truth table that results in a value of 0 for the output
- We develop a "product" (an AND of each sum term that should create an output value of 0)
- Results in a layer of OR gates followed by an AND gate

Product of Sums

Fig. 5-8 Developing a maxterm expression

Fig. 5-9 Maxterm expression implemented with OR-AND circuit

Sum of Products

- Also known as Minterm expression
- We take each line of the truth table that results in a value of 1 for the output
- We develop a "sum" (an OR of each product term that should create an output value of 1)
- Results in a layer of AND gates followed by an OR gate

Sum of Products

(c) Equivalent AND-OR logic circuit

Fig. 5-2

Simplifying Logic Circuits Minterm / Sum of Products

Inputs	
B	Output
A 0 0 0 1 1 0 1 1	1

(c) Truth table for OR function

Fig. 5-1

Factoring the Boolean Equation

- Expand the original sum of products:

$$
\begin{aligned}
Y & =A \bar{B}+\overline{A B}+A B+A B \\
& =A \bar{B}+A B+\overline{A B}+A B
\end{aligned}
$$

- Factor out A and B from pairs of terms:

$$
\begin{aligned}
\mathrm{Y} & =\mathrm{A}(\overline{\mathrm{~B}}+\mathrm{B})+(\overline{\mathrm{A}}+\mathrm{A}) \mathrm{B} \\
& =\mathrm{A}(1)+(1) \mathrm{B} \\
& =\mathrm{A}+\mathrm{B}
\end{aligned}
$$

- Not easy to see the steps needed to factor

Karnaugh Maps

Minterm / Sum of Products

- A graphical way to reduce the complexity of a logic equation or truth table
- A tool to bring into play the human ability to recognize patterns
- Draw out the pattern of output 1 's and 0 's in a matrix of input values
- Loop the 1 's and derive product terms to sum
- Notice the order of inputs along edge of matrix

Karnaugh Maps (2 Inputs)

Fig. 5-27 Using a map

Karnaugh Maps (3 Inputs)

Karnaugh Maps (4 Inputs)

(a)

Inputs				Output
A	B	C	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

(b) Unsimplified minterm expression

$$
\begin{aligned}
\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D & +\bar{A} \cdot \bar{B} \cdot C \cdot D+\bar{A} \cdot B \cdot \bar{C} \cdot D+\bar{A} \cdot B \cdot C \cdot \bar{D} \\
& +\bar{A} \cdot B \cdot C \cdot D+A \cdot \bar{B} \cdot \bar{C} \cdot D+A \cdot \bar{B} \cdot C \cdot D \\
& +A \cdot B \cdot \bar{C} \cdot D+A \cdot B \cdot C \cdot D=Y
\end{aligned}
$$

(c) Plotting and looping 1s on map

(d) Simplified Boolean expression: $\quad D+\bar{A} \cdot B \cdot C=Y$

Fig. 5-31 Using a four-variable map

Karnaugh Maps

Fig. 5-32 Some unusual looping variations

Karnaugh Map Tool

- Link in the references section on my website:

Free Karnaugh Map Tool http://puz.com/sw/karnaugh/

- Let's experiment with it now

Karnaugh Map Blank (4 Input)

Karnaugh Map (5 Input)

Karnaugh Map Blank (5 Input)

