Homework

- Reading
- Tokheim, Chapter 12-1 through 12-4
- Machine Projects
- MP4 due at start of next class
- Labs
- Continue with your assigned section

Read Only Memory (ROM)

- PC uses it to hold BIOS for system and I/O drivers
- Slow (100-200 nanoseconds)
- Various forms:
- Read Only Memory (ROM)
-Programmable Read Only Memory (PROM)
-Erasable Programmable Read Only Memory (EPROM)
-Electrically Erasable Programmable ROM (EEPROM)
-Flash memory

Read Only Memory (ROM)

Programmable ROM

Starts with all diodes/all ones. Burn out diodes where value needs to be zero. 4

Random Access Memory (RAM)

- Static RAM = an array of full flip-flops
- Simple interface and fast (10-20 nsec) but more costly (2-4X) than ROM

- Small capacity compared to Dynamic RAMs

Dynamic RAM (DRAM)

- Square array of simple one transistor memory cells
- Capacitance at input to transistor remembers a 0 or 1

- Reading contents of the cell is destructive
- Over time, the charge leaks away (in milliseconds)

Dynamic RAM (DRAM)

- For both reasons, HW must perform a memory refresh
- Regularly reading/writing on a row and column basis
- Advantages are:
- Cells are simple
- Uses less power
- Disadvantage:
- Slower (20-30 nsec access time)
- Total cycle time is 2 X due to refresh after read
- Bottom line
- 2-4X less chip area and 2-4X less power
- Interleaving and access in column or page mode

Example Layouts of Memory Parts

- Organized 1 Meg x 1 or Organized 128K x 8

Number of Data Bit Pins Attached to Data Bus

Full Address Decoding

- Each location within a memory component responds to only one unique address
- Need to use all the address lines in decoding
- May choose not to fill-in some portions of the address space with real memory (empty spots)

Addressing Memory Components

Memory Map and Comb. Logic

CSO
CS1
Empty Space (Bus Error If Accessed)

000000
00 OFFF
001000
00 1FFF 002000
002000 $*$ $*$ $*$
FF FFFF

Partial Address Decoding

- Simpler and less expensive
- Some address lines are NOT used in the address decoding process to generate chip enable signals
- Many groups of addresses can map to the same physical memory chip

Partial Address Decoding

Memory Map for Partial Decoding

Comb. Logic for CS0 and CS1

cso	$\begin{aligned} & 000000 \\ & 00000 \\ & \text { ooffr } \\ & 0001000 \end{aligned}$
CSO	

CSO	
CS1	0000
CS1	

CS1	

Mixed Address Decoding

- A mixture or a compromise between partial and full address decoding
- Divide the memory space into a number of fully decoded blocks, generally of equal size
- Use high-order address bits to select the block and low-order address bits to select a sub-block

Comb. Logic for CS0, CS1, CS2, \& CS3

Logic Diagram for CS0\# and CS1\# Similar to Diagram on Slide 11 Except A_{22} and A_{12} are swapped

Memory Map for Mixed Decoding

CS0
Empty
CS1
Empty
CS2
CS3
$* * *$
CS3

000000
00 0FFF
001000
$3 F$ FFFF
400000
40 0FFF
401000
$7 F$ FFFF
800000

CS0/CS1 each decoded only once in the memory space 000000 to 7F FFFF

CS2/CS3 are repeated 1,024 times in the memory space 800000 to FF FFFF

