
1

Homework

• Reading

– None (Finish all previous reading assignments)

• Machine Projects

– Continue with MP5

• Labs

– Finish lab reports by deadline posted in lab

Pentium Reset / Boot

• Reset

– Held asserted until power supply voltages stabilize

– Starts processor in “real mode” for 1 Meg address space

– Forces %cs = 0xf000 and %eip = 0xfff0

– First instruction is fetched from address 0xffff0

• %cs (offset) 0x f 0 0 0 -

• %eip 0x - f f f 0

• Address: 0x f f f f 0

– Address decoding logic will enable ROM BIOS device

when processor fetches this address and the control bus

lines indicate “instruction fetch”

Pentium Reset / Boot

• Boot

– BIOS loads an OS (or a debug monitor like

Tutor) into RAM from ROM or other non-volatile

media such as a hard drive

– Tutor/OS changes the addressing mode from

“real mode” to “protected mode” which supports

a flat 32 bit address space

– Tutor/OS starts executing, interacts with the

user, and controls running of user programs

3

Embedded System Reset / Boot

• An embedded system resets on power up

• Embedded systems may operate unattended

by an operator, so a system failure could go

unnoticed until some catastrophe occurs

• Other possible causes for system resets:

– Hardware diagnostics (detects a hardware fault)

– Software integrity checks (detects corrupt data)

– A watchdog timer (detects an infinite loop)

– Remote monitoring system (detects no response)
4

Operating System Support

• We have been running our embedded

system projects under Tutor

– Tutor is only a single user debug monitor

– A real operating system such as Linux can

support multiple users simultaneously

• Some key processor features are required

to support multiple simultaneous users and

prevent interference between them:

– Kernel / User Modes of Operation

– Memory Protection 5

Processor Modes

• Most CPU’s can execute code in two modes:

– Kernel Mode (also called supervisor mode)

– User Mode (also called application mode)

• In kernel mode, all privileged instructions are
allowed including ones such as sti, cli,

lidt, cpuid, in, out, etc.

• In user mode, those instructions are prohibited

or may only be partially available based on the

OS configuration
6

Processor Modes with Tutor

• The processor boots in kernel mode

• Tutor initializes itself in kernel mode and

never switches the processor to user mode

• When we start a program with go 100100,

it is running in kernel mode

• Hence, our code can execute all instructions

and can make normal calls to functions such
as our C library inpt()/outpt() or our

callback functions in MP3 and MP5
7

Processor Modes with an OS

• The processor boots in kernel mode

• The operating system initializes itself and

later provides its services in kernel mode

• Only “trusted” code executes in kernel mode

• When the operating system starts “untrusted”

code (i.e. user programs), it changes the

processor mode from kernel to user mode

• Execution of a prohibited instruction causes

an exception to a kernel mode OS service
8

Processor Modes with an OS

• In user mode, there are only two ways to

resume kernel mode operation

– A hardware interrupt or exception occurs

– Code makes a “system call” to an OS service
using an instruction such as int $n

• Hence, ISR/Exception handling code and

OS service functions run in kernel mode

and must be trusted

9

Processor Modes with an OS

• Compiled C code makes normal calls to and

expects normal returns from library functions

which do not change the processor mode

• Hence, many C library functions take the

parameters passed to them and reformat
them into an OS system call, e.g. int $n

• That switches the processor to kernel mode

• The system service returns via iret and the

library code is running in user mode again
10

Memory Protection

• Some “hacks” attempt to run user code in

kernel mode to violate system security

• If code running in user mode can overwrite

trusted kernel mode code, the system is not

secure

• Processor memory protection features are

one way that an OS can prevent corruption

of its trusted code that runs in kernel mode

11

Memory Protection with Tutor

• Tutor does not utilize memory protection

• With Tutor, we could overwrite our own code

or the Tutor code itself in memory

• That allowed us to run experiments that

would not have been possible with an OS

12

Memory Protection with an OS

• With an OS, the critical memory areas for

the OS are set up with memory protection

• These memory areas can be accessed

only in kernel mode - not in user mode

• A user code attempt to access a prohibited

location causes an exception to a kernel

mode OS service

13

The “Downside” of an OS

• OS processor mode and memory protection

sound great! Let’s always use them. Hmm.

• So what’s the possible downside?

• Performance!

• Using these features causes the OS to have

a long context switching time between tasks

• This may make it impossible to meet the

real-time constraints of an embedded system

14

The “Downside” of an OS

• There are versions of “embedded Linux”,

Android, and commercial products such as

Vxworks or Windows CE, that are intended for

use on embedded systems

• They are used in high-end embedded systems

such as cell phones or gaming consoles

• These devices are expensive enough to absorb

the high costs of processor, memory, etc.

15

The “Downside” of an OS

• Some embedded system software may need to

run “raw” on low-end and low-cost hardware

without any OS or with only a minimal OS

– Processor limitations

– Memory size limitations

– Hard real-time constraints

– Costs for licenses or vendor support for an OS

• Think about the diving computer in lecture one,

Arduino boards, appliances, control systems,

alarm systems, smart thermostats, etc. 16

CISC / RISC Architectures

• Complex Instruction Set Computers

– This is the traditional processor architecture

– Complex instructions:

• Can be of varying length (1 – 8 or more bytes)

• Need to be decoded before they can be executed

• Execution may include many steps

– We have been studying the i386 processor

which is based on a CISC architecture

17

CISC / RISC Architectures

• Reduced Instruction Set Computers

– A more recently introduced architecture (1980’s)

– RISC processors have simpler instruction sets:

• Instructions are all the same length (typically 32 bits)

• An instruction word doesn’t need to be decoded

• Instructions do only one simple thing very fast

• More instructions are needed to perform any given task

– The AtMega328P used on our Arduino boards

and the Advanced RISC Machines ARM family of

processors are good examples
18

19

VLIW Architectures

• Very Long Instruction Word Computers
– Another recently introduced architecture (1980’s)

– Processors have a Very Long Instruction Word:
• Instructions are all the same length (up to 1024 bits)

• Have a different instruction field for each functional unit

– The processor executes multiple instructions in
parallel per clock cycle without elaborate HW to
keep track of dependencies – so faster

– The compiler must keep track of dependencies
when it generates the code

– The HP/Intel Itanium processor that we cover next
time is a good example of this architecture

VLIW Architectures
• Example layout of a VLIW processor:

– If a functional unit can’t be used, “nop” is coded

20

Field A Field B Field C Field D Field E Field F

Functional

Unit

A

Functional

Unit

B

Functional

Unit

C

Functional

Unit

D

Functional

Unit

E

Functional

Unit

F

Very Long Instruction Word (Six Parallel Instructions)

Registers, Memory, and I/O Ports

