/-4 INTERRUPT CONTROLLER 385

At this writing, PCI appears to be a very strong contender for becoming the pri-
mary bus system of PCs in general and is the architecture of choice for current high
¢nd, mainstream PCs. Its 264 MB /sec peak data transfer rate is high enough to han-
dle the memory bandwidth requirements of even the highest speed processors, and it
has many advanced features such as processor independence, hidden bus arbitration,
multiple bus master support, and long length burst mode transfers. PCI is discussed
-urther in Section 7-9.

7-4. Interrupt Controller

No modern computer system could handle the demands imposed on it by the multi-
ple I/O devices it supports without an ability to support hardware interrupts. A sim-
ple way to appreciate how hardware interrupts work and their importance is by
analogy with the telephone system and its role in your own life. When people in other
places want to send or receive information from you, they can do it by the telephone
svstem. Think of the phone system’s wires as being like the wires connecting an I/0
device like the keyboard to the CPU, and you have an appropriate context in which
to understand interrupts. A computer system without interrupts is like a telephone
without a ringer. If your phone had no ringer, you would need to pick up the phone
every few seconds to see if someone was trying to call you. Similarly, it your computer
system had no hardware interrupts, the CPU would have to spend most of its time
going around checking to see if any /O devices had new data. With a phone ringer,
you can just go about your business until the phone rings and only then turn your
artention to whomever is trying to reach you. An interrupt serves as the telephone
ringer for the CPU. The CPU can go about doing various tasks without worrying
about the devices it’s connected to until an interrupt occurs. Then and only then it
tends to the needs of the device. The hardware interrupt concept is so important that
much of Chapter 8 is devoted to discussing interrupt applications.

The analogy can be taken a step further. Suppose you’re reading a book and the
phone rings. What you do is to mark the place where you were in your book and then
answer the phone. When the phone call is over, you use the book mark to find out
where you were, and then resume reading again. The CPU’s response to an interrupt
is much the same. It saves its place in the code it’s currently executing by pushing all
essential information about its current state (such as cs:ip and the flags) on the stack,
and then it jumps to a routine that services the interrupt. This routine is known as an
interrupt handler, or alternatively, as an interrupt service routine (ISR). When the
handler has finished executing, the CPU pops the information it stored on the stack
and continues executing the previous code as if nothing had ever happened.

As mentioned in Section 7-1, the CPU has only a single interrupt line to let it know
that some device needs service. But typically there are a number of devices that need the

Computer Science Department UMASS Boston

386 . THE INNER WORKINGS

CPU’s attention from to time, and there needs to be some way of coordinating their
requests for attention. This is where the imterrupt controller comes in. It acts like an
executive’s secretary, screening multiple phone calls and only putting them through to
the executive one at a time in the order of their importance. In the same way, the inter-
rupt controller has interrupt request lines from a number of I/O devices connected to
it, and it passes those requests on to the CPU via its interrupt line one at a time in a pri-
oritized order of importance. When the CPU receives an interrupt, it checks with the
interrupt controller (after saving its place in whatever task it’s executing) to find out
which device caused that interrupt and then jumps to the appropriate interrupt handler.

8259A Interrupt Controller

The original IBM PC used an Intel 8259A programmable interrupt controller (PIC)
to handle multiple interrupt sources. In the PC-AT, the interrupt-handling capabili-
ties were expanded by adding a second 8259A. In order to remain compatible, all PCs
since the PC-AT have incorporated circuitry that’s functionally equivalent to a pair
8259As on their motherboards, although the circuitry normally appears somewhere
inside a motherboard chip set rather than as discrete 8259As. Thus you can count on
a PC to behave as if it had two 8259A chips on its motherboard even though you
won’t see them there. With this in mind, let’s look at how the 8259A interrupt con-
troller works and how a pair of them are coordinated in a PC.

Figure 7-12 shows a block diagram of an 8259A. It’s a programmable device
whose internal registers can be read and written by the CPU through a pair of 1/0
ports. While different options and modes of operation are available by programming
the registers, we only describe the behavior of the 8259A for the standard operating
configuration used in PCs. For further information about the 8259A’s many pro-
grammable features, see the data sheet for the chip in Intel’s Component Data Catalog
and van Gilluwe (1994).

The 8259A supports interrupt request lines coming from up to eight different
devices. These lines are labeled as IRQ#n, where # = 0-7. A external device requests an
interrupt by producing a rising edge (a low to high logic level transition) on its IRQ
line. The 8259A prioritizes interrupt requests by their IRQ number, with, by default,
IRQO being the highest priority and IRQ7 the lowest. Thus if two or more IRQs come
in at the same time, the higher priority request is recognized and sent on to the CPU
while the lower priority request has to wait. In addition, if an IRQ comes in
and there’s already another interrupt of lower priority being serviced, the inter-
rupt request is recognized by the 8259A and passed on to the CPU. It can then
interrupt its handling of the lower priority interrupt that’s in progress.

You can prevent any interrupt request by setting bits in the 8259A’s interrupt-
mask register. This register contains a byte whose #nth bit masks the interrupt request

Computer Science Department UMASS Boston

§/-4 INTERRUPT CONTROLLER 387

from line IRQ#x. That is, if bit # is nonzero, line IRQ# cannot cause an interrupt.
When the 8259A recognizes an interrupt request and passes it on to the CPU, it does
so by setting its interrupt line (INT) high. This line is directly connected to the CPU’s
interrupt input line (INTR). If the CPU’s interrupts are enabled (by prior execution
of an sti instruction), the CPU acknowledges the interrupt by sending an interrupt
acknowledge signal (a pair of active low pulses on the 8259A’s INTA line, gencrated
by external logic when the CPU’s W/ﬁ,_M/E, and D/C signals are all low) back to the
8259A. The 8259A responds to the INTA signal by pulling INTR back low, and then
putting an 8-bit interrupt type code #z onto the data lines. The type code tells the
CPU which interrupt vector to select in the interrupt vector table. In real mode, this
table consists of four-byte entries and begins at memory location 0:0. More specifi-
cally, if the 8259A places the number ##z on the bus, then the interrupt vector at
absolute address 0:4*#n# is used. Alternatively, if the CPU is operating in protected
mode, the interrupt vector at offset 8*## in the Interrupt Descriptor Table (IDT—
see Section 5-2) is used. The CPU then pushes its flags onto the stack and executes a
far call to the address given by this interrupt vector. You may recall that this is exactly
the way the software int ## instruction discussed in Section 3-6 works. The appropri-
are interrupt handler program (see Section 4-6) had better be present at the called
address, or there’ll be a crash! In essence, a hardware interrupt can be described as an
asvnchronous call to some memory location caused by an external device.

FIGURE 7-12. Block diagram of the Intel 8259A programmable interrupt controller, which
coordinates the interrupt requests appearing on its eight interrupt request lines (IRQ#u).

IN*TA II?T

Control Logic

7 Data
< 3 Bus
Buffer

RD Read/
WR—O Write |—@
A, — Logic

CS—J

CASO j Cascade]
CAS1 Buffer ||

In IRQO
Service
Register

(ISR)

priority
resolver

IRQ7

| Compar- Interrupt Mask Register
CAS2 | ator ; (IMR)
SP/EN ‘—j \internal bus

Computer Science Department UMASS Boston

388 THE INNER WORKINGS

Before discussing the software required to initialize the 8259A appropriately
and to handle interrupt requests, let’s look further at the 8259A’s hardware and the
signals it uses. As can be seen in Figure 7-12, the 8259A signals that the CPU uses
to program the 8259A’s internal registers are the typical signals used by many smart
peripheral chips (see Section 7-2). Although the 8259A has a number of internal
registers, only two 1/0 ports are used to access them (see code below for how this
is done). To communicate through the ports, the 8259A uses its /0O read (IOR),
1/0 write (IOW), chip-select (CS), data (D0-D7), and address line AQ (to select
one of the two 1/0 ports). The interrupt (INT) output line, the interrupt acknowl-
edge line (INTA) and the eight interrupt request lines (IRQ#) have alrcady been dis-
cussed above. This leaves only the cascade lines CAS0O, CAS1, and CAS2 plus the
slave program/enable buffer line (SP/EN). These four lines are used to coordinate
two or more 8259As so that they can work together in a single system. As men-
tioned earlier, there are in fact the equivalent of a coordinated pair of 8259As on all
PC motherboards. -

The way the 8259As are connected is shown in Figure 7-13. The SP /EN line tells
the 8259A it’s a master controller if the line is high, and a slave controller if it’s low.
The three cascade lines are then used by the master to tell the slave when an interrupt
acknowledge signal sent by the CPU is meant for it.

In the PC, the IRQ lines for the controller pair are numbered from 0 to 15, with
IRQO-IRQ7 being on the master 8259A and IRQ8-IRQ15 being on the slave. Notice
that IRQ2 is used by the slave controller to relay its INT signal back to the master,
leaving IRQ2 unavailable for use by external devices. This leaves 15 usable interrupe
request lines. However, four of these are dedicated to specific systems devices (IRQO
= system timer, IRQ1 = keyboard, IRQ8 = real-time clock, and IRQ13 = numenc
coprocessor), leaving 11 IRQ lines that are brought out to the PC’s ISA bus for use
by devices on plug-in cards. A number of these have more or less standardized uses as
well, including IRQ4 = serial port 1, IRQ6 = floppy disk controller, IRQ7 = parallel
port 1, and IRQ12 = mouse interface). In addition, IRQS is normally used for the sec-
ond serial port if it’s present, and IRQ5 is used by many network interface cards.

It’s important to note that the connection of the slave 8259A through IRQ2 on
the master rearranges the prioritics of the interrupt requests. Although the highest
priority IRQ within each 8259A is still IRQO for the master and 1RQ8 for the slave, the
chip connection through IRQ2 causes IRQ8-IRQ15 to be the next highest prionty
requests after IRQ1. Thus the default priority order for interrupt requests is IRQO,
IRQ1, IRQ8-IRQ15, IRQ3-IRQ7.

Computer Science Department UMASS Boston

574

INTERRUPT CONTROLLER

FIGURE 7-13. The cquivalent of two 8259A interrupt controllers connected together as
shown are present in all PCs. Some standard PC assignments for the interrupt request lines are

also shown.

CPUINTR «

CPU INTA —T'—V

+5
|
SP/EN
INT IRQ {«— IRQO (System timer)
INTA l«——— IRQI (Keyboard)
IR2 |«

———» RD E g o IRQ3 (Serial port 2)
—{WR =4 - TRQ4 (Serial port 1)
e AO < IRQS5
—{Cs - IRQ6 (Floppy disk)
<:‘[> DO-D7 IR7 |+ IRQ7 (Parallel port 1)

CASO CASI CAS2

L CASO CASl CAS2
INT IRO [¢— IRQ8 (Real-time clock)
> [NTA l+—— IRQY
l«——— IRQI10

——|RD 2 % —— IRQII
—slwr @“#@Y le— TRQI2 (Mouse)
—> Ay «——— TRQ13 (Numeric Coprocessor)
—>{ CS l«——— JRQ14
<:> D0O-D7 IR7 [«—— IRQI5

Interrupt Controller Programming

Toinitialize the operating mode for the two 8259As in a PC, four initialization com-
mand words (JICWs) must be sent to each of them. The first ICW is sent to the
8259A’s first port address (20h or 0a0h), and the remaining ICWs are sent the

Computer Science Department

UMASS Boston

389

390 THE INNER WORKINGS

8259A’s second port address (21h or Oalh). The proper initialization can be done
with the code

MASTRO equ 20h ;Port addresses for first (master) 8259A
MASTR1 equ 21h
SLAVEO equ 0alh ;Port addresses for second (slave) 8259A
SLAVE1 equ Oalh
mov al,11h ;ICW1: set edge-triggered IRQs, cascade
out MASTRO,al : mode, ICW4 is needed
mov al,8 ;ICW2: use int vectors 8-0fh for IRQO-
out MASTR1,al ; IRQ7: conflicts with x86 exceptions
mov al,4 ;ICW3: slave 8259A is on IRQ2
out MASTR1,al
mov al,1 :ICW4: non-buffered mode, normatl EOI,
out MASTR1,al : X86 mode
mov al,11h ;ICW1: set edge-triggered IRQs, cascade
out SLAVEDO,al ; mode, ICW4 is needed
mov al,70h ;ICW2: use int vectors 70-7Fh for IRQ8-
out SLAVET1 ,al ; IRQ15
mov al,2 :ICW3: slave 8259A ID is 2
out SLAVET1,al
mov al,1 :ICW4: non-buffered mode, normal EOI,
out SLAVE1,al ; X86 mode

This sets up the 8259As to respond to positive-going edges on the interrupt request
lines (IRQ#), to use interrupt vectors 8-0th or 70h-7th (see Table 3-4 for interrupt-
vector assignments), to work with an x86 processor (rather than an 8080 ,/8085), and
to reinitialize interrupts upon receipt of an end-of-interrupt (EOI) code. At this point
the 8259As are ready to accept interrupt requests on their IRQ lines, and to raise the
INT output accordingly. All subsequent writes to port 21h or Oalh after the four
ICWs have been sent access the interrupt-mask register.

As discussed in Section 5-5, the PC default use of interrupt vectors 8 - Oth for the
master 8259A contflicts with their use for very important x86 exceptions, such as the
General Protection exception, which uses interrupt vector Odh. To get around such
conflicts, standard protected-mode operating systems such as Microsoft Windows
program the master 8259A to use interrupt vectors 50h through 57h instead of 8

“through 0Oth.

Interrupts are enabled on the CPU by execution of the set-interrupt-flag (sti)
instruction. Before the PC BIOS routines do this during the PC’s power-on
sequence, they mask off (disable) all but four of the IRQ# lines. Specifically the

instructions
mov al,0b8h ;Enable disk (bit 6), slave 8259A (2),
out MASTR1,al ; keyboard (1),and timer (0) interrupts

Computer Science Department UMASS Boston

g/ -4 INTERRUPT CONTROLLER 391

mov al,0ith :disable all slave 8259A IRQs
out SLAVE1,al
sti

are executed (after some initial testing of the 8259As is performed). When an inter-
rupt occurs, further interrupts are disabled in the CPU, and each 8259A records but
does not request further service until it receives an EOI code. Thus it is the responsi-
bility of all interrupt handler programs to reenable interrupts by executing the

sequence
mov al,20h ;EOIl command
out MASTRO,al :Replace MASTRO with SLAVEDO for slave
sti ; 8259A

For examples of timer and keyboard interrupt routines, see Sections 7-5, 8-1, and
8-2. For an example of a serial-port interrupt routine, see Section 11-5.

The removal of IRQ2 for cascading the 8259As in the PC-AT created a compati-
bility problem with previous PCs, which had IRQ2 brought out to the ISA bus on pin
B4. To solve this problem, the IRQ9 line was connected to this bus pin instead, and
interrupt requests coming in on |IRQ9Y are redirected so they use the interrupt vector
that would have been used by IRQ2, which is the vector for int Oah if the 8259A is ini-
dalized as above. This can done by having the interrupt handler corresponding to
IRQY, that is, the handler for int 71h, include the simple code

intseg segment ato

org 4*0ah
intIRQ2 label far :‘Default offset of IRQ2 handler
intseg ends

push ax _

mov al,20h ;Send EQI signal to 8259A for IRQ9

out SLAVEOQ,al

pop ax

jmp intIRQ2 :Chain to IRQ2 handler

You can connect your own sources of interrupt requests to IRQ3-1RQ5, IRQ7,
IRQ9-IRQ12, and IRQ14-IRQ15 as these interrupt request lines are all connected
to pins on the ISA bus for use by plug-in boards. Keep in mind, however, that there
are semi-standardized assignments for all of these interrupt request lines except
IRQ9-IRQ11 and IRQ15 (see Table 3-5). It’s sometimes tempting to try to attach
more than one device to a given IRQ line, but IBM’s original choice of program-
ming the 8259A to respond only to rising edges on the IRQ lines makes this a bit
tricky. To make sharing work, the devices sharing an IRQ must each have a status

Computer Science Department UMASS Boston

392 THE INNER WORKINGS

register containing an “interrupt pending” bit that the CPU can read to see which
device(s) have requested an interrupt. Usually, reading this bit resets the bit. The
difficulties occur because in the process of servicing an interrupt for one device,
another on the same IRQ channel may try to interrupt, only to have its edge trig-
ger ignored so long as interrupts are disabled. To take care of such attempted inter-
rupts, before returning from an interrupt, the interrupt handler needs to reestablish
interrupts and then poll all possible devices that share the IRQ channel, servicing
any that request interrupts.

To eliminate the need for such polling, the IBM PS/2s program the 8259As to
use level-triggered interrupts. Specifically, the |IRQ# lines are driven by open-
collector circuits, which allow more than one interrupting device to hold an IRQ#
line low (see the “wired-OR” discussion in Section 6-3). When interrupt service
completes for a device on IRQ#, the 8259A interrupts again as long as any device
holds that IRQ# line low. It’s crucial that each interrupt handler clear the device
flip-flop that’s responsible for pulling the IRQ# line low before fully reenabling
interrupts, since otherwise an infinite interrupt loop occurs, which may be termi-
nated by a stack overflow. If you find that your code works fine on regular PCs but
crashes on PS/2s, suspect this problem first. The CMOS RTC routine clock in
Section 8-2 illustrates how an interrupt handler can be written to work with both
edge-triggered and level-triggered interrupts.

To end this section, we summarize by giving a step-by-step description of all the
actions that take place when a hardware interrupt occurs:

1. The requesting device generates a rising edge on its interrupt request line, IRQ#.

The 8259A checks its internal interrupt-mask register and in-service register. If interrupt
level » is not masked off and if another interrupt of the same or higher priority is not in
progress, the 8259A puts a logic high on the CPU’s INTR line.

3. When its INTR line goes high, the CPU checks its internal interrupt flag (IF). If the CPU
finds that interrupts are enabled (IF=1), the CPU responds to the interrupt. If interrupts
are disabled (IF=0), the INTR line is ignored.

4. Ifinterrupts were enabled, the CPU responds to the interrupt by sending an interrupt
acknowledge signal (INTA) back to the 8259A. The 8259A responds to INTA by
pulling INTR back low, and then putting an 8-bit interrupt type code z## onto the data
lines.

5. The CPU reads the type code nn and automatically executes an int ## instruction.

6. The int »» instruction causes the machine state to be saved by pushing cs:ip and the flags
register on the stack (more is pushed for protected-mode operation of 386 and later
CPUs—see Chapter 5). It also sets IF=0 and then does an indirect jump to the appropri-
ate location specified by the IDT; for example, in real mode, the four-byte address at
absolute location 4*n#.

Computer Science Department UMASS Boston

17-5 PROGRAMMABLE INTERVAL TIMER 393

7. The interrupt handler must perform the following actions:

a) Save all registers used.

b) If multiple devices share the IRQ#n, determine which device interrupted and clear its
interrupt flip-flop.

¢) Reenable interrupts as soon as practical with an sti instruction. Note that an iret also

reenables interrupts provided the interrupt flag (IF) pushed by the matching interrupt
was 1.

d) Output an end-of-interrupt (EOI) code to the 8259A.

¢) In edge-triggered configurations (all but PS/2s), if multiple devices share the IRQ#,
poll the other devices for pending interrupts and service accordingly.
t) Either end the interrupt handler with an iret to restore ¢s:ip and the flags, or chain to

the previously installed interrupt handler. The second approach is used when the cur-
rent interrupt handler chooses not to handle the interrupt.

2]

The interrupting device must pull the IRQ# line back low before it tries to send another
interrupt request.

The 8259A has a variety of additional capabilities not generally used in PC oper-
ation. For a more complete discussion, see the Intel documentation.

7-5. Programmable Interval Timer

A smart peripheral that serves three important purposes on the PC system board is
the three-channel 8253 /8254 16-bit timer /counter circuit, diagrammed in Figure
7-14. The 8253 was used in the original IBM PC and an equivalent circuit appears
in the IBM PS/2s. The somewhat more powerful 8254 was used in the original
IBM AT and, except for the PS/2s, is used in virtually all PCs with 286 or later
CPUs. Each channel can accept an input clock signal having any frequency from 0
to 2 MHz and produce an output signal whose frequency is the input frequency
divided by an arbitrary 16-bit number. On the PC, the input clock frequency for all
three channels is 1.1931817 MHz, which is derived from the old system clock, as
described shortly.

On PCs, the output from channel 0 is used to provide an 18.2-Hz timer interrupt
(int 8 by default) that among other things keeps track of the time of day in 18.2-Hz
ticks since midnight, a rate given by 1.1931817 MHz divided by 65536. However
peculiar the 18.2-Hz tick rate may seem, it’s a real standard and it’s more or less
straightforward to convert it and its higher-speed relatives to more human-oriented
time bases as discussed in Section 8-2. The output from channel 1 is used to tell the
motherboard refresh circuitry to refresh the dynamic RAMs, and the output from
channel 2 is used to send sound to the speaker (see Section 9-1 for discussion and

Computer Science Department UMASS Boston

628 DATA COMMUNICATIONS

FIGURE 11-2. The three registers that comprise the PC parallel printer port. On read, the
printer control register returns the current status of the line bits; on write, it sets the line val-
ues as specified by the write byte.

Printer Data Register (base address + 0)

read write
7 0 7 0
data last written to printer data to printer
or
data from printer if port is

bidirectional & direction bit in
printer control register is set

Printer Status Register (base address + 1)

7 6 5 4 3 2 1 0
[Bsy|ack|[PE | sL [ERR[IRQ] | |

IRQ Status
Error

Select
Paper End

Acknowledge

Busy

Printer Control Register (base address + 2)

7 6 5 4 3 2 1 0
| | I DlmK] st | N]| AF] ST

I- Strobe line

Auto LF line
InitializePrinter
Select In line

enable IRQ line
Port Direction

As soon as the BUSY line goes low, the PC ROM BIOS routine pulses the
STROBE line low (bit O of the control register) telling the printer that a new byte is
ready, and then the routine returns. On the standard IBM version of the printer

Computer Science Department UMASS Boston

10

1-1 THE PC PARALLEL PORT INTERFACE 631

FIGURE 11-3. IBM PC Centronics parallel-port architecture, signals, and output connec-
tor pin numbers.

Parallel port
pin number
DO
©,
D0-D7
> Data : :
Register o .
Chip select D7 @
Base address
ERROR @
SLCT
> Status @
Reg.
: i @
ACK
~ -
Chip select BUSY @
Base address + 1
IRQ7 = ‘
IRQ EN
> STROBE
Control AUTO FD
> Reg.

INIT
Chip select SLCT IN
Base address + 2|

A common but rather unorthodox use of the parallel port is for software
copy protection by means of a dongle, which is a small box that plugs into the paral-
lel port connector. The copy-protected software checks to see if the dongle is there
and won’t run if it isn’t. At the same time, the dongle doesn’t (or at least isn’t sup-
posed to!) interfere with the normal use of the parallel port for other devices such as

[y

—
~

00 © 0

Computer Science Department UMASS Boston

11

§11-2 SERIAL COMMUNICATIONS: THE UART 647

TABLE 11-2. 8250A/16450/16550AF UART register bit definitions. FIFO fields pertain
to 16550AF only. The scratch pad register is missing on the original 8250 UART.
t DLAB (divisor latch address bit) = 0. If DLAB = 1, registers 0 and 1 are the low and high
bytes, respectively, of the baud-rate divisor latch. On the dual 16552 UART, register 2 also has
different meanings for DLAB = 1 (see van Gilluwe, 1994). Registers are read /write unless oth-

erwise noted in the leftmost column.

Register 7 6 5 4 3 2 1 0
Receiver data data data data data data data data
Buffer bit bit bit bit bit bit bit bit
o(rR)! 7 6 5 4 3 2 1 0
Transmit data data data data data data data data
Buffer bit bit bit bit bit bit bit bit
ow'! 7 6 5 4 3 2 1 0
Interrupt MS RLS THRE RDA
Enable 0 0 0 0 inten- | inten- | inten- | inten-
1t able able able able
Interrupt | c\cqc | FIFOS int int int 0 if
1D enabled | enabled 0 0 1D ID iD int
2 (R) bit 2 bit 1 bit 0 | pending
FIFO receiver | receiver DMA xmit revr FIFO
Control trigger | trigger |reserved | reserved | mode FIFO FIFO enable
2 (W) bit 1 bit 0 select reset reset
Line . . # length | length
Control DLAB set St'c.k even parity stop select | select
3 break parity parity | enable bits bit 1 bit 0
Modem
Control 0 0 0 locp ouT2 QUTH1 RTS DTR
4
Line receiver . . . ‘ .
sts |'FRO"| S | e | Uk || by o
5 error
Modem
Status DCD RI DSR CTS ADCD | TERI ADSR | ACTS
6
Scratch data data data data data data data data
pad bit bit bit bit bit bit bit bit
7 7 6 5 4 3 2 1 0

The base addresses of the PC serial ports are 3f8h for the first serial port (COMI)
and 2f8h for the second serial port (COM2). 3e8h and 2e8h are also used on some
systems for COM3 and COM4. The BIOS checks to see which parallel ports are

Computer Science Department

UMASS Boston

12

648 DATA COMMUNICATIONS

present during its power-on tests and stores the base addresses of the serial ports it
finds in the first four words of the BIOS RAM data area (address 40:0h). To access the
UART registers in a serial port, the register offset address is added to the port base
address. For example, to read the UART line status register for COMI, just execute
an in al,dx from port 378h + 5 = 37dh.

You can receive and transmit serial data by simply executing in and out instruc-
tions to the receive and transmit data registers, respectively. But before the UART can
work, its control and baud-rate divisor registers have to be initialized. For standard set-
tings on the PC, this can be accomplished casily by a call to int 14h call with ah =0 and
with the bits in al set as follows.

bits 1,0 = word length (10 gives 7 bits, 11 gives 8 bits)

bit 2 = number of stop bits (0 gives 1 SB, 1 gives 2 SB)

bit 3 = parity enabled (1) or disabled (0)

bit 4 = even (1) or odd (0) parity if bit 3 =1

bits 7,6,5 = the values 0 through 111b give baud rates of 110, 150,

300, 600, 1200, 2400, 4800, and 9600 baud respectively

A popular choice is al = 0e3h, for 9600 baud, no parity, 1 stop bit, and 8-bit words.
To set this up you can use

mov ax,0e3h ;ah = O for serial port initialization call
int 14h ;Use the BIOS routine

The alternative is to program the baud-rate divisor latches and the line control
register directly as illustrated in the communications program of Section 11-5. In
general, you must do this to obtain higher baud rates or to activate the FIFOs on
16550 UARTs. See, for example, Van Gilluwe (1994) for a detailed description of the
individual bits in each UART register and extended BIOS functions available on some
systems such as the IBM PS /2.

Executing int 14h in the ROM BIOS also allows you to send and receive serial
data and to check the serial-port status. Unfortunately, you may not be able to use
these routines for anything but modem communications. The problem is that the
routines check the handshake lines with a countdown loop that times out too fast for
most purposes. This causes characters to be lost if you’re sending data to a device that
must stop receiving data for anything more than a very brief time. The serial commu-
nications functions available with the MS-DOS mode command are more flexible.

To illustrate how you can write your own serial-port drivers, we present some
basic, simple working routines (see also Section 4-6). Polling techniques are used
rather than interrupts here (see Section 11-5 for more advanced routines). The pro-
grams assume that the line-control parameters (stop bits, parity, and word length) and
the baud rate have already been set by the int-14h initialization call. To properly send
or receive data from the UART’s data port (port 3f8h for COM1), you need to know
how to control the DTR and RTS output handshake lines, how to monitor the DSR

Computer Science Department UMASS Boston

13

g11-2 SERIAL COMMUNICATIONS: THE UART

and CTS input handshake lines, and how to detect when serial data has been received
or more data can be transmitted.

Control of the output handshake lines is accomplished through the modem control
register (MCR) located at port 3fch for COMI1. To drive the DTR output low,
thereby indicating that the UART is operational, you set bit 0 of this register to 1.
Similarly, setting bit 1 = 1 forces RTS low, indicating that the UART is ready to
reccive data. You can pull both lines low with the code

mov dx,3fch ;Point at COM1 modem control register
in al,dx ;:Get current state of signals

or al,3 ;Force DTR and RTS low

jmp $+2 ;Slow down 1/O

out dx,al

Section 11-5 discusses how to use the DTR line for handshaking; for now, we just
make sure both DTR and RTS are low, since the remote device may not send or
receive any data unless they are! Similarly, the OUTI and OUT?2 are forced low by
serting bits 2 and 3 high in the modem control register. ‘OUT2 must be low for
UART interrupts to occur with the PC serial adapters. Setting MCR bit 4 high causes
the UART’s serial and handshake outputs to be looped back into the corresponding
inputs for testing purposes. Bits 6 and 7 are always 0.

The state of the handshake input lines can be read as bits in the modem status
register (MSR) located at port 3feh for COMI. As for the outputs, everything is
inverted so that 1s correspond to low pin values and Os to high values. Specifically, bits
4-7 give the state of CTS, DSR, RI, and DCD, respectively. Bits 0-3 give the corre-
sponding delta or change 51gnals For example, 1f the CTS value has changed since the
last time the modem status register was read, bit 0 is set to 1. Such changes can also
be programmed to cause an interrupt. Section 11-5 shows how to use the DSR input
for handshaking. For now, just ignore this register.

The line status register (LSR) located at port 3fdh for COM1 is used to monitor
the status of the serial lines. The DR bit, bit 0, tells whether data has been received,
and the THRE bit, bit 5, tells whether the transmitter holding register is empty. If
THRE = 1, the last character sent has been transmitted and vou can send another
character; if DR = 1, a character has been received and is ready to be read by the CPU.
Other bits in the line status register are set to 1 if overrun (bit 1), parity (bit 2), or
framing (bit 3) errors have occurred. Bit 4 = 1 announces that a break interrupt has
occurred; that is, a space value for longer than a full-word transmission time has been
received. Bit 6 = 1 says the transmitter shift register is empty. Having both THRE = 1
and the transmitter shift register empty implies that #wo characters can be immediately
sent to the UART. This works because the UART transmitter is double buffered, as
shown in the block diagram of Figure 11-7. While one character is being shifted out
bit -by-bit in the transmitter shift register, a second character can be stored in the
transmitter holding register, waiting its turn to be transferred into the shift register as

ComptRETSfeHaE BYShshh&haracter has been shifigd ¥iBoston

649

14

656 DATA COMMUNICATIONS

also combine drivers and reccivers in a single package so that only a single chip needs
to be connected to a UART to implement an RS-232 serial port as shown in
Figure 11-9. Note that the RS-232 drivers and receivers both are inverters so that the
signals on a serial cable are inverted from their values at a UART. Thus, the handshake
lines are all active high when observed on the cable. Note also that this interface works
even if the cable doesn’t connect all the handshake signals since input lines are pulled
high by the receiver circuitry if their inputs are disconnected. Many interfaces work this
way, requiring you only to connect pins 2, 3, and 5 (RxD, TxD, and signal ground) on
a DB-9 connector to make a working serial interface.

FIGURE 11-9. Typical RS-232 interface for a PC supporting all the commonly used serial
port signals. Note that all signals coming from or going into the UART are inverted.

+5V +12V
s
Vee V+
C+
16550 a7ur & flovTo-10v y_|8
UART v T . VOLTAGE INVERTER L our
+| 10V
+5V
4()0k9% i
SOUT , 3 % 19 ™ o
+5V
_ 400k§2%
23 20
DIR > 3 }p (+) o
+5V
_ 400k§2$
16 13

SIN <t R1 O 2 RxD

22 21

DSR - R2 —9 6) DSR
]
8 18 (s) cTs

I
DCD —L Ril—e 12 1) DCD
Iz
5kQ

17

CTS - R3

10

2l

R5

AR RR

J_ MAX 239

Computer Science Department UMASS Boston

15

