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ABSTRACT 

Deemed “one of the top ten data mining mistakes”, leakage is 

essentially the introduction of information about the data mining 

target, which should not be legitimately available to mine from. In 

addition to our own industry experience with real-life projects, 

controversies around several major public data mining competi-

tions held recently such as the INFORMS 2010 Data Mining 

Challenge and the IJCNN 2011 Social Network Challenge are 

evidence that this issue is as relevant today as it has ever been. 

While acknowledging the importance and prevalence of leakage 

in both synthetic competitions and real-life data mining projects, 

existing literature has largely left this idea unexplored. What little 

has been said turns out not to be broad enough to cover more 

complex cases of leakage, such as those where the classical i.i.d. 

assumption is violated, that have been recently documented. In 

our new approach, these cases and others are explained by expli-

citly defining modeling goals and analyzing the broader frame-

work of the data mining problem. The resulting definition enables 

us to derive general methodology for dealing with the issue. We 

show that it is possible to avoid leakage with a simple specific 

approach to data management followed by what we call a learn-

predict separation, and present several ways of detecting leakage 

when the modeler has no control over how the data have been 

collected. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – Data 

mining. I.5.2 [Pattern Recognition]: Design Methodology – Clas-

sifier design and evaluation. 

General Terms 

Theory, Algorithms. 

Keywords 

Data mining, Leakage, Statistical inference, Predictive modeling. 

1. INTRODUCTION 
Deemed “one of the top ten data mining mistakes” [7], leakage in 

data mining (henceforth, leakage) is essentially the introduction of 

information about the target of a data mining problem, which 

should not be legitimately available to mine from. A trivial exam-

ple of leakage would be a model that uses the target itself as an 

input, thus concluding for example that „it rains on rainy days‟. In 

practice, the introduction of this illegitimate information is unin-

tentional, and facilitated by the data collection, aggregation and 

preparation process. It is usually subtle and indirect, making it 

very hard to detect and eliminate. Leakage is undesirable as it may 

lead a modeler, someone trying to solve the problem, to learn a 

suboptimal solution, which would in fact be outperformed in 

deployment by a leakage-free model that could have otherwise 

been built. At the very least leakage leads to overestimation of the 

model‟s performance. A client for whom the modeling is underta-

ken is likely to discover the sad truth about the model when per-

formance in deployment is found to be systematically worse than 

the estimate promised by the modeler. Even then, identifying 

leakage as the reason might be highly nontrivial. 

Existing literature, which we survey in Section 2, mentions lea-

kage and acknowledges its importance and prevalence in both 

synthetic competitions and real-life data mining projects [e.g. 2, 

7]. However these discussions lack several key ingredients. First, 

they do not present a general and clear theory of what constitutes 

leakage. Second, these sources do not suggest practical methodol-

ogies for leakage detection and avoidance that modelers could 

apply to their own statistical inference problems. This gap in 

theory and methodology could be the reason that several major 

data mining competitions held recently such as KDD-Cup 2008, 

or the INFORMS 2010 Data Mining Challenge, though judicious-

ly organized by capable individuals, suffered from severe leakage. 

In many cases, attempts to fix leakage resulted in the introduction 

of new leakage which is even harder to deal with. Other competi-

tions such as KDD-Cup 2007 and IJCNN 2011 Social Network 

Challenge were affected by a second form of leakage which is 

specific to competitions. Leakage from available external sources 

undermined the organizers‟ implicit true goal of encouraging 

submissions that would actually be useful for the domain. These 

cases, in addition to our own experience with leakage in the indus-

try and as competitors in and organizers of data mining chal-

lenges, are examined in more detail also in Section 2. We revisit 

them in later sections to provide a more concrete setting for our 

discussion. 

The major contribution of this paper, that is, aside from raising 

awareness to an important issue which we believe is often over-

looked, is a proposal in Section 3 for a formal definition of lea-

kage. This definition covers both the common case of leaking 

features and more complex scenarios that have been encountered 

in predictive modeling competitions. We use this formulation to 

facilitate leakage avoidance in Section 4, and suggest in Section 5 

methodology for detecting leakage when we have limited or no 
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control over how the data have been collected. This methodology 

should be particularly useful for practitioners in predictive model-

ing problems, as well as for prospective competition organizers. 

2. LEAKAGE IN THE KDD LITERATURE 
The subject of leakage has been visited by several data mining 

textbooks as well as a few papers. Most of the papers we refer to 

are related to KDD-Cup competitions, probably due to authors of 

works outside of competitions locating and fixing leakage issues 

without reporting the process. We shall give a short chronological 

review here while collecting examples to be used later as case 

studies for our proposed definition of leakage. 

Pyle [9, 10, 11] refers to the phenomenon which we call here 

leakage, in the context of predictive modeling, as Anachronisms 

(something that is out of place in time), and says that "too good to 

be true" performance is "a dead giveaway" of its existence. The 

author suggests turning to exploratory data analysis in order to 

find and eliminate leakage sources, which we will also discuss in 

Section 5. Nisbet et al. [7] refer to the issue as "leaks from the 

future” and claim it is "one of the top 10 data mining mistakes". 

They repeat the same basic insights, but also do not suggest a 

general definition or methodology to correct and prevent leakage. 

These titles provide a handful of elementary but common exam-

ples of leakage. Two representative ones are: (i) An "account 

number" feature, for the problem of predicting whether a potential 

customer would open an account at a bank. Obviously, assignment 

of such an account number is only done after an account has been 

opened. (ii) An "interviewer name" feature, in a cellular company 

churn prediction problem. While the information “who inter-

viewed the client when they churned” appears innocent enough, it 

turns out that a specific salesperson was assigned to take over 

cases where customers had already notified they intend to churn.  

Kohavi et al. [2] describe the introduction of leaks in data mining 

competitions as giveaway attributes that predict the target because 

they are downstream in the data collection process. The authors 

give an example in the domain of retail website data analytics 

where for each page viewed the prediction target is whether the 

user would leave or stay to view another page. A leaking attribute 

is the "session length", which is the total number of pages viewed 

by the user during this visit to the website. This attribute is added 

to each page-view record at the end of the session. A solution is to 

replace this attribute with "page number in session" which de-

scribes the session length up to the current page, where prediction 

is required. 

Subsequent work by Kohavi et al. [3] presents the common busi-

ness analysis problem of characterizing big spenders among cus-

tomers. The authors explain that this problem is prone to leakage 

since immediate triggers of the target (e.g. a large purchase or 

purchase of a diamond) or consequences of the target (e.g. paying 

a lot of tax) are usually available in collected data and need to be 

manually identified and removed. To show how correcting for 

leakage can become an involved process, the authors also discuss 

the more complex situation where removing the information "total 

purchase in jewelry" caused information of "no purchases in any 

department" to become fictitiously predictive. This is because 

each customer found in the database is there in the first place due 

to some purchase, and if this purchase is not in any department 

(still available), it has to be jewelry (which has been removed). 

They suggest defining analytical questions that should suffer less 

from leaks – such as characterizing a "migrator" (a user who is a 

light spender but will become a heavy one) instead of characteriz-

ing the "heavy spender". The idea is that it is better to ask analyti-

cal questions that have a clear temporal cause-and-effect structure. 

Of course leaks are still possible, but much harder to introduce by 

accident and much easier to identify. We return to this idea in 

Section 3. A later paper by the authors [4] reiterates the previous 

discussion, and adds the example of the “use of free shipping”, 

where a leak is introduced when free shipping is provided as a 

special offer with large purchases. 

Rosset et al. [11] discuss leakage encountered in the 2007 KDD-

Cup competition. In that year's contest there were two related 

challenges concerning movie viewers‟ reviews from the famous 

Netflix database. The first challenge, "Who Reviewed What", was 

to predict whether each user would give a review for each title in 

2006, given data up to 2005. The second challenge, "How Many 

Reviews", was to predict the number of reviews each title would 

receive in 2006, also using data given up to 2005. For the first 

challenge, a test set with actual reviews from 2006 was provided. 

Although disjoint sets of titles were used to construct the data sets 

for these two challenges, Rosset et al.‟s winning submission ma-

naged to use the test set for the first problem as the target in a 

supervised-learning modeling approach for the second problem. 

This was possible due to a combination of two facts. First, up to a 

scaling factor and noise, the expected number of user/review pairs 

in the first problem's test set in which a title appears is equal to the 

total number of reviews which that titled received in 2006. This is 

exactly the target for the second problem, only on different titles. 

Second, the titles are similar enough to share statistical properties, 

so from the available dynamics for the first group of titles one can 

infer the dynamics of the second group‟s. We shall revisit this 

complex example in Section 3, where this case will motivate us to 

extend our definition of leakage beyond leaking features. 

Two medical data mining contests held the following year and 

which also exhibited leakage are discussed in [7, 13]. KDD-Cup 

2008 dealt with cancer detection from mammography data. Ana-

lyzing the data for this competition, the authors point out that the 

“Patient ID” feature (ignored by most competitors) has tremend-

ous and unexpected predictive power. They hypothesize that mul-

tiple clinical study, institution or equipment sources were used to 

compile the data, and that some of these sources were assigned 

their population with prior knowledge of the patient‟s condition. 

Leakage was thus facilitated by assigning consecutive patient IDs 

for data from each source, that is, the merge was done without 

obfuscating the source. The INFORMS Data Mining Challenge 

2008 competition held the same year, addressed the problem of 

pneumonia diagnosis based on patient information from hospital 

records. The target was originally embedded as a special value of 

one or more features in the data given to competitors. The orga-

nizers removed these values, however it was possible to identify 

traces of such removal, constituting the source of leakage in this 

example (e.g. a record with all condition codes missing, similarly 

to Kohavi‟s jewelry example). 

Also in the recent work by Rosset et al. [13], the concept of iden-

tifying and harnessing leakage has been openly addressed as one 

of three key aspects for winning data mining competitions. This 

work provides the intuitive definition of leakage as "The uninten-

tional introduction of predictive information about the target by 

the data collection, aggregation and preparation process". The 

authors mention that leakage might be the cause of many failures 

of data mining applications, and give the illustrative example of 

predicting people who are likely to be sick by looking at how 
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many work days they would end up missing. They also describe a 

real-life business intelligence project at IBM where potential 

customers for certain products were identified, among other 

things, based on keywords found on their websites. This turned 

out to be leakage since the website content used for training had 

been sampled at the point in time where the potential customer has 

already become a customer, and where the website contained 

traces of the IBM products purchased, such as the word “Webs-

phere” (e.g. in a press release about the purchase or a specific 

product feature the client uses). 

The latest INFORMS and IJCNN competitions held in late 2010 

and early 2011 are fresh examples of how leakage continues to 

plague predictive modeling problems and competitions in particu-

lar. The INFORMS 2010 Data Mining Challenge required partici-

pants to develop a model that predicts stock price movements, 

over a fixed one-hour horizon, at five minute intervals. Competi-

tors were provided with intraday trading data showing stock pric-

es, sectoral data, economic data, experts' predictions and indices. 

The data were segmented to a training database, on which partici-

pants were expected to build their predictive models, and a test 

database which was used by the organizers to evaluate submis-

sions. The surprising results were that about 30 participating 

groups achieved more than 0.9 AUC, with the best model surpass-

ing 0.99 AUC. Had these models been legitimate they would‟ve 

indeed made a “big impact on the finance industry” as the orga-

nizers had hoped, not to mention making their operators very 

wealthy individuals. Unfortunately, however, it became clear that 

although some steps had been taken to prevent competitors from 

“looking up the answers” (the underlying target stock‟s identity 

was not revealed, and the test set did not include the variable 

being predicted), it was still possible to build models that rely on 

data from the future. Having data from the future for the explana-

tory variables, some of which are highly cointegrated with the 

target (e.g. a second stock within the same sector as the target 

stock), and having access to publicly available stock data such as 

Yahoo/Google Finance (which allows finding at least good candi-

dates for the identity of the target stock, consequently revealing all 

test values) was the true driver of success for these models. The 

organizers held two rankings of competitors, one where future 

information was allowed and another where it was forbidden, 

however in the end they had to admit that verifying future infor-

mation was not used was impossible, and that it was probable that 

all models were tainted, as all modelers had been exposed to the 

test set. 

The IJCNN 2011 Social Network Challenge presented participants 

with anonymized 7,237,983 edges from an undisclosed online 

social network and asked to predict which of an additional set of 

8,960 potential edges are in fact realized on the network as well. 

The winners have recently reported [3] they had been able to 

recognize, through sophisticated analysis, that the social network 

in question was Flickr and then to de-anonymize the majority of 

the data. This allowed them to use edges available from the on-

line Flickr network to correctly predict over 60% of edges which 

were identified, while the rest had to be handled classically using 

legitimate prediction. Similarly to other cases that have been 

mentioned, these rogue solutions are sometimes so elegant and 

insightful that they carry merit in their own right. The problem is 

that they do not answer the original question presented by the 

organizers. 

Clearly, then, the issue of leakage has been observed in various 

contexts and problem domains, with a natural focus on predictive 

modeling. However, none of the discussions that we could find 

has addressed the issue in a general way, or suggested methodolo-

gy for handling it. In the following section we make our attempt to 

derive a definition of leakage. 

3. FORMULATION 

3.1 Preliminaries and Legitimacy 
In our discussion of leakage we shall define the roles of client and 

modeler as in Section 1, and consider the standard statistical infe-

rence framework of supervised learning and its generalizations, 

where we can discuss examples, targets and features. We assume 

the reader is familiar with these concepts. For a complete refer-

ence see [1]. Let us just lay out our notation and say that in our 

framework we receive from an axiomatic data preparation stage a 

multivariate random process        .   is the outcome or 

target generating process with samples   target instances. Values 

or realizations of the random variable   are denoted   (in bold). 

Similarly,  ,   and   are the feature-vector generating process, 

an instance and realization. For individual feature generating 

processes, instances and realizations we use    ,     and 

   . Specific instances    and    taken from the same instance 

of   are said to be  -related. The modeler‟s goal is to statistical-

ly infer a target instance, from its associated feature-vector in-

stance in   and from a separate group of samples of  , called 

the training examples    . The solution to this problem is a mod-

el            . We say that the model‟s observational inputs 

for predicting   are   and    , and this relation between the 

various elements in the framework is the base for our discussion.  

Models containing leaks are a subclass of the broader concept of 

illegitimate or unacceptable models. At this level, legitimacy, 

which is a key concept in our formulation of leakage, is complete-

ly abstract. Every modeling problem sets its own rules for what 

constitutes a legitimate or acceptable solution and different prob-

lems, even if using the same data, may have wildly different views 

on legitimacy. For example a solution could be considered illegi-

timate if it is too complex – say if it uses too many features or if it 

is not linear in its features.  

However our focus here is on leakage, which is a specific form of 

illegitimacy that is an intrinsic property of the observational inputs 

of a model. This form of illegitimacy remains partly abstract, but 

could be further defined as follows: Let   be some random varia-

ble. We say a second random variable   is  -legitimate if   is 

observable to the client for the purpose of inferring    In this case 

we write           . 

A fully concrete meaning of legitimacy is built-in to any specific 

inference problem. The trivial legitimacy rule, going back to the 

first example of leakage given in Section 1, is that the target itself 

must never be used for inference: 

            (1)  

We could use this rule if we wanted to disqualify the winning 

submission to the IJCNN 2011 Social Network Challenge, for it, 

however cleverly, eventually uses some of the targets themselves 

for inference. This condition should be abided by all problems, 

and we refrain from explicitly mentioning it for the remaining 

examples we shall discuss. 

Naturally, a model contains leaks with respect to a target instance 

  if one or more of its observational inputs are  -illegitimate. We 

say that the model inherits the illegitimacy property from the 
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features and training examples it uses. The discussion proceeds 

along these two possible sources of leakage for a model: features 

and training examples. 

3.2 Leaking Features 
We begin with the more common case of leaking features. First 

we must extend our abstract definition of legitimacy to the case of 

random processes: Let   be some random process. We say a 

second random process   is  -legitimate if, for every pair of 

instances of   and  ,   and   respectively, which are  -related, 

  is  -legitimate. We use the same notation as we did for random 

variables in 3.1, and write that           . 

Leaking features are then covered by a simple condition for the 

absence of leakage: 

That is, any feature made available by the data preparation process 

is deemed legitimate by the precise formulation of the modeling 

problem at hand, instance by instance w.r.t. its matching target.  

The prevailing example for this type of leakage is what we call the 

no-time-machine requirement. In the context of predictive model-

ing, it is implicitly required that a legitimate model only build on 

features with information from a time earlier (or sometimes, no 

later) than that of the target. Formally,   and  , made scalar for 

the sake of simplicity, are random processes over some time axis   

(not necessarily physical time). Prediction is required by the client 

for the target process   at times   , and their  -related feature 

process   is observable to the client at times   . We then have: 

                    . (3)  

Such a rule should be read: Any legitimate feature w.r.t. the target 

process is a member of the right hand side set of features. In this 

case the right hand side is the set of all features whose every in-

stance is observed earlier than its  -related target instance. We 

are assuming with this notation that   contains all possible fea-

tures, and use “ ” to express that additional legitimacy constraints 

might also apply (otherwise “ ” could be used). 

While the simple no-time-machine requirement is indeed the most 

common case, one could think of additional scenarios which are 

still covered by condition (2). A simple extension is to require 

features to be observable a sufficient period of time prior to    as 

in (4) below in order to preclude any information that is an imme-

diate trigger of the target. One reason why this might be necessary 

is that sometimes it is too limiting to think of the target as pertain-

ing to a point-in-time, only to a rough interval. Using data observ-

able close to    makes the problem uninteresting. Such is the case 

for the “heavy spender” example from [3]. With legitimacy de-

fined as (3) (or as (4) when    ) a model may be built that uses 

the purchase of a diamond to conclude that the customer is a big 

spender but with   sufficiently large this is not allowed. This 

transforms the problem from identification of “heavy spenders” to 

the suggested identification of “migrators”. 

                      . (4)  

Another example, using the same random process notation, is a 

memory limitation, where a model may not use information older 

than a time relative to that of the target: 

                         . (5)  

We can think of a requirement to use exactly   features from a 

specified pool    of preselected features: 

                                      , (6)  

and so on. In fact, there is a variant of example (6) which is very 

common: only the features    selected for a specific provided 

dataset are considered legitimate. Sometimes this rule allows free 

use of the entire set: 

           . (7)  

Usually however this rule is combined with (3) to give: 

                     . (8)  

Most documented cases of leakage mentioned in Section 2 are 

covered by condition (2) in conjunction with a no-time-machine 

requirement as in (3). For instance, in the trivial example of pre-

dicting rainy days, the target is an illegitimate feature since its 

value is not observable to the client when the prediction is re-

quired (say, the previous day). As another example, the pneumo-

nia detection database in the INFORMS 2008 challenge discussed 

in [8, 13] implies that a certain combination of missing diagnosis 

code and some other features is highly informative of the target. 

However this feature is illegitimate, as the patient‟s condition is 

still being studied.  

It is easy to see how conditions (2) and (3) similarly apply to the 

account number and interviewer name examples from [10], the 

session length of [2] (while the corrected “page number in ses-

sion” is fine), the immediate and indirect triggers described in [3, 

4], the remaining competitions described in [8, 13], and the web-

site based features used by IBM and discussed in [13]. However 

not all examples fall under condition (2). 

Let us examine the case mentioned earlier of KDD-Cup 2007 as 

discussed in [11]. While clearly taking advantage of information 

from reviews given to titles during 2006 (the mere fact of using 

data from the future is proof, but we can also see it in action by 

the presence of measurable leakage – the fact that this model 

performed significantly better both in internal tests and the final 

competition), the final delivered model   does not include any 

illegitimate feature1. To understand what has transpired, we must 

address the issue of leakage in training examples. 

3.3 Leakage in Training Examples 
Let us first consider the following synthetic but illustrative exam-

ple. Suppose we are trying to predict the level of a white noise 

process    for                  , clearly a hopeless task. 

Suppose further that for the purpose of predicting   ,   itself is a 

legitimate feature but otherwise, as in (3), only past information is 

deemed legitimate – so obviously we cannot cheat. Now consider 

a model trained on examples     taken from              . 
The proposed model is             , a table containing for 

each   the target‟s realized value   . Strictly speaking, the only 

                                                                 

1 In fact the use of external sources that are not rolled-back to 

2005, such as using current (2007) IMDB data, is simple lea-

kage just like in the IBM example. However this is not the ma-

jor source of leakage in this example. 

               . (2)  
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feature used by this model,  , is legitimate. Hence the model has 

no leakage as defined by condition (2), however it clearly has 

perfect prediction performance for the evaluation set in the exam-

ple. We would naturally like to capture this case under a complete 

definition of leakage for this problem. 

In order to tackle this case, we suggest adding to (2) the following 

condition for the absence of leakage: For all      , 

                                        (9)  

where     is the set of evaluation2 target instances, and         are 

the sets of training targets and feature-vectors respectively whose 

realizations make up the set of training examples    . 

One way of interpreting this condition is to think of the informa-

tion presented for training as constant features embedded into the 

model, and added to every feature-vector instance the model is 

called to generate a prediction for.  

For modeling problems where the usual i.i.d. instances assump-

tion is valid, and when without loss of generality considering all 

information specific to the instance being predicted as features 

rather than examples, condition (9) simply reduces to condition 

(2) since irrelevant observations can always be considered legiti-

mate. In contrast, when dealing with problems exhibiting non-

stationarity, a.k.a. concept-drift [15], and more specifically the 

case when samples of the target (or, within a Bayesian framework, 

the target/feature) are not mutually independent, condition (9) 

cannot be reduced to condition (2). Such is the case of KDD-Cup 

2007. Available information about the number of reviews given to 

a group of titles for the “who reviewed what” task is not statisti-

cally independent of the number of reviews given to the second 

group of titles which is the target in the “how many ratings” task. 

The reason for this is that these reviews are all given by the same 

population of users over the same period in 2006, and thus are 

mutually affected by shared causal ancestors such as viewing and 

participation trends (e.g. promotions, similar media or event that 

gets a lot of exposure and so on). Without proper conditioning on 

these shared ancestors we have potential dependence, and because 

most of these ancestors are unobservable, and difficult to find 

observable proxies for, dependence is bound to occur. 

3.4 Discussion 
It is worth noting that leakage in training examples is not limited 

to the explicit use of illegitimate examples in the training process. 

A more dangerous way in which illegitimate examples may creep 

in and introduce leakage is through design decisions. Suppose for 

example that we have access to illegitimate data about the dep-

loyment population, but there is no evidence in training data to 

support this knowledge. This might prompt us to use a certain 

modeling approach that otherwise contains no leakage in training 

examples but is still illegitimate. Examples could be: (i) selecting 

or designing features that will have predictive power in deploy-

ment, but don‟t show this power on training examples, (ii) algo-

rithm or parametric model selection, and (iii) meta-parameter 

value choices. This form of leakage is perhaps the most dangerous 

as an evaluator may not be able to identify it even when she 

knows what she is looking for. The exact same design could have 

been brought on by theoretic rationale, in which case it would 

                                                                 

2 We use the term evaluation as it could play the classic role of 

either validation or testing. 

have been completely legitimate. In some domains such as time 

series prediction, where typically only a single history measuring 

the phenomenon of interest is available for analysis, this form of 

leakage is endemic and commonly known as data snooping / 

dredging [5]. 

Regarding concretization of legitimacy for a new problem: Argu-

ably, more often than not the modeler might find it very challeng-

ing to define, together with the client, a complete set of such 

legitimacy guidelines prior to any modeling work being underta-

ken, and specifically prior to performing preliminary evaluation. 

Nevertheless it should usually be rather easy to provide a coarse 

definition of legitimacy for the problem, and a good place to start 

is to consider model use cases. The specification of any modeling 

problem is really incomplete without laying out these ground rules 

of what constitutes a legitimate model.  

As a final point on legitimacy, let us mention that once it has been 

clearly defined for a problem, the major challenge becomes pre-

paring the data in such a way that ensures models built on this 

data would be leakage free. Alternatively, when we do not have 

full control over data collection or when it is simply given to us, a 

methodology for detecting when a large number of seemingly 

innocent pieces of information are in fact plagued with leakage is 

required. This shall be the focus of the following two sections. 

4. AVOIDANCE 

4.1 Methodology 
Our suggested methodology for avoiding leakage is a two stage 

process of tagging every observation with legitimacy tags during 

collection and then observing what we call a learn-predict separa-

tion. We shall now describe these stages and then provide some 

examples. 

At the most basic level suitable for handling the more general case 

of leakage in training examples, legitimacy tags (or hints) are 

ancillary data attached to every pair       of observational input 

instance   and target instance  , sufficient for answering the ques-

tion “is   legitimate for inferring  “ under the problem‟s defini-

tion of legitimacy. With this tagged version of the database it is 

possible, for every example being studied, to roll back the state of 

 

Figure 1. An illustration of learn-predict separation. 

(a) A general separation 

(b) Time separation (c) Only targets are illegit. 

legitimate 
illegitimate 
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the world to a legitimate decision state, eliminating any confusion 

that may arise from only considering the original raw data. 

In the learn-predict separation paradigm (illustrated in Figure 1) 

the modeler uses the raw but tagged data to construct training 

examples in such a way that (i) for each target instance, only those 

observational inputs which are purely legitimate for predicting it 

are included as features, and (ii) only observational inputs which 

are purely legitimate with all evaluation targets may serve as 

examples. This way, by construction, we directly take care of the 

two types of leakage that make up our formulation, respectively 

leakage in features (2) and in training examples (9). To complete-

ly prevent leakage by design decisions, the modeler has to be 

careful not to even get exposed to information beyond the separa-

tion point, for this we can only prescribe self-control. 

As an example, in the common no-time-machine case where legi-

timacy is defined by (3), legitimacy tags are time-stamps with 

sufficient precision. Legitimacy tagging is implemented by time-

stamping every observation. Learn-predict separation is imple-

mented by a cut at some point in time that segments training from 

evaluation examples. This is what has been coined in [13] predic-

tion about the future. Interestingly enough, this common case 

does not sit well with the equally common way databases are 

organized. Updates to database records are usually not time-

stamped and not stored separately, and at best whole records end 

up with one time-stamp. Records are then translated into exam-

ples, and this loss of information is often the source of all evil that 

allows leakage to find its way into predictive models. 

The original data for the INFORMS 2008 Data Mining Challenge, 

lacked proper time-stamping, causing observations taken before 

and after the target‟s time-stamp to end up as components of 

examples. This made time-separation impossible, and models 

built on this data did not perform prediction about the future. On 

the other hand, the data for KDD-Cup 2007‟s “How Many Re-

views” task in itself was (as far as we are aware) well time-

stamped and separated. Training data provided to competitors was 

sampled prior to 2006, while test data was sampled after and 

including 2006, and was not given. The fact that training data 

exposed by the organizers for the separate "Who Reviewed What" 

task contained leakage was due to an external source of leakage, 

an issue related with data mining competitions which we shall 

discuss next. 

4.2 External Leakage in Competitions 
Our account of leakage avoidance, especially in light of our recur-

ring references to data mining competitions in this paper, would 

be incomplete without mentioning the case of external leakage. 

This happens when some data source other than what is simply 

given by the client (organizer) for the purpose of performing 

inference, contains leakage and is accessible to modelers (compet-

itors). Examples for this kind of leakage include the KDD-Cup 

2007 “How Many Reviews” task, the INFORMS 2010 financial 

forecasting challenge, and the IJCNN 2011 Social Network Chal-

lenge3. 

In these cases, it would seem that even a perfect application of the 

suggested avoidance methodology breaks down by considering 

the additional source of data. Indeed, separation only prevents 

                                                                 

3 Although it is entirely possible that internal leakage was also 

present in these cases (e.g. forum discussions regarding the 

IJCNN 2011 competition on http://www.kaggle.com). 

leakage from the data actually separated. The fact that other data 

are even considered is indeed a competition issue, or in some 

cases an issue of a project organized like a competition (i.e. 

projects within large organizations, outsourcing or government 

issued projects). Sometimes this issue stems from a lack of an 

auditing process for submissions, however most of the time, it is 

introduced to the playground on purpose. 

Competition organizers, and some project clients, have an ulterior 

conflict of interest. On the one hand they do not want competitors 

to cheat and use illegitimate data. On the other hand they would 

welcome insightful competitors suggesting new ideas for sources 

of information. This is a common situation, but the two desires or 

tasks are often conflicting: when one admits not knowing which 

sources could be used, one also admits she can't provide an air-

tight definition of what she accepts as legitimate. She may be able 

to say something about legitimacy in her problem, but would 

intentionally leave room for competitors to maneuver.  

The solution to this conflict is to separate the task of suggesting 

broader legitimacy definitions for a problem from the modeling 

task that fixes the current understanding of legitimacy. Competi-

tions should just choose one task, or have two separate challenges: 

one to suggest better data, and one to predict with the given data 

only. The two tasks require different approaches to competition 

organization, a thorough account of which is beyond the scope of 

this paper. One approach for the first task that we will mention is 

live prediction. 

When the legitimacy definition for a data mining problem is iso-

morphic to the no-time-machine legitimacy definition (3) of pre-

dictive modeling, we can sometimes take advantage of the fact 

that a learn-predict separation over time is physically impossible 

to circumvent. We can then ask competitors to literally predict 

targets in the future (that is, a time after submission date) with 

whatever sources of data they think might be relevant, and they 

will not be able to cheat in this respect. For instance the IJCNN 

Social Network Challenge could have asked to predict new edges 

in the network graph a month in advance, instead of synthetically 

removing edges from an existing network which left traces and 

the online original source for competitors to find. 

5. DETECTION 
Often the modeler doesn‟t have control over the data collection 

process. When the data are not properly tagged, the modeler can-

not pursue a learn-predict separation as in the previous section. 

One important question is how to detect leakage when it happens 

in given data, as the ability to detect that there is a problem can 

help mitigate its effects. In the context of our formulation from 

Section 3, detecting leakage boils down to pointing out how con-

ditions (2) or (9) fail to hold for the dataset in question. A brute-

force solution to this task is often infeasible because datasets will 

always be too large. We propose the following methods for filter-

ing leakage candidates. 

Exploratory data analysis (EDA) can be a powerful tool for identi-

fying leakage. EDA [14] is the good practice of getting more 

intimate with the raw data, examining it through basic and inter-

pretable visualization or statistical tools. Prejudice free and me-

thodological, this kind of examination can expose leakage as 

patterns in the data that are surprising. In the INFORMS 2008 

breast cancer example, for instance, the fact that the “patient id” is 

so strongly correlated with the target is surprising, if we expect ids 

to be given with little or no knowledge of the patient‟s diagnosis, 

for instance on an arrival time basis. Of course some surprising 
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facts revealed by the data through basic analysis could be legiti-

mate, for the same breast cancer example it might be the case that 

family doctors direct their patients to specific diagnosis paths 

(which issue patient IDs) based on their initial diagnosis, which is 

a legitimate piece of information. Generally however, as most 

worthy problems are highly nontrivial, it is reasonable that only 

few surprising candidates would require closer examination to 

validate their legitimacy. 

Initial EDA is not the only stage of modeling where surprising 

behavior can expose leakage. The “IBM Websphere” example 

discussed in Section 1 is an excellent example that shows how the 

surprising behavior of a feature in the fitted model, in this case a 

high entropy value (the word “Websphere”), becomes apparent 

only after the model has been built. Another approach related to 

critical examination of modeling results comes from observing 

overall surprising model performance. In many cases we can 

come to expect, from our own experience or from prior/competing 

documented results, a certain level of performance for the prob-

lem at hand. A substantial divergence from this expected perfor-

mance is surprising and merits testing the most informative 

observations the model is based on more closely for legitimacy. 

The results of many participants in the INFORMS 2010 financial 

forecasting Challenge are an example of this case because they 

contradict prior evidence about the efficiency of the stock market. 

Finally, perhaps the best approach but possibly also the one most 

expensive to implement, is early in-the-field testing of initial 

models. Any substantial leakage would be reflected as a differ-

ence between estimated and realized out-of-sample performance. 

However, this is in fact a sanity check of the model‟s generaliza-

tion capability, and while this would work well for many cases, 

other issues can make it challenging or even impossible to isolate 

the cause of such performance discrepancy as leakage: classical 

over-fitting, tangible concept-drift, issues with the design of the 

field-test such a sampling bias and so on. 

A fundamental problem with the methods for leakage detection 

suggested in this section is that they all require some degree of 

domain knowledge: For EDA one needs to know if a good predic-

tor is reasonable; comparison of model performance to alternative 

models or prior state-of-art models requires knowledge of the 

previous results; and the setup for early in-the-field evaluation is 

obviously very involved. The fact that these methods still rely on 

domain knowledge places an emphasis on leakage avoidance 

during data collection, where we have more control over the data. 

6. (NOT) FIXING LEAKAGE 
Once we have detected leakage, what should we do about it? In 

the best-case scenario, one might be able to take a step back, get 

access to raw data with intact legitimacy tags, and use a learn-

predict separation to reconstruct a leakage-free version of the 

problem. The second-best scenario happens when intact data is 

not available but the modeler can afford to fix the data collection 

process and postpone the project until leakage-free data become 

available. In the final scenario, one just has to make do with that 

which is available. 

Because of structural constraints at work, leakage can be some-

what localized in samples. This is true in both INFORMS 2008 

and INFORMS 2009 competitions mentioned above, and also in 

the IBM Websphere example. When the model is used in the field, 

by definition all observations are legitimate and there can be no 

active leaks. So to the extent that most training examples are also 

leakage-free, the model may perform worse in deployment than in 

the pilot evaluation – but would still be better than random guess-

ing and possibly competitive with models built with no leakage. 

This is good news as it means that, for some problems, living with 

leakage without attempting to fix it could work. 

What happens when we do try to fix leakage? Without explicit 

legitimacy tags in the data, it is often impossible to figure out the 

legitimacy of specific observations and/or features even if it is 

obvious that leakage has occurred. It may be possible to partly 

plug the leak but not to seal it completely, and it is not uncommon 

that an attempt to fix leakage only makes it worse. 

Usually, where there is one leaking feature, there are more. Re-

moving the "obvious" leaks that are detected may exacerbate the 

effect of undetected ones. In the e-commerce example from [4], 

one might envision to simply remove the obvious „free shipping‟ 

field, however this kind of feature removal succeeds only in very 

few and simple scenarios to completely eradicate leaks. In particu-

lar, in this example you are still left with the „no purchase in any 

department‟ signature. Another example for this is KDD-Cup 

2008 breast cancer prediction competition, where the patient ID 

contained an obvious leak. It is by no means obvious that remov-

ing this feature would leave a leakage-free dataset, however. As-

suming different ID ranges correspond to different health care 

facilities (in different geographical locations, with different 

equipment), there may be additional traces of this in the data. If 

for instance the imaging equipment‟s grey scale is slightly differ-

ent and in particular grey levels are higher in the location with 

high cancer rate, the model without ID could pick up this leaking 

signal from the remaining data, and the performance estimate 

would still be optimistic (the winners show evidence of this in 

their report [8]). 

Similar arguments can be made about feature modification per-

formed in INFORMS 2008 in an attempt to plug obvious leaks, 

which clearly created others; and instance removal in organization 

of INFORMS 2009, which also left some unintended traces [16].  

In summary, further research into general methodology for lea-

kage correction is indeed required. Lacking such methodology, 

our experience is that fully fixing leakage without learn-predict 

separation is typically very hard, perhaps impossible, and that 

modeling with the remaining leakage is often the preferred alter-

native to futile leakage removal efforts. 

7. CONCLUSION 
It should be clear by now that modeling with leakage is undesira-

ble on many levels: it is a source for poor generalization and over-

estimation of expected performance. A rich set of examples from 

diverse data mining domains given throughout this paper add to 

our own experience to suggest that in the absence of methodology 

for handling it, leakage could be the cause of many failures of data 

mining applications. 

In this paper we have described leakage as an abstract property of 

the relationship of observational inputs and target instances, and 

showed how it could be made concrete for various problems. In 

light of this formulation an approach for preventing leakage dur-

ing data collection was presented that adds legitimacy tags to each 

observation. Also suggested were three ways for zooming in on 

potentially leaking features: EDA, ex-post analysis of modeling 

results and early field-testing. Finally, problems with fixing lea-

kage have been discussed as an area where further research is 

required. 
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Many cases of leakage happen when in selecting the target varia-

ble from an existing dataset, the modeler neglects to consider the 

legitimacy definition imposed by this selection, which makes 

other related variables illegitimate (e.g. large purchases vs. free 

shipping). In other cases, the modeler is well aware of the implica-

tions of his selection, but falters when facing the tradeoff between 

removing potentially important predictive information and ensur-

ing no leakage. Most instances of internal leakage in competitions 

were in fact of this nature and have been created by the organizers 

despite best attempts to avoid it. 

We hope that the case studies and suggested methodology de-

scribed in this paper can help save projects and competitions from 

falling in the leakage trap and allow them to encourage models 

and modeling approaches that would be relevant in their domains. 
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