
Netbeans IDE Tutorial for using the Weka API

Kevin Amaral

University of Massachusetts Boston

First, download Netbeans packaged with the JDK from Oracle.

http://www.oracle.com/technetwork/java/javase/downloads/jdk-7-netbeans-download-

432126.html

You need to accept the license agreement (unless you disagree with the licensing terms). After

which, you should choose the package that corresponds with the machine you’re going to be

using the IDE on. Machines in the Unix Lab and Web Lab should have NetBeans installed

already.

Follow the installer and avoid installing the Ask! Toolbar or McAfee in the event that they are

offered by the installer. You won’t need either of them to use Netbeans.

http://www.oracle.com/technetwork/java/javase/downloads/jdk-7-netbeans-download-432126.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk-7-netbeans-download-432126.html

Once Netbeans is installed, run the IDE and create a new project.

We’re going to be creating this project as a new application.

On the next screen, give the project a name and uncheck “Create Main Class”. That option will

just give you more headaches later on if you’re not familiar with java packages.

At this point, click Finish. You should be back at the main IDE window.

If you’ve navigated the Weka program folder, you’ll notice something called JAR files. They’re

actually what we’re going to be using to expose the Weka API to Netbeans so that you can

program in Java with the same flexibility as the Weka GUI, and possibly more.

Navigate to the Weka folder in the file dialog and select the weka.jar file.

You may notice that there’s a weka-src.jar file, as well. If you’re feeling adventurous, at another

time, you can extract files from that JAR with WinRAR or similar archiving tools. That is all the

human readable source that, when compiled, becomes the Weka program you used in

Homework 1. For our purposes, only worry about the weka.jar .

Now, we can start programming. Create a new java class in the Default Package. This is

commonly bad practice when making an actual application, but we’re doing experiments, not

making the next Word Processor or Internet Browser.

Click Finish and you should be brought to a text editor window where you’ll be programming in

Java. For those that haven’t programmed in Java before, it’s a very structured language that is

driven by object orientation. Oracle has some good resources for understanding the basic

principles of Java. They can be found here:

http://docs.oracle.com/javase/tutorial/java/index.html

http://docs.oracle.com/javase/tutorial/java/index.html

I’m going to be providing source code for you all to look at and pick apart as a demo, but I’m

going to explain a few things first. First of all, this:

When you see errors like this, it usually means the type of object you want to use isn’t imported.

By default, Java doesn’t import every object you could possibly use. This is a good thing even if

it makes your life a little tougher. Sometimes object types have the same names across different

packages, so Java makes you choose explicitly. When you see those underlined errors, you can

usually use the Hint Icons on the left to remedy them, like so:

Believe it or not, this is actually a reasonable amount of imports when using an imported API.

That method I just showed you is going to be necessary for reading data files. However, there’s

something you need to know about the value of “filename” when you call it. It is either a direct

path or a relative path. A direct path will be something like “C:\directory\data.arff” and a relative

path will be something as simple as “data.arff”. Direct paths are usually OS dependent, so you

should use relative paths whenever possible. But where does the program look for files in a

relative path?

If we switch to the files tab, on the left, we see the directory structure of the Java project folder.

Here, we can click and drag datafiles that we intend to use with the project right into the folder.

Now that that’s done, we can use the following line in our code and it will correctly read from the

data file we want to use. This method is the main method. It is the program’s entry point, where

the first lines of code are executed. Java is an imperative language of commands and

declarations, with each line of code happening in the order that it’s written, for the most part.

Method definitions allow you to name frequently used subroutines so that you can use them

more than once without having to write them out each time. This is what I’ve done with

“readDataFile”. If you looked at the method earlier, you can see why I wouldn’t want to write that

more than once.

You’ll notice that I’ve added “throws Exception” to the end of the main method. This is bad style,

but it relieves a few coding-headaches (fewer try-catch statements littered across your code). If

your code works, you won’t need to worry about it. My finished WekaTest.java source file is

here:

http://www.cs.umb.edu/~axoren1/weka_netbeans_tutorial/WekaTest.java

One last thing: Now that you have a java program, how do you run it in Netbeans?

http://www.cs.umb.edu/~axoren1/weka_netbeans_tutorial/WekaTest.java

After you’ve done that, your program’s output should be in the bottom-left section of the

Netbeans window.

You should be all set, now. Happy coding!

