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Abstract—In faithful Bayesian networks, the Markov 
blanket of the class attribute is a unique and minimal 
feature subset for optimal feature selection. However, little 
attention has been paid to Markov blanket feature selection 
in a non-faithful environment which widely exists in the real 
world. To tackle this issue, in this paper, we deal with non-
faithful data distributions and propose the concept of 
representative sets instead of Markov blankets. With a 
standard sparse group lasso for selection of features from 
the representative sets, we design an effective algorithm, 
SRS, for Markov blanket feature Selection via 
Representative Sets with non-faithful data distributions. 
Empirical studies demonstrate that SRS outperforms the 
state-of-the-art Markov blanket feature selectors and other 
well-established feature selection methods. 

Keywords-Feature selection; Markov blankets; Faithful 
Bayesian networks; Representative sets; Sparse group lasso 

I.  INTRODUCTION 
Markov blankets in Bayesian networks were first 

introduced by Pearl [13], and in faithful Bayesian 
networks, for every node �, its Markov blanket is the set 
of parents, children and spouses (parents of the children of 
�) as shown in Figure 1 [6]. Koller and Sahami [7] first 
introduced Markov blankets for feature selection defined 
by feature relevance. In feature relevance with respect to 
the class attribute, an input feature can be classified into a 
strongly relevant, irrelevant, redundant, or non-redundant 
feature, and a Markov blanket should include strongly 
relevant and non-redundant features [22]. However, using 
feature relevance to exactly determine Markov blankets is 
very difficult because of a limited sample size and noise in 
the data [7]. 

To tackle this issue, Tsamardinos and Aliferis [19] 
provided theoretical results that link the concepts of 
feature relevance in feature selection and Markov blankets 
in Bayesian networks. Their theoretical results proved that 
if a probability distribution can be faithfully represented 
by a Bayesian network, then the Markov blanket of the 
class attribute in the Bayesian network is not only unique 
but also the solution to feature selection. With those 
theoretical results, Markov blanket feature selection has 
attracted much attention in recent years [1, 14, 16, 24]. 
Tsamardinos and Aliferis [19] proposed IAMB that returns 
the Markov blanket of any target node in a faithful 
Bayesian network without learning a complete Bayesian 
network, even with hundreds of thousands of features. 
However, it requires a sample size exponential in the size 

of a Markov blanket. More recent variations of IAMB 
include PCMB (Parent-Children Markov Blanket) [14], 
MMMB (Max-Min Markov Blanket) [1, 20], and HITON-
MB [1], proposed to conquer the data inefficiency problem 
of IAMB. Moreover, Aliferis et al. [1] demonstrated that 
Markov blanket feature selection outperforms most of the 
state-of-the-art feature selection algorithms. 

 

 
Figure 1.  The Markov blanket (in blue) of Lung Cancer  

Meanwhile, the previous studies mentioned above 
typically assume that a data distribution and an underlying 
Bayesian network which models that domain are faithful 
to each other. This assumption relies on an important 
theoretical result that if a joint probability distribution � 
satisfies the intersection property (see Section III), then it 
is guaranteed to have a unique Markov blanket of the 
target feature/variable [13]. Moreover, the probability 
distribution �  that is faithful to an underlying Bayesian 
network also satisfies the intersection property [13-14]. 
Thus, in a faithful Bayesian network, it is guaranteed to 
have a unique Markov blanket of any target node [12, 19].  

However, in some real-life distributions, Markov 
blankets of a target feature are not unique and may vary in 
size due to various factors, such as (but not limited to) 
small sample size, noise in data, hidden variables, and data 
pre-processing [14, 17]. This makes real data in many 
cases violate the intersection property or faithfulness 
condition. Thus, it is strict yet difficult to handle data in 
faithfulness conditions, and dealing with real data with 
non-faithful distributions is evidently more meaningful. 

For example, Figure 2 gives an example to illustrate 
the multiple Markov blanket problem in real data of the 
arcene (cancer benchmark) dataset (with 100 instances and 
10000 features) from the NIPS 2003 feature selection 
challenge.  In Figure 2, IAMB, HITON-MB, PCMB and 
MMMB can only discover a single Markov blanket. 
Different from those four algorithms, KIAMB [14] can 
find multiple Markov blankets, by employing a stochastic 
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search heuristic that repeatedly disrupts the order in which 
features are selected for inclusion into a Markov blanket 
with the probability p, thereby introducing a chance of 
identifying alternative Markov blankets of a target feature. 

We run KIAMB 100 times to attain 100 Markov 
blankets (the parameter p is set 0.6), respectively. By using 
Decision Tree J48 and Knn classifiers, Figure 2 gives a 
summary of the prediction accuracies of those 100 Markov 
blankets and those of the Markov blankets selected by 
IAMB, HITON-MB, PCMB and MMMB. 

 

 
Figure 2.   Prediction accuracy on the arcene dataset 

From Figure 2, we can see that the Markov blankets 
identified by the existing Markov blanket algorithms are 
not the optimal feature subsets for feature selection, 
compared to the Markov blankets discovered by KIAMB. 

Therefore, Markov blanket feature selection in non-
faithful data distributions needs further attention. However, 
when we deal with non-faithful data distributions, the 
challenges are three-fold as follows.  

Firstly, if the real data distributions contain multiple 
Markov blankets, we don’t know the exact number of 
Markov blankets of any target feature in real data. 

Secondly, even if we know all Markov blankets of a 
target feature, it is very expensive, or even impossible to 
discover all of them since the number of Markov blankets 
can grow exponentially in the number of features in the 
underlying Bayesian network.  

And thirdly, with multiple Markov blankets, the 
Markov blankets discovered by the existing Markov 
blanket feature selection algorithms might not be the 
optimal solutions to feature selection, and thus, how can 
we efficiently find a best Markov blanket as the solution to 

feature selection from a large and even exponential 
number of Markov blankets in a non-faithful distribution? 

To address those problems, the main contributions of 
the paper are as follows.  

(1) We propose the concept of a representative set 
instead of a Markov blanket to focus on a feature space of 
all possible Markov blankets, instead of an exhaustive 
search over an unknown and even exponential number of 
Markov blankets in real data. 

(2) To define representative sets, we extend the 
theoretical results provided by Tsamardinos and Aliferis 
[19] about Markov blankets and feature relevance. Our 
theoretical analysis and empirical study both show that in 
Markov blankets only parents and children correspond to 
strongly relevant features in feature relevance. With this 
theoretical result, a representative set is defined as parents 
or children in a Markov blanket and their corresponding 
correlated features. 

 (3) With representative sets, we employ the standard 
sparse group lasso approach, and design an effective 
algorithm, SRS, for Markov blanket feature Selection via 
Representative Sets to process data in non-faithful 
distributions. Empirical results on high-dimensional 
datasets show that the SRS algorithm outperforms state-of-
the-art Markov blanket feature selectors and other well-
established feature selection methods. 

II. RELATED WORK 
Feature selection aims to reduce the computational 

complexity without performance degradation by removing 
irrelevant and redundant features. The major effort is to 
maximize relevance and minimize redundancy among the 
selected features for classification. For instance, the 
mRMR (Minimum Redundancy Maximum Relevance) 
algorithm proposed by [15] while the FCBF (Fast 
Correlation Based Filter) algorithm   proposed by [22]. 
Recently, Cheng et al. [3] presented a Fisher-Markov filter 
method to identify a maximally separable feature subset 
using the Fisher’s discriminant analysis and the Markov 
random fields (MRFs). Brown et al. [2] proposed a 
unifying framework to bring almost two decades of 
research on heuristic scoring criteria through a novel 
interpretation of information theoretic feature selection as 
an optimization of the conditional likelihood. Zhao et al. 
[26] proposed a framework to unify different criteria for 
handling feature redundancies. 

Markov blanket feature selection as an emerging 
successful class of filter methods presents a solution of the 
feature selection problem by discovery of a Markov 
blanket of the class attribute [1], and thus it has attracted 
much attention [14, 23].  

Margaritis and Thrun invented the first yet sound 
Markov blanket discovery algorithm, the GS algorithm 
with the intent to discover the Markov blanket for the 
purpose of speeding up global Bayesian network learning 
[11]. But the GS algorithm requires the number of 
instances exponentially to the size of the Markov blanket, 
and this makes it impractical for many real datasets.  
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To conquer this drawback of the GS algorithm and 
apply the concept of Markov blanket to the feature 
selection task, Tsamardinos and Aliferis [19] provided 
theoretical results that link feature relevance as defined by 
Kohavi and John [8] and the Markov blanket in faithful 
Bayesian networks. And then, they proposed a modified 
version of the GS algorithm, called the IAMB algorithm 
for feature selection, which guarantees to find the actual 
Markov blanket given enough training data and is more 
sample efficient than GS [19]. However, the IAMB 
algorithm still requires a sample size exponential in the 
size of a Markov blanket. Thus, HITON-MB and MMMB 
were introduced without requiring samples exponential in 
the size of the Markov blanket. Different from GS and 
IAMB, HITON-MB and MMMB take two steps to find 
the Markov blanket of a target node: (1) discovering the 
parents and children of the target node; and then (2) 
identifying its spouses based on Step 1. As an efficient 
implementation of Step 1, two major algorithms HITON-
PC and MMPC were introduced [1, 20]. Following the 
idea of MMMB, PCMB was also proposed to conquer the 
data inefficiency problem of IAMB [14]. 

However, the algorithms mentioned above are well-
established only for selection of a single Markov blanket 
problem by handling data in faithful data distributions, and 
little research has been done in the development of 
algorithms for dealing with Markov blanket feature 
selection problem with non-faithful data distributions. 

  A naïve approach for handling Markov blanket 
feature selection in non-faithful data distributions involves 
first clustering all features into multiple clusters, and then 
randomly sampling a representative from each cluster. But 
this strategy is intractable since the computation is 
intensive for high feature dimensions, and features in each 
cluster don’t indicate they are correlated in terms of 
feature relevance [21]. Peña et al. [14] proposed a 
stochastic Markov blanket algorithm, called KIAMB, that 
involves running multiple times initialized with a random 
seed. Recently, among the most notable advances in the 
field is that Statnikov et al. [17] proposed the TIE* (Target 
Information Equivalence) algorithm that can discover all 
Markov blankets in a non-faithful data distribution. But 
TIE* is very expensive or prohibitive when the number of 
Markov blankets grows exponentially in the number of 
features in the network. 

III. NOTATIONS AND DEFINITIONS  
In the following sections, let � � ���� �	� 
 � ��� 

represent a full set of features, C denote the class attribute, 
and � 
 �����represent the feature subset excluding ��. 

A. Bayesian networks 
Definition 1 (Conditional Independence) Two 

distinct features �� � �  and �� � �  are conditionally 
independent on a subset � � � 
 ��� � ���(������� ����� 
for short), iff �������� �� � �������  or ��������� �� �
�������. 

Definition 2 (Bayesian Networks) [13] Let �  be a 
discrete joint probability distribution of a set of random 

nodes (features) � via a directed acyclic graph �. We call 
the triplet �  ��� � !  a (discrete) Bayesian network if 
�  ��� � ! satisfies the Markov condition: every node is 
independent of any subset of its non-descendant nodes 
conditioned on its parents. (A simple Bayesian network of 
Lung Cancer has been shown in Figure 1.) 

Theorem 1 [13] Let X, Y, Z, and W be any four 
subsets of features from F and a joint probability 
distribution �  is strictly positive. Then the following 
intersection property holds in � over the feature set F: 

 
 ������ "�#$%� and ������%�#$"� & ������ �"$%��#�. 

 
Theorem 2 [13] If a joint probability distribution � 

over the feature set F satisfies the intersection property, 
then for each � � �, there exists a unique Markov blanket 
of X. 

Definition 3 (Faithfulness) [13] A Bayesian network 
satisfies the faithfulness condition if and only if every 
conditional independence entailed by the directed acyclic 
graph � is also present in the joint probability �. 

Theorem 3 [13] If � is faithful to �, then � satisfies 
the intersection property. 

With Theorems 2 and 3, the concept of Markov 
blankets in faithful Bayesian networks is defined as 
follows. 

Definition 4 (MB: Markov Blanket) [19] In faithful 
Bayesian networks, for every node ��, its Markov blanket 
is unique with the set of parents, children and spouses of 
��. 

Definition 5 (Collider) [13] A node �� � � of a path p 
is a collider if p contains two incoming edges into ��. 

Proposition 1 [13] A path p from node �� � � to node 
�� � � is blocked by a set of nodes � ' �, if there is a 
node �( � �  on p for which one of the following two 
conditions hold: (a) �( is not a collider and �( � �, or (b) 
�( is a collider and neither �( or its descendants are in S. 

Definition 6 (D-separation) [13] Two nodes �� � � 
and �� � �  are d-separated by � ' �  in graph G if and 
only if every path from �� to �� is blocked by S.  

Theorem 4 [19] In faithful Bayesian networks, d-
separation captures all conditional dependence and 
independence relations that are encoded in the graph 
which implies that two nodes are d-separated with each 
other given a subset S, iff they are conditionally 
independent conditioned on S. 

B. Feature relevance in Feature Selection 
In this section, we introduce the concepts of feature 

relevance proposed by Kohavi and John [8]. 
Definition 7 (Strong Relevance) A feature ��  is 

strongly relevant to ) iff  
*� � � 
 �����+, -, ��)��� . ��)���� ���, 

Definition 8 (Weak Relevance) A feature �� is weakly 
relevant to ) iff it is not strongly relevant, and   

/� ' � 
 �����+, -, ��)��� . ��)��� ��� 
Definition 9 (Irrelevance) A feature �� is irrelevant to 

) iff it is neither strongly nor weakly relevant, and 
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*� � � 
 �����+, -,����)���� ��� � ��)��� 
Yu and Liu [22] divided weakly relevant features into 

redundant features and non-redundant features. 
Definition 10 (Redundant Features) Assuming�� �

� 
 ���� as the current feature set, a feature ���is redundant 
and hence should be discarded from S, iff it is weakly 
relevant and has a MB within S. 

Accordingly, an optimal feature subset should consist 
of strongly relevant features and non-redundant features. 

Tsamardinos and Aliferis [19] proved the following 
theorem to link feature relevance in feature selection and 
the Markov blanket in faithful Bayesian networks. 

Theorem 5 A feature � � � is strongly relevant, iff it 
belongs to the Markov blanket of the class attribute in a 
faithful Bayesian network. 

Theorem 5 confirms that the Markov blanket of the 
class attribute in faithful Bayesian networks is not only 
unique but also the solution to feature selection. 

IV. SELECTION OF FEATURES VIA REPRESENTATIVE 
SETS 

A. Representative Sets 
 
As stated above, when a data set doesn’t satisfy the 

intersection property or faithful distribution, it may have 
multiple Markov blankets of a target feature. Since the 
number of Markov blankets can grow exponentially in the 
number of features in the underlying Bayesian network, 
the discovery of all Markov blankets in non-faithful data 
distribution and picking up a best Markov blanket for 
feature selection are very expensive, and sometimes are 
infeasible with high feature dimensions. This motivated us 
to propose a novel algorithm to solve the problem of 
multiple Markov blanket selection in real data.  

In feature selection, redundant features can replace 
others in a feature subset, and this is why a MB need not 
be unique in real data. Figure 2 illustrates that redundant 
features discarded by a Markov blanket feature selection 
algorithm actually carries a stronger predictive ability than 
the selected features in Markov blankets. Feature 
redundancy usually is defined by means of feature 
correlation [9], thus we call those redundant yet discarded 
features as correlated features with respect to the selected 
features in Markov blankets.  

With correlated features, the feature space of all 
possible Markov blankets may consist of features in a 
Markov blanket and their corresponding correlated 
features. It is an efficient way to discover the feature space 
of all possible Markov blankets instead of an exhaustive 
search over an unknown yet even exponential number of 
Markov blankets in real data. With those observations, by 
dealing with data in non-faithful distributions, we extend 
the concept of Markov blankets, and propose the concept 
of representative sets for defining the feature space of all 
possible Markov blankets.  

Definition 11 (Representative Sets) A representative 
set consists of a feature in a Markov blanket and its 
corresponding correlated features. 

Different from Markov blankets, each member in 
representative sets isn’t a single feature any longer, but a 
feature subset. With Definition 11, now the problem is 
how can we obtain representative sets in an efficient way?  

To tackle this problem, we further extend the 
theoretical result in Theorem 5 which illustrates that the 
features in a MB are all strongly relevant features.  

Lemma 1 [19] In Bayesian networks, with two nodes 
�� � � and �� � �, if �� and �� are never d-separated given 
any subset of the nodes within � � � 
 ��� � ���, iff there 
must exist a direct edge between  �� and  ��. 

Lemma 2 [19] In Bayesian networks, with two nodes 
�� � � and �� � �, and their common child �( � �, if �� 
has no direct edge to ��, ���and �� cannot be d-separated 
given any subset of the nodes within �� � � 
 ��� � ��� 
that contains �(. 

Proposition 2 A feature �� � � is a strongly relevant 
feature, iff �� belongs to the set of parents and children of 
the class attribute C in a faithful Bayesian network. 

Proof: Assume ��  is a strongly relevant feature. By 
Definition 7, �� and C are conditionally dependent given 
any subset S within � 
 ���� , that is, *� � � 

�����+, -, ��)��� . ��)���� ���,  From Theorem 4, this 
implies that �� and C are never d-separated by any subset 
within F excluding ��. By Lemma 1, we conclude that in 
Bayesian networks, feature�����belongs to the set of parents 
and children of C. 

Conversely, in faithful Bayesian networks, if node �� 
belongs to the set of parents and children of C, then �� and 
C are never d-separated by any subset within F excluding 
�� by Lemma 1. Accordingly, by Theorem 4, we come to a 
conclusion that node �� coincides with the definition of a 
strongly relevant feature in Section III.B.                          � 

Proposition 3 In faithful Bayesian networks, if node 
�� � � belongs to spouses of the class attribute C and �� 
does not have a direct edge to C, then ��  is a non-
redundant feature. 

Proof: Since �� is a spouse of C, and �� has not a direct 
edge to C, in the path p from��� to C, the common child of 
both C and ��, named �(��is a collider. Thus, this implies 
that ���  and C are d-separated by a subset that doesn’t 
contain �(  by Lemma 2. Then we can obtain the term: 
/� ' � 
 ��( � ���� ��)����� �� � ��)���  by Theorem 4. 
Thus, ��  is not a strongly relevant feature. On the other 
hand, according to Lemma 2, we can conclude that �� and 
C cannot be d-separated by any subset that contains �(, 
that is, the following term holds by Theorem 4: 
# � � 
 ��( � ���� *� ' # � �(� ��)� ��� . ��)��� ����. 
Thus, �� is weakly relevant to ), and we cannot find a 

Markov blanket in Z that contains �(  to make �� 
redundant to C, hence ��  should be a non-redundant 
feature with respect to C.      � 

With Propositions 2 and 3, we extend Theorem 5 and 
obtain Theorem 6. 

Theorem 6 In faithful Bayesian networks, the Markov 
blanket of the class attribute includes (1) parents and 
children corresponding to strongly relevant features; and 
(2) spouses corresponding to non-redundant features. 
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With Theorem 6, the next step is to 
correlated features related to the features in a

It is clear that node X and its parents (o
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remaining nodes in a Bayesian network. Thu
its parents (or children) are correlated to 
addition, by the Markov condition, X is i
any subset of its non-descendant nodes con
parents, but not its children nodes, so the fe
correlated to X can be defined in Definition 

Definition 12 The features directly corre
defined as the set of parents and children o
Bayesian network. 

Figure 3.  Representative sets related to node “T” 

Proposition 4 A representative set ca
from Bayesian networks, including a paren
the class attribute (a strongly relevant featur
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features). 
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The first step is to identify which repr
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we formulate this step as follows.              

determine the 
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independent of 
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Figure 4.  The SRS algorithm 

� @ A��7��1
�D�       (1) 

coefficient vector for all 
the coefficient vector 

s attribute vector, A��7�� 
rol the complexity of 7� ,  
ection of set, and if 7�=0, 
ntirely.  
te one or a few feature(s) 
representative set, which 

st predictive power to the 
nction in Eq. (1) is then 

A��7��1
D� >?	 A	�7� (2) 
lexity of 7.The parameter 
re coefficient 7  to select 
ere is a coefficient in 7 up 
re is discarded.  
the sparse group lasso 

of Lasso and group Lasso 
 can yield a best feature 
and between groups 

ase representative sets are 
penalizes the coefficients, 
aints: 1) an B	  norm for 
ts between sets, and 2) an 
ature coefficients within a 
ast square loss as the loss 
written as the following 

��7���	 >�?	� ��7���  (3) 
the standard sparse group 
can be solved using any 
ithm.  

a Representative Sets) to 
Sections IV.A and IV.B. 

evant features, G denotes 
denotes the parents and 
igure 4. 

bute C, ?� and ?	 
e sets G 
SF set by Proposition 2 
res in SF 
Definition 12  
��� ��� � �� 

epresentative sets 
rlapping sets: 

set. 

861



In Step 1, we can get the representative sets by learning 
Bayesian networks. Instead of learning a complete 
Bayesian network among all features, we adopt a local 
Bayesian network learning strategy to discover the 
strongly relevant features of the class attribute (Proposition 
2). Once we get the strongly relevant features, we use the 
same local learning technique to select the correlated 
features for each strongly relevant feature (Definition 12). 
Thus, as for the GET-PC function, we can use MMPC or 
HITON-PC which are both the state-of-the-art local 
Bayesian network learning algorithms (detailed 
descriptions in [1]) 1 . Since both algorithms have very 
similar results, we employ HITON-PC as the GET-PC 
function in Step 1.  

In Step 2, to solve Eq. (3), we employ a standard 
sparse group lasso using a least square loss function2 . 
Instead of all possible sets (which could involve all 
features), in Step 2, the sparse group lasso method only 
needs to optimize over a small number of representative 
sets including the most informative features. 

V. EXPERIMENTAL  RESULTS  

A. Experimental Setup 
We have chosen 16 benchmark datasets as described in 

Table 1. There are 5 datasets from the UCI machine 
learning repository (the first 5 datasets), 3 biomedical 
datasets (hiva, ovarian-cancer, and breast-cancer), 4 NIPS 
2003 feature selection challenge datasets (arcene, dexter, 
dorothea, and madelon), and 4 public microarray datasets 
(the last 4 datasets) [21]. In our experiments, we treat 
those datasets in Table I as data in non-faithful 
distributions. 

For the 4 NIPS 2003 challenge datasets and the spect 
dataset, we use the originally provided training and 
validation sets; for the 4 gene datasets we adopt the first 
2/3 instances for training and the last 1/3 instances for 
testing; and for the rest datasets we use 10-fold cross-
validation. 

TABLE I  SUMMARY OF THE BENCHMARK DATASETS. 
(#F: NUMBER OF FEATURES, #I: NUMBER OF INSTANCES) 

Dataset #F #I Dataset #F #I 
spect 22 267 madelon 500 2000 
wdbc 30 569 colon 2000 62 
spectf 44 267 prostate 6033 102 
promoter 57 106 leukemia 7129 72 
infant 86 5337 lung-cancer 12533 181 
arcene 10000 100 breast-cancer 17816 286 
dexter 20000 300 ovarian-cancer 2190 216 
dorothea 100000 800 hiva 1617 4229 

 
 
We use two classifiers, Knn and J48 provided by the 

Spider machine learning package3. Our comparative study 

                                                           
1 The codes of HITON_PC are available at 

http://www.dsl-lab.org/causal_explorer.  
2 The codes of sparse group lasso are available at 

http://www.public.asu.edu/~jye02/Software/SLEP/index.htm 
 

uses five state-of-the-art Markov blanket filters, including 
IAMB [19], MMMB [20], PCMB [14], HITON-MB [1], 
and HITON-PC (only discovering parents and children of 
a target feature) [1], the state-of-the-art multiple Markov 
blanket discovery algorithm TIE* [17], and four well-
established feature selection algorithms, FCBF [22], 
mRMR [15], SPSF-LAR [26], and MRF [3]. For 
parameter settings, ?� and ?	 are both varied from [0.001, 
0.1] with step 0.005 for SRS; and the significant level is 
set 0.01 for IAMB, MMMB, PCMB, HITON-PC and 
HITON-MB. All experiments were conducted on a 
computer with Inter(R) i7-2600 3.4GHz CPU and 12GB 
memory. 

B. Comparison with HITON-PC, HITON-MB, and RES  
Figures 5 and 6 summarize the classification errors of 

SRS against HITON-PC, HITON-MB and RES, using the 
Knn and J48 classifiers. RES (REpresentative Sets) means 
that we use the union of representative sets as a feature 
subset and calculate its classification errors. In both figures, 
points above the y = x diagonal are datasets for which SRS 
achieved lower classification errors than the competing 
algorithm. From Figures 5 to 11, we have three findings.   

Firstly, from Figures 5 to 6, when we process data in 
non-faithful distributions, the Markov blanket selected by 
HITON-MB might not be an optimal solution to feature 
selection while SRS outperforms HITON-MB, HITON-PC 
and RES, especially on datasets with a small sample-to-
feature ratio. Moreover, from Figure 11, on the number of 
selected features, SRS is also very competitive with 
HITON-MB and HITON-PC.  

Secondly, in Figures 9 and 11, we can see that the 
selection of both parents and children of the class attribute 
may be enough instead of MBs since HITON-PC is 
superior to HITON-MB on both classification errors and 
the number of selected features on most datasets. 
Furthermore, HITON-PC is faster than HITON-MB and 
SRS since it only needs to discover parents and children. 
This validates Theorem 6 that in Markov blankets only 
parents and children are strongly relevant features.  

Thirdly, Figure 10 illustrates that RES also gets 
excellent results on classification errors, even better than 
HITON-MB. Thus, we can conclude that representative 
sets contain sufficiently predictive features and we only 
need to focus on representative sets without an exhaustive 
search over all candidate MBs. 

C. Comparison with Other Markov Blanket Filters 
Figures 7 and 8 summarize the classification errors of 

SRS against IAMB, MMMB, and PCMB (points above 
the y = x diagonal are datasets for which SRS achieved 
lower classification errors than the competing algorithm). 
MMMB fails on the dorothea and leukemia datasets due to 
long running time (exceeding three days). Figures 7 and 8 
show that SRS significantly outperforms those MB filters 
on the classification errors, especially using the Knn 

                                                                                              
3 The Spider machine learning package in Matlab is available at 
http://people.kyb.tuebingen.mpg.de/spider/  
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classifier. As for the number of selected features, in Figure 
12, SRS is also very competitive with its rivals since it 

considers not only the strongly relevant features but also 
their corresponding correlated features. 

 

 
Figure 5.  (Knn): Classification errors of SRS vs. HITON-PC, HITON-MB, and RES 

 
Figure 6.  (J48): Classification errors of SRS vs. HITON-PC, HITON-MB, and RES 

        
Figure 7.  (Knn): Classification errors of SRS vs. IAMB, PCMB, and MMMB 

 
Figure 8.  (J48): Classification errors of SRS vs. IAMB, PCMB, and MMMB 

From Figure 13, on running time (in seconds), SRS is 
also very competitive with the other MB filters, even 
though it needs to consider not only the strongly relevant 
features but also their corresponding correlated features. 
We don’t present the dorothea and leukemia datasets as 

MMMB fails on them while on colon, the running time is 
as follows: SRS: 63; HITON-MB: 2013; IAMB: 1, and 
PCMB: 1. 

In summary, from Figures 5 to 13, our empirical study 
has indicated that when we process data in non-faithful 

863



distributions, MBs selected by the existing MB feature 
selection methods may not be an optimal feature subset, 
especially on datasets with a small sample-to-feature ratio 
while SRS can effectively and efficiently handle MB 
feature selection in real data. More importantly, with 
representative sets, SRS can efficiently find a best feature 
subset without an exhaustive search over an unknown 
space of the all MBs in each dataset. 

 

 
Figure 9.   (Knn): Classification errors of HITON-PC vs. HITON-MB 

 
Figure 10.  (Knn): Classification errors of HITON-MB vs. RES 

 
Figure 11.  Number of selected features of SRS vs. HITON-PC, HITON-

MB and RES 

 
Figure 12.   Number of selected features of SRS vs. IAMB, PCMB, and 

MMMB 

 
Figure 13.  Running time (in seconds) of SRS against the other rivals 
(the labels of the x-axis from 1 to 13 denote the datasets in the left 
figure: 1. wdbc, 2. spectf, 3. infant, 4. promoter, 5. lung-cancer, 6. 
prostate, 7. arcene, 8. dexter, 9. madelon, 10. breast-cancer, 11. ovarian-
cancer, 12. hiva, and 13. spect) 

D. Comparison with the TIE* algorithm 
In this section, we compare our SRS algorithm with the 

state-of-the-art multiple MB discovery algorithm, the TIE* 
algorithm which attempts to find all MBs in real data with 
non-faithful distributions. In our experiments, with the 
same parameter setting of the TIE* algorithm in [17], 
TIE* is parameterized with Semi-Interleaved HITON-PC 
as the base Markov blanket induction algorithm and a 
classification error as a criterion that verifies whether a 
new feature subset is a Markov blanket of the class 
attribute. The parameter alpha of Semi-Interleaved 
HITON-PC is set 0.05. We selected the Markov blanket 
with the lowest classification error from all of the MBs 
discovered by TIE*. In the following figures, we don’t plot 
the errors of the ovarian-cancer dataset for SRS and TIE*, 
since TIE* failed on this dataset due to long running time 
(exceeding three days). 

From Figures 14 to 15, we can see that SRS 
outperforms TIE* on most of the datasets. Why is SRS 
superior to TIE*? The possible explanation is that TIE* 
simply selects one feature from a set of strongly correlated 
features while SRS might pick out more features from a 
group of strongly correlated features, and this might be 
beneficial to reduce classification error. This also explains 
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why SRS selects more features than TIE* as shown in 
Table II. For example, on the spectf dataset, SRS gets four 
group features {5,6,32}, {14,16,24,25,26}, {30,39,40}, 
and{15,41,42,43}, and features in each group are strongly 
correlated. SRS selects seven features {5, 32, 24, 26, 30, 
40, 15} from those groups while the MB selected by TIE* 
only contains two features 30 and 42 which attain the 
lowest errors among all Markov blankets. On Knn and 
J48, SRS gets the classification errors 16.42% and 11.94% 
respectively, while TIE* attains the errors 20.5% and 
16.04% respectively. 

 

 
Figure 14.  (Knn): Classification errors of SRS vs. TIE* 

 
Figure 15.  (J48): Classification errors of SRS vs. TIE* 

TABLE II NUMBERS OF SELECTED FEATURES AND RUNNING TIME 

Dataset # Selected features Running time 
SRS TIE* SRS TIE* 

spect 2 1 1 1 
wdbc 21 8 1 57 
spectf 7 2 1 2 
promoter 3 3 6 1 
infant 5 2 2 128 
arcene 9 3 20 1292 
dexter 13 4 22 190 
dorothea 64 5 848 10173 
madelon 11 5 29 121 
colon 101 2 63 4 
prostate 2 2 42 26 
leukemia 4 2 468 31 
lung-cancer 23 3 1 361 
breast-cancer 36 6 3 198080 
hiva 21 4 12 254 
ovarian-cancer 9 / 128 / 

 

From Table II, we can see that SRS is much faster than 
TIE*, especially on the arcene, dorothea and breast-cancer 
datasets. On the ovarian-cancer datasets, TIE* failed due 
to long running time (exceeding three days). But why on 
the colon and leukemia datasets, is TIE* faster than SRS? 
The main reason is that Semi-HITON-PC employed in 
TIE* is faster than HITON-PC used in SRS. 

In summary, instead of an exhaustive search for all 
Markov blankets, the discovery of a best Markov blanket 
from representative sets is not only more effective but also 
more efficient than TIE*. 

E. Comparison with Other Feature Selection Methods 
Figures 16 and 17 present the classification errors of 

SRS against two well-established feature selection 
algorithms, FCBF and mRMR, and two state-of-the-art 
algorithms, SPSF-LAR, and MRF.  

 

 

 
Figure 16.  (Knn): Classification errors of SRS vs. FCBF, mRMR, 

SPSF-LAR and MRF 

Since SRS selects no more than 65 features to get the 
lowest classification error on all 16 datasets, we set the 
parameter k for the SPSF-LAR, MRF, and mRMR 
methods from 1 to a maximum number of 60, respectively. 
For 5 UCI datasets, we use the feature subset whose size 
ranges from 1 to 15 and choose the lowest classification 
error rate achieved by Knn and J48 while for the 
remaining 11 high-dimensional datasets, we use the top 5, 
10, 15, ..., 60 features selected by each algorithm.  

From Figures 16 to 17, we can see that SRS often 
outperforms the other rivals by using Knn while it 
produces significantly better results than the other 
algorithms by using J48. 

VI. CONCLUSION 
In this paper, we explored Markov blanket feature 

selection by dealing with data in non-faithful distributions. 
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To tackle this issue, we extended the concept of Markov 
blankets and proposed the concept of representative sets. 
With representative sets, we presented the SRS algorithm 
for Markov blanket feature selection by employing a 
standard sparse group lasso. The experimental results have 
shown that the SRS selector outperforms both state-of-the-
art Markov blanket feature selectors and other well-
established feature selection methods on real datasets. 

 

 
Figure 17.  (J48): Classification errors of SRS vs. FCBF, mRMR, SPSF-

LAR and MRF 
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