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Abstract—We study a new problem of learning from doubly-
streaming data where both data volume and feature space
increase over time. We refer to the problem as mining trapezoidal
data streams. The problem is challenging because both data
volume and feature space are increasing, to which existing
online learning, online feature selection and streaming feature
selection algorithms are inapplicable. We propose a new Sparse
Trapezoidal Streaming Data mining algorithm (STSD) and its
two variants which combine online learning and online feature
selection to enable learning trapezoidal data streams with infinite
training instances and features. Specifically, when new training
instances carrying new features arrive, the classifier updates
the existing features by following the passive-aggressive updat
rule used in online learning and updates the new features
with the structural risk minimization principle. Feature sparsity
is also introduced using the projected truncation techniques.
Extensive experiments on the demonstrated UCI data sets show
the performance of the proposed algorithms.

I. INTRODUCTION

algorithms update classifiers using incoming instances and
allow the sum of training loss gradually to be bounded [8].
To date, online learning algorithms, such as the Perceptron
algorithm [10], the Passive Aggressive algorithm [2] and th
Confidence-Weighted algorithm [3], are commonly used in
data-driven optimization problems, but cannot be direatigd

to handle a dynamic feature space.

Online feature selection algorithms [8], [15] were progbse
to perform feature selection in data streams where data ar-
rive sequentially with a fixed feature space. Online feature
selectors are only allowed to maintain a small number of
active features for learning [15]. These algorithms usesgpa
strategies, such as feature truncation, to select repedaen
features. Sparse online learning via truncated gradigrarié
the OFS algorithm [15] are typical algorithms. Howeverstne
algorithms cannot solve the trapezoidal data stream mining
problem because they assume the feature space is fixed.

Online streaming feature selection algorithms [17] were

Recently we have witnessed an increasing number oproposed to select features in a dynamic feature space where
applications on doubly-streaming data where both data volf€atures arrive continuously as streams. Each new feasure i
ume and data dimension increase with time. For examplg?rocessed upon its arrival and the goal is to select a “best
in text clustering, both the number of documents and theé® far” set of features to train an efficient learning model.

text vocabulary may increase over time, such astiimite
vocabulary topic modeJ21] to allow the addition, invention

It, in some ways, can be seen as the dual problem of online
learning [17]. Typical algorithms include the online streag

and increased prominence of new terms to be captured. [fgature selection (OSFS) algorithm [16] and the fast-OSH3 [
graph node classification, both the number of graph nodes arffgorithms. However, these algorithms consider only a fixed
the node features (e.g., the ego-network structure of a)nod&@ining set where the number of training instances is given

may change dynamically.

We refer to the above doubly-streaming data tegpe-

advance before learning.

In this paper, we propose a new Sparse Trapezoidal Stream-

zoidal data streamsvhere data dynamically change in both ing Data (STSD) algorithm and its two variants STSD-I and
volume and feature dimension. The problem of learning from> | SP-Il for mining trapezoidal data streams. STSD and its

trapezoidal data streams is obviously much more difficidhth

variants combine online learning and online feature sigle¢o

existing data stream mining and online learning problemscontinuously learn from trapezoidal data streams. Spadiific
The main challenge of learning from trapezoidal data steeamWhen new training instances carrying new features arrhe, t
is how to design highly dynamic classifiers that can learrclassifier updates existing features by following the passi

from increasing training data with an expanding featureespa
Obviously, existing online learning [7], online featurdesgion

aggressive update rule used in online learning and updates
the new features by following the structural risk miniminat

[15] and streaming feature selection algorithms [17] cannoPrinciple. Then, feature sparsity is introduced by using th
be directly used to handle the problem because they are nftature projected truncation techniques.

designed to deal with the simultaneous change of data volume Tne contributions of this paper are summarized as follows:

and data dimension.

Online learning algorithms [8] were proposed to solve the
problem where training instances arrive one by one but the
feature space is fixed and known a prior before learning. The

1) We study a new problem of learning from trapezoidal
data streams where training data change in both data

volume and feature space;



2) We propose a new algorithm STSD and its two  Unsupervised feature selecti@ttempts to select features
variants. They combine the merits of online learningthat preserve the original data similarity or manifold strues,
and online feature selection to learn from trapezoidaland it is difficult to evaluate the relevance of features [14]

data streams; Laplacian Score [5], spectral feature selection [23], amel t
3) We empirically validate the performance of the algo-recently proposed, ;-norm regularized discriminative fea-
rithms on UCI data sets. ture selection [20] are representatives of unsupervisatlife

selection. Semi-supervised feature selection is betwhen t
r§upervised methods and unsupervised methods. Under the
assumption that labeled and unlabeled data are sampled from
r{ge same population generated by the target concept, semi-
supervised feature selection makes use of both labeled and
unlabeled data to estimate feature relevance [22].

The remainder of this paper is organized as follows: Sectio
2 surveys the related work. Section 3 introduces the prolofem
detail. Section 4 discusses the proposed STSD algorithm a
its variants. Section 5 discusses experiment results actibSe
6 concludes the paper.

Online feature selectiofl5] and sparse online learning
[8] aim to learn a sparse linear classifier from a sequence of
high-dimensional training instances. Online feature ctida
Our work is closely related to online learning and onlinecombines feature selection with online learning and resolv
feature selection. the feature selection in an online fashion by developing on-
) ) ) ) - line classifiers that involve only a small and fixed number
Online learningrepresents an important family of efficient of features for classification. OFS and QF$15] are the
and Scalable data mining and maChine |eal’ning algorithms fQ'epresentative a|gorithms proposed recen“y.
massive data analysis. In general, online learning algyost

can be grouped into two categories, the first-order and secon ~ Online streaming feature selecticaigorithms have been
order learning algorithms [6]. studied recently [17] where features arrive one by one and

training instances are available before the training p®ce
The first-order online learninglgorithms exploit first order  starts. The number of training instances remains fixed tifrou
information during update. The Perceptron algorithm [1%) a the process [16]. The goal is to select a subset of featurds an
Online Gradient Descent algorithm (OGD) [24] are two well- train an appropriate model at each time step given the festur
known first-order online learning methods. Moreover, adarg gbserved so far.
number of first-order online learning algorithms have been _ )
proposed recently by following the criterion of maximum  Compared with the above learning methods, the problem

margin principle [15], such as the PA [2], ALMA [4], and Studied in this paper is more challenging because of thelgioub
ROMMA algorithms [4]. streaming data scenario. Existing online learning, onfese

ture selection and online streaming feature selectiorritigos
The second-order online learninglgorithms, which can are incapable of mining trapezoidal data streams.

better explore the underlying structure between featuéés [
have been explored recently. Most second-order learnogr al
rithms assume that the weight vector follows a Gaussian-dist
bution. The model parameters, including both the mean vecto We consider the binary classification problem on trape-
and the covariance matrix, are updated in the online legrninzoidal data streams where both data volume and feature space
process [6]. The CW [3], and IELLIP [19], algorithms are increase simultaneously. Let(zs,y:)[t = 1,...,T} be a
representative of the second-order online learning dlyos.  sequence of input training data. Eaeh ¢ R% is a d,
dimension vector wheré;_, < d; andy; € {—1,+1} for all

dimensionality. Feature selection aims to select a smabeiu t. On each roun(_j, the classifier uses information on a current

of features miﬁimizing redundancy and maximizing releeanc Instance to predict its label to be either or —1. Aﬁer the

to the class label in classification. Training set is alwayspre‘jlctlon S made, the true !abel of the instance 1S receale
. ' : ; J~and the algorithm suffers an instantaneous loss which teflec

labeled. Feature selection can be categorized into sigeetvi

; X g X the degree of infelicity of the prediction. At the end of each
E%atljgs:ﬁ%\gsed [9] and semi-supervised feature sekect round, the algorithm uses the newly obtained instance-labe

pair to improve its prediction rule for the rounds to come [2]

II. RELATED WORK

Ill. PROBLEM SETTING

Feature selections a widely used technique for reducing

_Supervised feature selectiaran be categorized into the —\ye regyrict the discussion to a linear classifier which is
filter models, wrapper models and embedded models [14}oased on a vector of weights. The magnitudew - z| is

lThe filter m?ﬁe:sthse%grate ffeatlure §elect:on _ILom dCIaSS'f'e(Dterpreted as the degree of confidence in the prediction.
earning so that the bias 0 a learning aigorithm does Nnoy, - rd.—1 denotes the classifier, i.e., the weight vector in

interact with the bias of a feature selection algorithm. Theth ; ; :
. . ; . e algorithm at round. w; has the same dimension of the
Relief [11], Fisher score, and Information Gain based megho instancez,_,, and has either the same or less dimension as

[18] are the representative algorithms. The wrapper mag#®s . o, rent instance,. For the loss function, we choose the

the predictive accuracy of a predetermined learning algori hi | Specificall _ 1— .
to determine the quality of selected features. The embedd rr:nge gsghd gtetgrl((;c’?n‘!t(ﬁtg (sxatﬁyef)c)jimemn?cfr(]). A=pe(wze)},

methods aim to integrate feature selection into the mode

training process. It achieves model fitting and featurecsiele In our study, the ultimate dimensiod; is very large,
simultaneously [13]. The embedded methods are usually theo we introduce feature selection into our mining algorithm
fastest methods. Formally, in each trial¢t, instead of using all features for



classification, we require the classifie; € R9 to have Algorithm 2. 7, = Parameter_Set(x,l;, C)

at most a proportion o8 nonzero elements, i.e., 1. if STSD: l
: Tt = T
[wello < B - du,, (1) 2:  else if STSD-I
where B € [0,1] is a predefined parameter that controls the 7 = min{C, W}
proportion of features used in the algorithm. 3:  else if STSD-II: z
We refer to this problem as the problem of learning from T Tl %

&

trapezoidal streaming data. The ultimate goal is to design a end if

effective and efficient algorithm for trapezoidal streagndata. Algorithm 3. w = Truncate (i, B)

1. W€ Rete
IV. SPARSETRAPEZOIDAL STREAMING 2 if |w|o > B -dy then
DATA ALGORITHMS . B

. w=w
In this section we present th@&rse Fapezoidal Beaming w® is w, and remainmax{1, floor(B - dy)}
Data learning algorithm (STSD) and its two variants. There largest elements; set others to zero, where
are two challenges to be addressed by the algorithms. The floor{z} is the largest integer smaller then
first challenge is to update the classifier with an augmenting 4: else 3
feature space. The classifier update strategy is able ta lear 3 w=w

from new features. We build the update strategy based on the 6: end if
margin-maximum principle. The second challenge is to build
a feature selection method to achieve a sparse but efficient
model. As the dimension increases with time, it is essential The three algorithms are different in their update strategy
to use feature selection to prune redundant features. We usge first focus on the update strategy of the basic algorithm.
a truncation strategy to obtain sparsity. Also, in order toat round¢, when the classifiew; € R%-, the new classifier
improve th_e truncation, a projection step is introducedieef W1 = [Wepr, W] € R9 is obtained as the solution to
the truncation. the constraingzd optimization problem in Eq.(2), where=
. . I, w1 € R%—1 represents a projection of the feature space
AI%grmgnvé'ri;—r?g zﬁzg_?lgr?gtg?s%'_?l from dimensiond; to dimensiond;_, anc_iu”J = Hﬁwtwﬁl €
R4 —d:1 denotes new features that areqin,; but not inw,

The update strategy

1:  Input:
e C > 0: the tradeoff parameter W1 = [Weg1, Wit1)
e )\ > 0: the regularization parameter _ 1 s 1.
e B € (0,1]: the proportion of selected features = argmin ol —w|| + F || (2)
2: Initialize: w = Lol
e w; =(0,...,0) € RH T
3: Fort=1,2,...do wherel; = [(w, (z¢,y:)) is the loss at round , which can be
4: receive instancer; € R% written as,
5: predict:g; = sign(w; - I, x¢) o IR
6: receive correct label; € {+1, -1} le = lw, (24, y:)) = max{0,1 — ye (W0 - T¢) — ye (W - 24) }.
7: suffer lossi, = maz{0,1 — y,(w; - My, x,)} o _ 3
8: update step: Note thatz, andz; are similar tow andw respectively.
9 ] * set parameter . In the above constrained optimization problem, if the
10: 7 = Parameter_Set(zy,1;, C) existing classifienv; predicts the right label with the current
11 dat t(S?e Algorithm 2) instancez, i.e., l; = max{0,1 — y(w; - #)} = 0, then we
: * ;p a e“[’;] 3_1:_‘5;11'1 o mge L] can easily know that the optimal solution & = wy, % =
t+1 — t tIYttlw Lty 1Yt =w, Lt i _
12 Sparsig/ Step: (0,...,0), that IS, W1 = [’LUt,O,...,O].
13: e projectw;; to a Ly ball: On the other hand, if the existing classifier makes a wrong
W1 = min{1, mmtﬂ prediction, the algorithm forces the updated classifieatssy
14: e truncatew; ., t0 wy;: the constraint in Eq. (2). At the same time, it also fordgs;
wiy1 = Truncate(wyy1, B) close tow; in order to inherit information and lef;; be
(See Algorithm 3) small to minimize structural risk and avoid overfitting. The
15: end for solution to Eq. (2) has a simple closed form,

The pseudo-codes for the STSD algorithm and its two — wii1 = [wy + Teyedy, Teyde] where =L /||z]*  (4)
variants are given in Algorithms 1, 2 and 3 respectively (BTS

| 'and STSD-II are different to STSD in parametgrduring We now discuss the derivation of the update strategy.
updates). The vectap; is initialized to zero with dimension

dyi, i.e.,wy = (0,...,0) € R% for all the three algorithms, e In a case where the dimension of the new classifier
where d; is the dimension of the first instance for each does not change, i.ed; = d;_1, the problem de-
algorithm. Then, online learning is divided into the update generates to an online learning problem wheéxe

step and the sparsity step. disappears andy1 = Wy41.



e Inacasewherd;, > d;,_; andl; = 0, then the optimal The sparsity strategy
solution isw;11 = wy and11 = (0,---,0).
In many applications, the dimension of training instances
» Inacase wherd; > d;_, andl; > 0, then we solve  jncreases rapidly and we need to select a relatively small
Eq. (2) to obtain the solution. number of features. As the dimension changes over time, but
é’f only a fixed number of features are used in learning, the

To solve Eq.(2), we use the Lagrangian function and th tesults are not always satisfactory,

Karush-Khun-Tucker conditions [1] on Eq.(2) and obtain
In our study, we introduce a parameter to control the

L(w, 1) = 1||u”; —w||* + 1||zb|\2 proportion of the features. For example, in each ttiathe
2 o2 . (5) learner presents a classifier, € R4-1 to classify instance
FT(1 = yp(W - Ty) = yo( - ) z; € R% whered,_, < d, . After the update operation, a
W=w+ TYZy; W= TYdy projection and a truncation are introduced to prune redoinda

features based on the paramefer Namely, we require the
learner only retain at most a portion B8fnonzero elements of
wy € Riwe, i.e. [|we|lo < B - dy,. Specifically, if the resulting
classifierw; has more than a portion d® nonzero elements,

where 7 is a Lagrange multiplier. Plugging the last two
equations into the first one, taking the derivativeldf-) with
respect tor and setting it to zero, we can obtain

R S TSR S S - we will simply keep the portion o3 elements inw, with the
L(r) = =57l @ell” = 522l + 7 = 7y (we - 7) s largest absolute weights, as demonstrated in Algorithmms. |
1 — ye(wy - 34) Iy ®)  this way, at most a portion dB features are used in the model
Tt = [Z]2 + |22 = EAE and sparsity is introduced.

We introduce a projection step because one single trunca-
So, the update strategy 8,1 = [w; + T:y:T¢, Ty 2¢],  tion step does not work well. Although the truncation sedect
where 7, = I;/||z¢||?. In addition, this update rule is also the B largest elements, this does not guarantee the numerical
applied whenl; = 0. So we can take it as a general updatevalues of the unselected attributes are sufficiently smadl a
rule. may potentially lead to poor performance. When projecting

From Eqg. (2), we can see that the update strategy of th oxggtn(i:a:gdatgLiltsblzlrL ergtosetle?Tf\elrﬁs n;nmdertlﬁgln \;er%%iinarethe
STSD algorithm is rigorous because the new classifier nee g ! 9

to predict the current instance correctly. This may make thQ/;nc?gfs[ig]legsgéﬁizva”lll;e%uelt A?o?eitrirz)i” tg;ﬁ:?qeuéoi;he oaigin
model sensitive to noise, especially label noise [2]. Ineort ' ' '

avoid this drawback, we give two general updated variants of o — mind1 A
the STSD algorithm which use the soft-margin technique by We1 = mingl, |l wes 1|1

introducing a slack variabl€ into the optimization problem. : N :
The first one is abbreviated as STSD-I. Its objective fumctio where ) is the a regularization parameter that is always

}wt-‘rla

scales linearly with¢, namely, positive.
. 1, . 1.
R ar%r”mﬁ §Hw il §”wH2 +oe (7) V. EXPERIMENTS
L SEE>0

In this section, we describe our experiments to evaluate the
i performance of the proposed STSD algorithm and its two vari-

The second one, STPA-II, is the same as STPA-I excepints. We first evaluate the predictive performance of theethr
that its objective function scales quadratically with thack  proposed algorithms, and analyse the relationship between

variableg, i.e., classification accuracy, feature fraction parameterand the
) 1 s 1 ) tradeoff parametet’ on several benchmark data sets. Then,
Wyl = arg[rjﬂl{l] Sl —well” + Sllwl” + C¢ (8 We compare our approach with three benchmark algorithms.

Also, we test the performance with an application on real-
world website classification. The source codes are availabl
online https://github.com/BlindReview/onlineLearning

le <€

In these two optimization problems, parametéris a
positive number which is a tradeoff between rigidness an
slackness. A larger value af' implies a more rigid update
step.

%. Experiment I. Performance tests of the STSD algorithm and
its variants

We present empirical results of the three algorithms on
veral benchmark data sets from the UCI repository.

1) Testbed on UCI Data and Experimental SetWjge test
V() or = b (I). the performance of the proposed algorithms on a number of
el + 55 publicly available benchmarking data sets.All the datas set

The update strategies of STSD-I and STSD-II are similar tO(]:'ZBII;eI ?)?X)Y/?(Ij%asdsgtgi?smo:‘hti éJ g;g:;g:;ne learning repository.

the STSD algorithm, so we omit their details due to space
constraints. To compare fairly, all algorithms use the same experimental
settings. We set the parametBr = 0.5, i.e., the portion of

The update strategy of STSD-I and STSD-II also share§e
the simple closed formw;1 = [w; + TeyrZs, TY:E:], Where
ly

7: = min{C, ERE



selected features 80%. We set the tradeoff parametér to
be 0.1 and the radius parameterto be 30. For the special

all features are used. The second on®T$DI-rand which has
the same update strategy but with randomly selected fesature

scenario of trapezoidal data streams, we assume that the fifBhe third isSTSDI-per which has the same sparsity strategy

10% of instances can access the fit6f% of features, and the
next 10% of instances can access the fig6t% of features,

in selecting features but uses the Perceptron update ggtrate
The Perceptron update strategyus,;; = [w: + y:Z+, Y+ 2¢]

so on so for that.After this, all experiments are conducted 2[10]. We again use the UCI data sets listed in Table I. The
times, each with a random permutation of the data set. All thgparameter settings and experimental settings are the same a
experiment results are reported by an average over 20 runs.in Experiments I.

Table 1. Table Il gives the average number of test errors by the
four algorithms on the six data sets. First, we can obsee th

the more features, the number of errors by STSD-I is lower on

THE UCI DATA SETS USED IN THE EXPERIMENTS

Dataset

[ # Samples| # Dimensions |

magic04 19020 10

german 1000 24 average. We also observe that whgn= 0.8, the performance
zvm%“idei* éi% gé of STSD-I is better than STSDI-all which can access all the
sg;mbase 2601 57 features in most data sets. Although on some data sets, STSDI
a8a 32561 123 all has a better performance than the STSD-I algorithm, the

difference is not significant. When we use a small portion of

2) Evaluation of Predictive PerformanceTable Il sum-  features, we can see that STSD-I has a better performance.
marizes the online predictive performance of the comparegecond, the STSDI-rand algorithm randomly chooses a fixed
algorithms with a fixed fraction of selected features (5@pet  portion of features and has the worst performance on all
of all features) on six data sets. Several observations ean klata sets. This further indicates that the sparsity styateg
drawn from the results. First, we found that among the thregve introduce can improve the performance of the classifier
algorithms, STSD using the most rigid update strategy has thsignificantly. Third, the STSDI-per algorithm which useg th
highest error rate in five data sets except “svmguide3”. Thierceptron update strategy has higher error rates than the
shows that the gentle update strategy with a slack variablgTSD-I algorithm on most data sets, demonstrating that our
achieves better classifications by avoiding noise in the datupdate strategy is better.
sets. The reason for the failure of STSD-I in “svmguide3”
is the unsuitable setting of the parameteér(We just set a
constant number to the parametérfor all three algorithms
and all six data sets without choosing the best one for each This paper investigates a new problem of mining trape-
case). In fact, the difference is very small. Second, we doun zoidal data streams where both data volume and feature space
that in the six data sets, STSD-I and STSD-II achieve théncrease by time. We present new sparse trapezoidal stigami
best performance in three data sets. This shows that thdata mining algorithms as the solution. We also examine the
two algorithms, using a gentle update strategy have similaempirical performance on UCI data sets. The encouraging
performance. results have shown that the proposed algorithms are eféecti
for mining trapezoidal streaming data, and more efficiert an
scalable than batch-based algorithms.

VI. CONCLUSIONS

Table II. EVALUATION OF THE AVERAGE NUMBER OF ERRORS BY

STSDAND ITS VARIANTS ON THE SIX DATA SETS

] Future work includes extending the proposed algorithms

[ Algorithm | magic04 [ svmguide3 | german TR . - !
STSD 20513 L4090 | 3967 L1538 595150 to real-world applications such as big dynamic network min-
STSD-| 6732.3:73.3 | 359.1+42.9 366.9+8.8 ing, and studying the multiclass classification and regoess
STSD-Il | 6924.5 + 39.6 357.5+26.9 366.9-12.8 problems on trapezoidal data streams.

[ Algorithm ] splice [ spambase | a8a |
STSD 1314.6 £30.3 | 1132.1 £29.7 | 12673.5 £75.9
STSD-I 1243.7 £ 13.6 1004.5:25.6 11204.72:713.1 REFERENCES
STSD-Il 1238.8:16.8 1013.2£26.1 11317.2£233.1

[1] S. Boyd and L. Vandenberghe.Convex Optimization Cambridge

. . University Press, 2004.
. Fig. 1 shows the performance of the three algorithms und(_ar[z] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, andinges.
different C values. From the results, we can see that there is

Online passive-aggressive algorithm3dournal of Machine Learning
always a parametet’ to force STSD-1 and STSD-Il to have
less errors than STSD. The largéris, the closer the STSD-I  [3]
algorithm to the STSD algorithm, because the parameter
in STSD-I is the smaller one in' or the parameter, in the [4]
STSD algorithm. Whert' is very large, STSD-I is reduced to
STSD. [5]

B. Experiment Il: Comparisons with other algorithms (6]

Due to the good performance of STSD-I, we use STSD-I as[y]
the representative of our three algorithms, and we compare t
performance of the STSD-I algorithm with three benchmark
algorithms. (8]

The first benchmark iSTSDI-all which is the same as [qg]
STSD-I except that not only a portion of features is selebtgd

7:6551-585, 2006.

K. Crammer, M. Dredze, and A. Kulesza. Multi-class conficken
weighted algorithmsin EMNLP, pages 496-504, 2009.

C. Gentile. A new approximate maximal margin classifictiogoaithm.
Journal of Machine Learning Researc:213-242, 2001.

X. He, D. Cai, and P. Niyogi. Laplacian score for featuedestion. In
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S. C. Hoi, J. Wang, P. Zhao, and J. Wan. Libol: A library faomline
learning algorithmsNanyang Technological Universjt2012.

J. Kivinen and M. K. Warmuth. Exponentiated gradient usrgradient
descent for linear predictorénformation and Computatigri32(1):1—
63, 1997.

J. Langford, L. Li, and T. Zhang. Sparse online learnirng truncated
gradient. Journal of Machine Learning Research0:777-801, 2009.

P. Mitra, C. A. Murthy, and S. Pal. Unsupervised featugkestion using
feature similarity.In PAMI, 24:301-312, 2002.
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Figure 1. The average number of errors w.r.t. parameter C.

[10]

[11]
[12]

(23]

[14]

[15]
[16]

(17]

Table I11. AVERAGE TEST ERRORS MADE BY THE ALGORITHMS ON THE SIX DATA SET®/.R.T. SELECTED FEATURESB
[ Algorithm [ magic04 [ svmguide3 | german ]| splice [ spambase ]| asa |
STSD-I B=0.2 | 13367.3t406.9 [ 814.1136.3 | 702.7£20.1 | 1282.3E38.1 | 1176.1E73.7 | 12279.13073.7
STSDI-all 6634.3:35.2 360.9£7.2 | 344.1£7.1 | 1236.1-29.5 | 983.6:21.7 | 10242.6:109.8
STSDI-rand 14101.8£53.3 919.3+11.3 | 739.3£11.2 | 1559.14-22.0 | 1930.A-38.1 15525.6£79.0
STSDI-per 13143.5£52.7 828.4+40.1 | 703.7420.5 | 1300.6-41.5 | 1215.8+82.5 | 10047.72:1520.2
STSD-I B=0.5| 6732.3£73.3 | 359.1142.9 | 366.9:8.8 | 1243.7-27.0 | 1004.125.6 | 11204.7A713.1
STSDI-all 6634.3-35.2 360.94-7.2 344.1+7.1 1236.129.5 983.6+21.7 10242.6£109.8
STSDI-rand 8014.3t:45.9 563.5-20.9 | 464.3t16.2 | 1519.9+35.6 | 1699.9+25.2 15766.6£93.8
STSDI-per 6921.1-46.4 | 362.6:52.3 | 368.7416.4 | 1239.2£26.7 | 1014.1-28.2 | 11303.6:308.0
STSD-I B=0.8 | 6633.7:37.2 350.3k7.2 | 336.458.0 | 1235.2k27.1 | 980.8:20.6 | 10814.6E160.6
STSDI-all 6634.3:35.2 360.9£7.2 | 344.1£7.1 | 1236.1-29.5 | 983.6:21.7 | 10242.6:109.8
STSDI-rand 7785.2:34.2 | 490.8+19.8 | 402.8+11.9 | 1485.2:23.7 | 1490.7:19.2 | 14665.6:68.9
STSDI-per 6828.14-44.4 359.6+7.2 354.2+7.7 1238.5+26.6 991.04-21.0 11319.9:91.1
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