
Understanding Deep Networks with Gradients
Henry Z. Lo, Wei Ding

Department of Computer Science
University of Massachusetts Boston
Boston, Massachusetts 02125–3393

Email: {henryzlo, ding}@cs.umb.edu

Abstract—Existing methods for understanding the inner work-
ings of convolutional neural networks have relied on visualiza-
tions, which do not describe the connections between the layers
and units of the network. We introduce the prediction gradient
as a measure of a neuron’s relevance to prediction. Using this
quantity, we study a relatively small convolutional neural network
and make three observations. First, there exists a small number
of high prediction-gradient units, which upon removal, severely
impact the ability of the network to classify correctly. Second, this
performance loss generalizes spans multiple classes, and is not
mirrored by removing low-gradient units. Third, the distributed
representation of the neural network prevents performance from
being impacted until a critical number of units are destroyed,
the number depending highly on the prediction gradient of the
units removed. These three observations validate the utility of the
prediction gradient in identifying important units in a neural
network. We finally use the prediction gradient in order to
generate and study adversarial examples.

I. INTRODUCTION

Convolutional neural networks use serially stacked pro-
jections followed by a linear classifier [11]. In addition to
learning a feature vector for classification, the network gen-
eralize features of the input space into higher-level concepts
which are useful across data sets and tasks [2]. However,
despite the flexibiliy of these features, understanding how they
are internally represented is significantly hindered by their
distributed representation.

We show that prediction gradients can be used to rate
unit importance in a neural network, supporting this notion
with qualitative experiments [10]. Using this measure, we
also derive some insights into how relevance to prediction
performance is distributed among units in a neural network.

Existing attempts to understand CNNs have focused on
visualizing units, layers, and classes; for example, in figure
1Convolutional outputs for three images. Left shows three
faces. Right shows filter outputs for each face image. Rows
represent layers. figure.caption.1. This approach reveals little
insight into how the neural network encodes the image as a
function of its units, and how these units relate to each other,
both within and across layers.

We show that the prediction gradient can be used to un-
derstand what happens inside a CNN in two ways. First, we
use it to visualize activation patterns in the net, and show that
similar classes often induce similar unit patterns. Second, we
demonstrate the method’s effectiveness in identifying features
in a network. By removing identified ‘strong‘ units, we show
that performance degrades much faster than ‘weak‘ units.

Fig. 1: Convolutional outputs for three images. Left shows
three faces. Right shows filter outputs for each face image.
Rows represent layers.

Finally, we demonstrate that the gradient can be used to
generate images which look like one class, but are misclassi-
fied as another. Unlike previous work which only generated
high-confidence misclassifications [15], we show that similar
perturbed images can be made for almost any target class. We
study the generalizability of these adversarial examples across
classifiers, training sets, and across models, as in [15].

This last section of the paper investigates whether adver-
sarial examples can truly be abused by an adversary. Models
are already being proposed which are robust to, and indeed
improve from adversarial examples [5], [6]. Regardless, given
the demonstrated strengths of DNNs in computer vision, being
able to use adversarials reliably may pose severe security
vulnerabilities in domains such as image-based biometrics.

Our contributions are:
1) An efficient technique for measuring the importance of

any unit in a deep neural network, using the prediction
gradient.

2) Experiments showing the consistency and validity of
the prediction gradient by relating the score of units to
network performance.

3) Empirical evidence showing the robustness of distributed
representations, and the existence of high-scoring units
which are crucial for overall network performance.

4) A study on the feasability of adversarial image gen-

eration to fool neural networks, using the prediction
gradient to generate such images.

II. RELATED WORK

Existing work seeks to understand CNNs in terms of pixel
space. To our knowledge this is the first paper to investigate
how to understand network concepts in terms of its units.

Erhan et al. visualized CNNs by finding the pixels in input
space which maximize the activation of a given unit [4]. The
authors also propose a sampling method from deep belief
networks.

Zeiler and Fergus visualized the concepts learned in each
unit of a network using deconvolutional net [16]. These
networks are optimized to reproduce the input given a unit’s
activation [17].

Simonyan et. al. visualized object classes by backpropagat-
ing class predictions back to the input pixel space. They also
proposed a method for identifying the pixels of a given image
relevant to its object class [14].

Donahue et. al. compared methods to reduce dimensions on
the feature space at any given layer of a deep network, and
proposed a method which selects image segments from pixel
space to visualize the network [3].

Szegedy et. al. first showed that minute perturbations in im-
ages can cause high-confidence misclassifications [15]. Others
have since shown that such misclassifications can occur for
human-unrecognizable images, and that these misclassifica-
tions are a result of linearities in the activation functions of
neural networks [12] [5].

Erhan and Zeiler’s methods both map a single unit back
to pixel space. Simonyan’s methods visualize object classes,
also in pixel space. Our proposed method seeks to understand
object classes in terms of units in the CNN.

We propose a fast method for ranking and evaluating units
in a neural net, which requires no additional optimization.
By providing a single number for each unit, our method
quantitivately measures each unit’s contribution to a class
prediction. In contrast, existing methods only visualize the
contribution of a single unit by mapping back to pixel space,
and several require nonconvex optimization. Furthermore, our
measure is flexible, as it allows unit / feature importance to
be calculated with respect to a given class input, prediction,
or overall.

III. PREDICTION GRADIENT

The notation used in this paper is shown in Table INotation
used in this paper. Superscripts and subscripts may be omitted
when only considering one copy of a symbol. table.caption.2.

A. Prediction Gradient

We use the prediction gradient to quantify a unit’s relevance
for a given prediction:

∂y

∂o
=

〈
∂y1
∂o

, . . . ,
∂y|T |

∂o

〉
(1)

This vector measures how much the unit o contributes to the
final output y for a given image. The ith element of the

Symbol Meaning
o`a Output of ath unit in `th layer
yj Output vector of neural network for jth input
w`

ab Weight from ath unit in (` − 1)th layer to the bth unit
in the `th layer

ti Identity of ith image
Xt Set of all images sharing the label t
L Loss function

TABLE I: Notation used in this paper. Superscripts and
subscripts may be omitted when only considering one copy
of a symbol.

prediction gradient refers to the change in predicting class i
due to varying o.

In our analyses, we focus what makes the network predict
correctly, so we investigate the element yi where i = t is
the face label. The other elements of the prediction gradient
provide insight into how unit o contributes to misclassifying
the image. This may be of interest in understanding why the
network makes certain mistakes.

B. Calculation

The prediction gradient can be calculated very quickly;
most calculations are done as an intermediate step during
backpropagation. Thus, obtaining all the prediction gradients
of a dataset is relatively simple, and no slower than one epoch
of training.

Let L be an loss function which depends on y. Given one
image, online backpropagation will update weight w`

ab using
this equation:

w`
ab = w`

ab + λ
∂L

∂w`
ab

The weight w`
ab feeds into unit o`b, and thus the error at-

tributable to o`b must be calculated before the error attributable
to w`

ab can be determined. Mathematically, this becomes
apparent after applying the chain rule:

∂L

∂w`
ab

=
∂L

∂y

∂y

∂o`b

∂o`b
∂w`

ab

(2)

Thus, the prediction gradient is already calculated in the
course of learning, and requires no additional effort to obtain.

C. Class Gradient

To quantify unit relevance to each class label, we use the
class gradient, which is the average prediction gradient over
all images of the same class t:

1

|Xi|
∑
j∈Xi

∂yj

∂o
=

1

|Xi|
∂

∂o

∑
j∈Xi

〈
yj1, . . . , y

j
nc

〉
(3)

Equation 3Class Gradientequation.3.3 shows that the aver-
age prediction gradient is equivalent to the gradient of the
average prediction. In practice, we found that calculating the
class gradient in this way is easier to parallelize.

For some datasets, averaging may be problematic if the
elements of a class are not sufficiently smooth, that is, if dif-
ferent images of the same class have very different activation

patterns. We show later that this is not the case for our data
set.

The class gradient is useful in understanding how the neural
network perceives all images of each class, rather than how it
predicts one specific image.

D. Convolutional Gradient

In this paper, we focus on the class gradients of the
convolutional layers in a CNN. Each layer can be thought
of as a mode-4 tensor W `:

• Mode 1 corresponds to the different feature maps.
• Mode 2 corresponds to the different channels of the

layer’s inputs (e.g. one channel for each convolutional
output in the low layer).

• Mode 3 and 4 correspond to the 2-d convolutional filter
location in the image.

Sharing this weight tensor W ` are many units: the amount is
the number of valid input pixels times the number of feature
maps. All units of a feature map arguably correspond to a
single feature, so we quantify the importance of this entire set
of units by aggregating all units in a map using the Frobenius
norm. We call this the convolutional gradient. δ`a is the ath
convolutional gradient in the `th layer.

By aggregating, the convolutional gradient removes spatial
information in a feature map. However, as we want to quantify
the importance of a feature map, there is no way to avoid this.
If we wanted to take into account spatial information, we could
use prediction or class gradients instead.

The convolutional gradient is not a true gradient, and so
is not directly comparable to the non-convolutional prediction
gradients. However, it is a useful quantity to compare among
feature maps.

IV. EXPERIMENTAL SETUP

We use the gradients discussed to investigate an intention-
ally small network and data set to aid interpretability of results.
Using a learned CNN, we do the following:

1) Identifying activation patterns relevant to correct class
prediction, and show that these are relatively stable for
different images in the same class.

2) Ranking and rating units in a neural network, to observe
how the network understands face identities.

3) Validation of the measure of unit contribution by remov-
ing the strongest / weakest features, and observing the
effect on performance.

Our goal is to demonstrate a measure of relevance of each
unit to correct prediction. Our activation patterns, feature
rankings, and knockout experiments support one use of the
gradients, but there may be others. The purpose of the analyses
is to demonstrate the utility of the class gradient, and hence
we use a simple data set and neural network to maximize
interpretability.

A. Model

We use a CNN similar to LeNet [9], but with the following
parameters:
• 3 convolutional layers, with 5, 8, and 10 feature maps.
• One hidden layer with 20 units.
• Hyperbolic tangent activation functions.
• 5× 5 convolutional filters for all convolutional layers.
• 2× 2 max pooling for all convolutional layers.
Input images are resized to 60 × 60 pixels. The learning

parameter is set to 0.1.

B. Data

To facilitate learning on our network, we use the Yale face
database1, which consists of face images of 15 identities in
11 different conditions [1]. 75% of the data set is used for
training, and 25% for testing. The network was trained on 15
classes, one for each identity.

After training for 250 epochs, the network achieved an error
rate of 4.88% on the data set. Weights for the network were
frozen after this.

V. GRADIENT ANALYSIS

We demonstrate the utility of the prediction gradient by
example. Using on a CNN trained on a face recognition data
set, we show how the prediction gradient can be used to
understand the inner workings of a neural network, and to
identify useful and non-useful features relevant to class labels.

A. Prediction Gradient Consistency

If prediction gradient within the same class are too different,
then class gradients would be meaningless. We verified that
this was not the case in Table IIPrediction gradients for three
images each from three identities. The diagram in the network
column the three convolutional layers of the neural network.
Each circle is a feature map. Brighter circles indicate a higher
prediction gradient for that feature map. Note the patterns in
prediction gradients within each identity. table.caption.3; three
different identities, under three different conditions. Units with
the highest gradients stay quite similar across different faces of
the same identity. In other words, each person has a distinct
gradient profile of which units contribute most to detecting
that face. This justifies the use of the class gradient.

B. Gradient-Based Feature Selection

The convolutional gradient can be used as a measure of a
unit’s effectiveness in producing a certain network outcome.
Hence, it can be used rank the internal features of a neural
network in terms of importance.

In table IIIFive identities with their images, class gradients
across the whole network, and top 8 strongest and weakest
features, as ranked by the class gradient. These five identities
were used in the knockout experiments.table.caption.4, we use
the convolutional gradient to identify the top 8 strongest and
weakest features for each of five identities. We average these

1http://vision.ucsd.edu/content/yale-face-database

Identity 1 Identity 2 Identity 3
Image Network Image Network Image Network

TABLE II: Prediction gradients for three images each from three identities. The diagram in the network column the three
convolutional layers of the neural network. Each circle is a feature map. Brighter circles indicate a higher prediction gradient
for that feature map. Note the patterns in prediction gradients within each identity.

features across different images of the same identity. Note that
as the gradients are different for each identity, each identity
has a different set of strongest and weakest features.

The values for these convolutional gradients are shown,
and all convolutional gradients are visualized in the network
diagram in the third column. We note that there is a high
variability in the value of the gradient. For example, identity
15’s gradients are much higher than identity 14’s. Thus, in
our network visualizations, we normalize based on the highest
gradient in the network.

C. Gradient-Selected Feature Evaluation

To verify the feature rankings produced by the network, we
knock out these units and observe their effects on network
performance.

For each identity (we use identities 7, 10, 12, 14, and
15), we find the top 10 strongest features. Then for each of
these features, we set the output of the corresponding unit
to 0 (knocking it out). We then run the modified network
to evaluate its performance. The effects of the knockout are
cumulative; e.g. at the first iteration we knock out the best
feature, then we knock out the best 2 features, etc.

We evaluate network performance in two ways. First, we
measure class error by only testing the network on the identity
whose strongest features were extracted. Second, we measure
overall error by testing the network on all identities.

Finally, we do this same experimental procedure for the 20
weakest features. We use the entire Yale data set, not just the
test set.

D. Gradient-Selected Feature Results

Knockout experiment results are shown in figure 2Charts
show the effect of removing an identity’s strongest features on

network performance. Two types of error are considered - error
within the identity, and error among all images. Left column
shows the removal of strongest features one-by-one, and right
column shows the removal of weakest features. Features are
rated based on class gradient. figure.caption.5.

Removing three or more of the strongest features impacts
network performance. There seems to be some robustness to
the network, in that it can handle minor damage and still
classify well. This robustness depends on the identity; e.g. the
network fails to recognize identity 12 after removing 4 units,
but only fails on identity 10 after removing 8.

Overall performance seems to degrade slower than perfor-
mance on a single identity, at least for the top features for
identities 10 and 15. Regardless, all of the strongest feature
near 100% error after removing 10.

Removing the weakest units gradually increases error as
features are knocked out, but the pattern is not certain.
For example, error for identity 12 increased drastically after
removing the 7 weakest features, but then dropped again after
removing two more. This suggests that some weak features,
actually hurt network performance.

Overall performance degrades very slowly when removing
features from the weakest first. The network almost completely
fails after removing the top 10 strong features for any identity.
In contrast, after removing 10 weak features, the network still
achieves less than 25% error. Even after removing 15 weak
features, overall error for many of the weak feature sets is
below 50%. This is remarkable, considering that there are only
23 convolutional features.

Misclassifications for the knockout procedure can be seen
in figure 3How the neural net misclassifies as the strongest
features for identity 7 are knocked out. Lines represent
identities; rows represent average prediction. On the left, all

ID Image Network Strongest Features Weakest Features
Layer Unit Gradient Layer Unit Gradient

15

1 5 0.25153 3 2 0.03227
2 3 0.23269 3 6 0.03676
3 8 0.21675 3 3 0.09039
1 2 0.21362 3 9 0.10847
3 1 0.20919 2 4 0.10995
2 6 0.20612 2 2 0.12622
2 5 0.19961 3 4 0.13164
1 3 0.19855 1 1 0.13169

14

3 5 0.00202 3 2 0.00025
3 7 0.00167 3 6 0.00052
3 10 0.00158 2 4 0.00055
3 3 0.00136 1 1 0.00057
3 4 0.00125 2 2 0.00063
3 1 0.00121 2 7 0.00075
3 9 0.00117 2 1 0.00076
2 8 0.00102 2 3 0.00077

7

1 5 0.02247 3 6 0.00728
3 1 0.02029 3 2 0.00951
1 3 0.01951 3 9 0.00977
2 6 0.01890 2 4 0.00983
1 4 0.01802 3 3 0.01157
2 3 0.01760 2 2 0.01199
2 8 0.01726 1 1 0.01228
1 2 0.01683 2 7 0.01453

10

3 1 0.00369 3 6 0.00071
1 5 0.00328 3 2 0.00072
3 7 0.00316 2 4 0.00114
2 6 0.00301 1 1 0.00182
1 4 0.00287 2 2 0.00189
3 5 0.00287 2 7 0.00212
3 10 0.00286 2 1 0.00219
1 3 0.00282 3 9 0.00231

12

1 5 0.08089 3 6 0.01925
1 2 0.07403 3 2 0.01964
1 4 0.06849 2 4 0.03013
1 3 0.06410 3 9 0.03074
2 6 0.05959 3 3 0.03077
2 8 0.05814 2 2 0.03345
2 3 0.05761 3 5 0.03780
3 1 0.05623 3 7 0.04417

TABLE III: Five identities with their images, class gradients across the whole network, and top 8 strongest and weakest
features, as ranked by the class gradient. These five identities were used in the knockout experiments.

subjects are correctly classified as no units are knocked out.
As units are removed, the ability to distinguish between faces
is lost. figure.caption.6. The strongest features for identity 7
were used. The colored lines in this image show the true
class label, while the rows show the mode predicted class
label. Interestingly, 7 is not the first identity to be grossly
misclassified. As the network degrades, identities become
more difficult for the network to distinguish.

VI. OBSERVATIONS

With the convolutional gradient and our experiments, we
observed the following:

• Stability of representation. The neural net learns a sparse
gradient pattern ”profile” for each identity.

• Robustness of representation. Even when removing one
or two of the strongest features in a neural network,
performance remains high.

• Feature relevance imbalance. Removing three strong fea-
tures gives the same performance reduction as removing

the weaker half of all features. Strong units are useful
across classes.

This analysis was made possible using prediction gradients
and knockout analysis. Prediction gradients have the benefit of
being efficiently computable, unlike modern methods for un-
derstanding neural networks, yet non-linear, unlike traditional
measures such as correlation. This method is applicable not
only to convolutional layers as demonstrated in this paper, but
to any output in a neural network.

VII. ADVERSARIAL IMAGE GENERATION

We now shift gears to apply the prediction gradient to
understanding adversarial images.

First, we determine whether or not adversarial image masks
generalize across elements of the same class.

Methods of generating adversarial examples such as the fast
sign gradient method rely on creating a single perturbation
from a single example [5]. This perturbation is then applied to
that same example to induce misclassification. As generating
such examples is difficult without access to the Jacobian of

Fig. 2: Charts show the effect of removing an identity’s strongest features on network performance. Two types of error are
considered - error within the identity, and error among all images. Left column shows the removal of strongest features
one-by-one, and right column shows the removal of weakest features. Features are rated based on class gradient.

Removed: 0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 3: How the neural net misclassifies as the strongest fea-
tures for identity 7 are knocked out. Lines represent identities;
rows represent average prediction. On the left, all subjects are
correctly classified as no units are knocked out. As units are
removed, the ability to distinguish between faces is lost.

the network, it would be ideal if an adversarial mask can be
learned to consistently mask any example as a target class.

Second, we generate adversarial masks from a training set,
and determine how well they deceive a network. To this end,
we use a variant of the gradient sign method [5], and a DNN
to which we have access to the gradient.

Third, we determine the generalizability of these masks. We
apply them to different data sets, and to other classifiers, and
observe the ability to target misclassification.

A. Experimental Details

We use a CNN with three ReLU, max-pooling convolutional
layers, with 32, 32, and 64 feature maps, and a softmax
classifier. We also used a momentum term of 0.9 and a learning
rate of 0.01. There were no hidden or local response layers,
and no average pooling. Because of these differences, we call
our network pseudo-AlexNet [8].

The network trained for 10000 epochs on the CIFAR-10 [7]
training set, and achieved 32.77% validation and 34.19% test
error.

The choice of CIFAR-10 was intended to balance real-
world usability and training feasibility. As CIFAR-10 consists
of color images, its input space is much less structured than
MNIST and closer to full-sized color images.

VIII. GENERALIZABILITY WITHIN CLASSES

A. Learning Deceptive Masks

We use an additive mask W as a perturber. The cells of W
add to cells of the input image. This mask is attached as input
to the pseudo-AlexNet, and the pseudo-AlexNet is then run
through its training set, but with all class labels changed the
target class. The pseudo-AlexNet’s weights are not adjusted

Fig. 4: Class-general perturbations learned using the gradients
of the pseudo-Alexnet. Randomly selected. Left is a bird, right
is a frog, and the target class for both is dog.

(they are already learned), but the error gradient propagates
back to the image mask to adjust its weights.

Figure 4Class-general perturbations learned using the gra-
dients of the pseudo-Alexnet. Randomly selected. Left is a
bird, right is a frog, and the target class for both is dog.
figure.caption.7 shows the results of a mask for a given
class (dog). These images were randomly chosen. Error (with
respect to the target class dog) was very high (88%), suggest-
ing that masks do not generalize across samples in a class.
Different classes did not perform any better.

B. Gradient Smoothness

The gradients of the mask are visualized in figure 5Visu-
alization of gradients of three image predictions with respect
to each pixel. Note that gradients are roughly normal with 0
mean and short tails. Columns of (a) correspond to columns
of (b).figure.caption.8.

In 5Visualization of gradients of three image predictions
with respect to each pixel. Note that gradients are roughly
normal with 0 mean and short tails. Columns of (a) correspond
to columns of (b).figure.caption.8a, the original image is
shown, and gradients are shown in the noisy images to the
right of them. These gradients have no clear pattern visually,
thus challenging the notion that a classifier can learn to perturb
images to fool another.

In 5Visualization of gradients of three image predictions
with respect to each pixel. Note that gradients are roughly
normal with 0 mean and short tails. Columns of (a) corre-
spond to columns of (b).figure.caption.8b, the distribution of
gradients is shown with respect to final-layer network outputs.
The shape of this distribution suggests that perturbations do
not happen as a result of a few pixels. It is due to small changes
in many pixels.

IX. TARGETED MISCLASSIFICATION

A. Linear Additive Masks

Unlike previous work, we generate adversarials with tar-
geted misclassifications [15]. To do this, we calculate the
gradient of the target output unit with respect to the input.
This provides an additive image mask W which linearly
approximates the best direction to perturb the image, and is
scaled up or down with a coefficient η.

Using the pseudo-AlexNet, we calculate this mask for all
images in the training set (essentially the Jacobian for all
training images). We perform a line search for various values
of η, ranging from 0 to 12750.

Fig. 6: Error for pseudo-AlexNet on CIFAR-10 training set as
a function of η. Error for a target class is the proportion of
samples successfully masked as the target class.

Original: Dog (99.99) → Target: Cat (99.99)

Dog (63.84) → Target: Car (3.98)

Ship (99.99) → Frog (0.00)

Fig. 7: Top: image and its mask in pseudo-Alexnet training
set. Middle: image from validation set and its closest mask.
Bottom: training set mask applied to MLP.

As shown in figure 6Error for pseudo-AlexNet on CIFAR-
10 training set as a function of η. Error for a target class is the
proportion of samples successfully masked as the target class.
figure.caption.9, given the right value for η, these image masks
can perturb any image in the training set to be misclassified
as any other class with very little error.

The optimal values for η vary beetween 5000 to 10000 for
each target class, and are usually around 7000. We call these
the optimal η values.

B. Example Masks

Figure 7Top: image and its mask in pseudo-Alexnet training
set. Middle: image from validation set and its closest mask.
Bottom: training set mask applied to MLP.figure.caption.10
shows three examples of image masks obtained in the previous
step. Even without explicity bounding distortion as in [15], the
optimal distortion is rather low for most images. The top row
image is typical of many learned masks.

(a) Column by column: three images; pixel gradients with
respect to prediction; pixel gradients with respect to three final-
layer unit outputs.

(b) RGB histogram of three images; histogram of prediction
gradients for each color; gradients for three network outputs.
Line denotes 0.

Fig. 5: Visualization of gradients of three image predictions with respect to each pixel. Note that gradients are roughly normal
with 0 mean and short tails. Columns of (a) correspond to columns of (b).

Some masks induce more distortion compared to those
on ImageNet [13], but similar to those on MNIST [15].
ImageNet images are higher resolution, and thus have more
pixels (directions) to perturb towards misclassification. This
suggests that adversarials may be more insidious for large-
scale problems.

X. PERTURBATION TRANSFERABILITY

A. Dataset Transferability

Adversarial masks do not generalize across the same class,
as seen in Section 2. In order to be useful for other data,
we must be able to obtain masks for new data without the
gradient. Our approach:

1) Given a new input image q, find its nearest image r in
Euclidean distance from the training set.

2) Given the target class, use the pre-computed gradient
mask that class with respect to r to perturb q.

3) Scale up q with the learned optimal η value.
This model was tested using the pseudo-AlexNet on the

Cifar-10 test set. Results are shown in the upper half of figure
8Error for pseudo-AlexNet on CIFAR-10 its validation set,
using 1-nearest-neighbor matching, and error for MLP on its
training set. figure.caption.11. Though some target misclassi-
fications can be generalized, e.g. frog and truck, in general the
technique does not induce the target misclassification reliably.

B. Model Transferability

To test whether adversarials transfer across models, we learn
an MLP on the same training data. The model has 500 hidden
units, Tanh activation functions, and a learning rate of 0.1. As
with the pseudo-AlexNet, 10000 iterations were used, leading
to 55.17% validation and 54.22% test error. Testing was done
on the training images, and masks from the pseudo-AlexNet
were used for the MLP.

Fig. 8: Error for pseudo-AlexNet on CIFAR-10 its validation
set, using 1-nearest-neighbor matching, and error for MLP on
its training set.

The bottom of figure 8Error for pseudo-AlexNet on CIFAR-
10 its validation set, using 1-nearest-neighbor matching, and
error for MLP on its training set. figure.caption.11 shows that
the effectiveness of the masks gradually increase with larger η,
but the masks transferred to MLPs are not nearly as effective
as on the original pseduo-AlexNet. However, we note these
masks seem moderately effective on the pseudo-AlexNet with
the validation set, and the MLP on the training set.

XI. DISCUSSION

Overall, we have observed the following about adversarial
examples:
• Adversarial perturbations often result from many small

changes, rather than a few large changes.

• Adversarials tend to be close to the original data; hard
constraints are not required [15].

• Adversarials can be targeted.
• Adversarials (using masks) are specific to an image, and

not very generalizable to new data and different models.
• Adversarials are less noticeable in larger images.
It is possible to use more complicated procedures than

nearest neighbor to obtain a suitable gradient mask for a
unit. Though adversarial examples are still a long ways from
being utilized effectively, investigating their generalizability
may reveal common threads between deep neural networks
and other models which share their quirks.

REFERENCES

[1] Peter N. Belhumeur, João P. Hespanha, and David J. Kriegman. Eigen-
faces vs. fisherfaces: Recognition using class specific linear projection.
IEEE Trans. Pattern Anal. Mach. Intell., 19(7):711–720, July 1997.

[2] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised
feature learning and deep learning: A review and new perspectives.
CoRR, abs/1206.5538, 2012.

[3] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang,
Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation
feature for generic visual recognition. CoRR, abs/1310.1531, 2013.

[4] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Visualizing higher-layer features of a deep network. Technical Report
1341, University of Montreal, June 2009.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples. ICLR, 2015.

[6] Shixiang Gu and Luca Rigazio. Towards deep neural network architec-
tures robust to adversarial examples. CoRR, abs/1412.5068, 2014.

[7] Alex Krizhevsky. University of toronto. Technical report, 2009.
[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet

classification with deep convolutional neural networks. In NIPS. 2012.
[9] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, Nov 1998.

[10] Henry Z. Lo, Joseph Paul Cohen, and Wei Ding. Prediction gradients for
feature extraction and analysis from convolutional neural networks. In
International Conference and Workshops on Automatic Face and Gesture
Recognition, pages 1–6, 2015.

[11] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012.

[12] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images.
CVPR, 2015.

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge, 2014.

[14] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. ICLR, abs/1312.6034, 2013.

[15] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. In ICLR, 2015.

[16] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. ICLR, abs/1311.2901, 2013.

[17] Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus.
Deconvolutional networks. In In CVPR, 2010.

