
Mining Sequential Patterns with Periodic Wildcard Gaps

Youxi Wu, Lingling Wang, Jiadong Ren, Wei Ding, Xindong Wu

 Abstract Mining frequent patterns with periodic
wildcard gaps is a critical data mining problem to deal
with complex real-world problems. This problem can be
described as follows: given a subject sequence, a
pre-specified threshold, and a variable gap-length with
wildcards between each two consecutive letters. The task
is to gain all frequent patterns with periodic wildcard
gaps. State-of-the-art mining algorithms which use
matrix or other linear data structures to solve the problem
not only consume a large amount of memory but also run
slowly. In this study, we use an Incomplete Nettree
structure (the last layer of a Nettree which is an
extension of a tree) of a sub-pattern P to efficiently
create Incomplete Nettrees of all its super-patterns with
prefix pattern P and compute the numbers of their
supports in a one-way scan. We propose two new
algorithms, MAPB (Mining sequentiAl Pattern using
incomplete Nettree with Breadth first search) and MAPD
(Mining sequentiAl Pattern using incomplete Nettree
with Depth first search), to solve the problem effectively
with low memory requirements. Furthermore, we design
a heuristic algorithm MAPBOK (MAPB for tOp-K)
based on MAPB to deal with the Top-K frequent patterns
for each length. Experimental results on real-world
biological data demonstrate the superiority of the
proposed algorithms in running time and space
consumption and also show that the pattern matching
approach can be employed to mine special frequent
patterns effectively.

Keywords Sequential pattern mining, Periodic wildcard gap,
Pattern matching, Heuristic algorithm, Nettree

 Y. Wu (✉), L. Wang, J. Ren, W. Ding, X. Wu
School of Computer Science and Engineering, Hebei University of
Technology, Tianjin 300130, China
e-mail:wuc567@163.com

L. Wang
e-mail:wangling927927@126.com

J. Ren
School of Information Science and Engineering, Yanshan Univeristy,
Qinghuangdao 066004 , China
e-mail:jdren@ysu.edu.cn

W. Ding
Department of Computer Science, University of Massachusetts Boston,
Boston, 02125, USA
e-mail:wei.ding@umb.edu

X. Wu
Department of Computer Science, University of Vermont, Burlington, VT
05405, USA
e-mail:xwu@cs.uvm.edu

1. Introduction
Pattern mining plays an essential role in many critical data
mining tasks, such as graph mining [1], spatiotemporal data
mining [2], and univariate uncertain data streams [3].
Sequential pattern mining, first introduced by Agrawal and
Srikant [4], is a very important data mining problem [5] with
broad applications including analyzing moving object data [6],
detecting intrusion [7], and discovering changes in customer
behaviour [8] etc. In order to solve the specific applications,
researchers have also proposed some special approaches. For
example, Liao and Chen [9] proposed a Depth-First SPelling
algorithm for mining sequential patterns in long biological
sequences. To avoid producing a large number of uninteresting
and meaningless patterns, Hu et al. [10] proposed an algorithm
which considers compactness, repetition, recency and
frequency jointly to select sequential patterns and it is efficient
in the business-to-business environment. Shie et al. [11]
proposed an efficient algorithm named IM-Span to mine user
behaviour patterns in mobile commerce environments. Yin et al.
[12] proposed an efficient algorithm USpan for mining
high-utility sequential patterns. Zhu et al. [13] proposed an
efficient algorithm Spider-Mine to mine the Top-K largest
frequent patterns from a single massive network with any
user-specified probability. Wu et al. [14] proposed a novel
framework for mining the Top-K high-utility itemsets.
Classical sequential pattern mining algorithms include GSP [4]
and Prefix Span [15].

Researchers have recently focused on periodic detection
[16] and mining frequent patterns with periodic wildcard gaps
[17], since this kind of pattern can flexibly reflect sequential
behaviours and is often exhibited in many real-world fields. For
example, in business, retail companies may want to know what
products customers will usually purchase at regular time
intervals rather than in continuous time according to time gaps.
So managers can adjust marketing methods or strategies and
improve sales profit [18, 19]. In biology, periodic patterns are
redeemed as having significant biological and medical values.
Considering that genes and proteins both contain many
repetitive fragments, many periodic patterns of different
lengths and types can therefore be found. Some of the patterns
with excessively high frequency have been determined as the
suspected cause of some diseases [20, 21]. In data mining,
researchers found that some frequent periodic patterns can be
used in feature selection for the purpose of classification and
clustering [22, 23]. So an extraordinary task is how to mine all
these frequent patterns and the Top-K patterns for each length
from a mass of data to improve its efficiency in each
application field.

In this study, we focus on mining frequent patterns with
periodic wildcard gaps. This problem can be described as
follows: given a subject sequence, a pre-specified threshold,
and a variable gap-length with wildcards between each two
consecutive letters. Our goal is to gain all frequent patterns
with periodic wildcard gaps and the Top-K frequent patterns for
each length. The pattern with periodic wildcard gaps means
that all these wildcard gap constraints are the same. For
example, pattern P1=p0[min0, max0]p1[min1, max1]p2 =A[0,

2]T[0, 2]G is a pattern with periodic wildcard gaps since
min0=min1=0 and max0=max1 =2. We can easily know that both
patterns P2=p0[min0, max0]p1[min1, max1]p2=A[1,2]T[0,2]G
and P3=p0[min0, max0]p1[min1, max1]p2=A[0,3]T[0,2]G are not
patterns with periodic wildcard gaps since the wildcard gaps
between letters are not completely the same.

In existing work, a series of algorithms had been proposed
on the pattern mining with flexible wildcards, as detailed in
Sect. 2. But all these state-of-the-art mining algorithms use a
matrix or other linear data structure to solve the problem and
consume a large amount of memory and run slowly [20, 24, 25].
It is also very difficult to mine frequent patterns in long
sequences. Therefore, we propose two more efficient mining
algorithms by using an incomplete Nettree structure and can get
all frequent patterns in a shorter time with less memory space.
In addition, we also design a heuristic algorithm to gain the
Top-K frequent patterns for each length effectively. The
contributions of this paper are described specifically as follows:

 We propose an incomplete Nettree structure (see Part 4.2)
which can be used to compute the numbers of supports of
those super-patterns in a one-way scan.

 We design two algorithms named MAPB (Mining
sequentiAl Pattern using incomplete Nettree with Breadth
first search) and MAPD (Mining sequentiAl Pattern using
incomplete Nettree with Depth first search) to solve the
problem effectively with low memory requirements.
Experiments on real-world bio-data show that MAPD is
much faster than MAPB and can be employed to mine
frequent patterns in long sequences.

 Furthermore, a heuristic algorithm named MAPBOK
(MAPB for tOp-K) which is designed based on MAPB is
presented to solve the Top-K mining problem, although
MAPB is slower than MAPD. This algorithm can
efficiently get the Top-K frequent patterns for each length
without having to sort all frequent patterns or to check all
possible candidate patterns.

The paper is organized as follows. Section 2 reviews
related work. Section 3 presents the problem definition and
preliminaries. Section 4 introduces Nettree and the incomplete
Nettree structure and then proposes the MAPB and MAPD
algorithms. The analysis of the time and space complexities of
these two algorithms and an illustrative example are also shown
in section 4. Section 5 proposes a heuristic algorithm to find the
Top-K frequent patterns for each length and the longest
frequent patterns. Section 6 reports comparative studies and
Section 7 concludes the paper.

2. Related work
We discuss the existing work from the following features:

(1) Pattern P has many wildcard gap constraints. In some
studies the gap constraints can be different [26]. But in this
paper all these wildcard gap constraints are the same. The
pattern is called a pattern with periodic wildcard gaps.

(2) In some studies, only one or two positions of the given
sequence are considered [23], whereas we consider that a group
of positions are used to denote a support of a pattern in the
given sequence. This means that each position pj should be
considered. For example, for a given sequence S=s0s1s2s3s4s5=
AATTGG and a pattern P=p0[min0, max0]p1[min1,
max1]p2=A[0,2]T[0,2]G, <0, 2, 4> is a support of P in S due to
the fact that s0=p0=A, s2=p1=T, and s4=p2=G. So it is easy for
us to know that there are 2*2*2=8 supports in the problem.

(3) Each position can be used many times in this study. In
the literature [26-28] each position in the sequence can be used
at most once, which is called the one-off condition first

introduced by Chen et al. [29]. Under the one-off condition
there are only two supports of P=A[0,1]T[0,1]G in
S=s0s1s2s3s4s5=AATTGG which are <0, 2, 4> and <1, 3, 5>.
Another kind of study is under the non-overlapping condition
[30]. For instance, given S1=s0s1s2s3s4 =ATATA and
P1=A[0,1]T[0,1]A, it is easy to know that <0, 1, 2> and <2, 3,
4> are two supports of P1 in S1. We notice that position 2 is
used twice in <0, 1, 2> and <2, 3, 4>, but position 2 does not
appear at the same indication of the supports. Hence <0, 1, 2>
and <2, 3, 4> are two supports of P1 in S1 under the
non-overlapping condition rather than the one-off condition.
But in this study, we do not have these kinds of constraints.

(4) In the literature [26, 27, 30] it is shown that the Apriori
property can be used to prune candidate patterns if the
sequential pattern mining has the one-off condition or the
non-overlapping condition, since the number of supports of any
super-pattern is less than that of its sub-patterns under these
conditions. So if a pattern is not frequent, all its super-patterns
are not frequent. Whereas the Apriori property does not hold in
our mining problem, since the number of supports (even
support ratio) of a super-pattern can be greater than that of its
sub-patterns. To reduce redundant candidate patterns, the
Apriori-like property was proposed [20]. The property can be
described as that all super-patterns are not frequent if the
support ratio of a pattern is less than a value which is less than
the given threshold.

(5) Generally, pattern mining algorithms can find all
frequent patterns whose number of supports is not less than the
given threshold. However, it is not easy for users to use the
frequent patterns when they face thousands of patterns or more.
In some cases, parts of the duplicated frequent patterns need to
be removed to prune the uninteresting patterns because these
patterns and their super-patterns have the same number of
supports. This is called closed frequent patterns. Moreover,
some issues focus on the Top-K mining problem [13, 14, 31]
since the Top-K frequent patterns are more useful than other
frequent patterns.

Mining frequent patterns with periodic wildcard gaps
essentially relies on a counting mechanism to calculate the
number of supports (or occurrences) of a pattern and then
determine whether the pattern is frequent or not. However, on
one hand, the number of supports generally grows
exponentially with the length of the checked patterns. On the
other hand, both the number of supports and support ratio do
not satisfy monotonicity and the Apriori property cannot be
used to reduce the size of the set of candidate patterns. Thus it
is infeasible for traditional algorithms to solve this problem.
Researchers have explored several major approaches to
untangle this hard problem: (1) The set of length-m candidate
patterns is used to generate a set of length-(m+1) candidate
patterns. Then select frequent patterns from the set of candidate
patterns and iterate this process till it is done [20, 22, 23]. (2)
The Apriori-like property is employed to reduce the size of the
set of candidate patterns [20]. (3) Min et al. [24] redefined the
problem of [20] and the support ratio is monotonous in the new
definitions. So the Apriori property can be used. (4) Pattern
matching techniques are used to calculate the numbers of
supports of patterns in the given sequence to find frequent
patterns [24, 25].

Table 1 shows a comparison of related work.

Table 1. Comparison of related work

Algorithms Periodic wildcard gaps Apriori property Occurrences Output patterns
He et al. [26] No Apriori One-off All frequent patterns
Ding et al. [30] No Apriori Non-overlap All/closed frequent patterns
Xie et al. [27] Yes Apriori One-off All frequent patterns
Li et al. [23] Yes Apriori First-last Closed/long frequent patterns
Ji et al. [21] Yes Apriori-like All Minimal distinguishing subsequence patterns
Min et al. [24] Yes Apriori All All frequent patterns
Zhang et al. [20] Yes Apriori-like All All frequent patterns
Zhu and Wu [25] Yes Apriori-like All All frequent patterns
This paper Yes Apriori-like All All/Top-K frequent patterns for each length

In Table 1, Zhang et al. [20] studied the problem of mining
frequent patterns with periodic wildcard gaps in a genome
sequence and proposed the MPP algorithm based on the
Apriori-like property which employed an effective pruning
mechanism to reduce the size of the set of candidate patterns.
Min et al. [24] redefined the issue of [20] and the Apriori
property can become available. The mining algorithm uses a
pattern matching approach to calculate the number of supports
(or occurrences) of a pattern in the given sequence. Zhu and
Wu [25] explored the MCPaS algorithm to discover frequent
patterns with periodic wildcard gaps from multi-sequences. The
proposed Gap Constrained Search (GCS) algorithm used a
sparse array to calculate the number of supports of a pattern. Ji
et al. [21] proposed an algorithm to mine all minimal
distinguishing subsequences satisfying the minimum and
maximum gap constraints and a maximum length constraint. Li
et al. [23] proposed Gap-BIDE to discover the complete set of
closed sequential patterns with gap constraints, and
Gap-Connect to mine the approximate set of long patterns.
They further explored several feature selection methods from
the set of gap-constrained patterns on the issue of classification
and clustering. A triple (bP, eP, count) was used to represent a
set of supports of a pattern which share the same beginning
position and ending position, where bP, eP, and count are the
beginning position of the supports in the sequence, the ending
position of the supports in the sequence, and the total number
of supports, respectively. Xie et al. [27] and He et al. [26] both
studied the problem of mining frequent patterns under the
one-off condition which can greatly improve the time
performance. In [27], the MAIL algorithm employing the
left-most and the right-most pruning methods is designed to
find frequent patterns with periodic wildcard gaps. In [26], two
heuristic algorithms, namely one-way scan and two-way scan,
are proposed to mine all frequent patterns. Ding et al. [30]
studied the repetitive gapped subsequence mining problem and
focused on mining closed frequent patterns with
non-overlapping supports.

According to Table 1, we can see that studies [20, 24, 25]
are the most closely related with our study. The support ratio is
used to determine whether a pattern is frequent or not in this
kind of issue and a pattern and its super-patterns generally have
different support ratios. So we pay more attention to mining all
frequent patterns rather than closed frequent patterns. Whereas
the algorithm in [20] is less effective to mine all frequent
patterns, especially in long sequences. Moreover, traditional
Top-K mining studies such as Zhu et al. [13] and Wu et al. [14]
focus on mining the Top-K frequent patterns in all frequent
patterns. But those strategies are invalid when users are
interested in the Top-K frequent patterns with length t (1<=t
<=m and m is the length of the longest frequent patterns). For
example, suppose the length of the longest frequent patterns is
10 and the numbers of frequent patterns for various lengths are
4, 16, 64, 256, 1024, 4096, 13438, 5767, 604, and 1,
respectively. Users may be interested in the Top-10 frequent
patterns with length 8 and the Top-10 frequent patterns with

length 9. But the traditional Top-K mining algorithm can only
find the Top-10 frequent patterns in all frequent patterns.
Therefore, more effective mining algorithms especially in long
sequences and mining the Top-K frequent patterns for each
length are worth exploring.

3. Problem definition and preliminaries
We first give some definitions related with the proposed
methods.

Definition 1. S=s0 ... si ... sn-1 is called a subject sequence,
where si ∑∈ is a symbol and n is the length of S. ∑ can be a
different symbol set in different applications and the size of ∑
is denoted by |∑|. In a DNA sequence, ∑={A,T,C,G } and
|∑|=4.

Definition 2. P=p0[min0,max0]p1 ... [minj-1,maxj-1] pj ...
[minm-2,maxm-2] pm-1 is a pattern, where pj ∑∈ , m is the length
of P, minj-1 and maxj-1 are integer numbers and 0≤minj-1 ≤maxj-1.
minj-1 and maxj-1 are gap constraints, presenting the minimum
and maximum number of wildcards between two consecutive
letters pj-1 and pj, respectively. If min0= min1 =… = minm-2=M
and max0= max1 =… = maxm-2 =N, pattern P is called a pattern
with periodic wildcard gaps. For example, A[1,3]C[1,3]C is a
pattern with periodic wildcard gaps [1,3] .

Definition 3. If a sequence of indices D=<d0, d1, …, dm-1 >
is subject to M≤dj-dj-1-1≤N (1≤j≤m-1), D is an offset sequence
of P with periodic wildcard gaps [M, N] in S. The number of
offset sequences of P in S is denoted by ofs(P, S).

Definition 4. If an offset sequence I=<i0,… ,ij ,… ,im-1 > is
subject to ji ps

j
= (0≤j≤m-1 and 0≤ij≤n-1), I is a support (or

occurrence) of P in S. The number of supports of P in S is
denoted by sup(P, S).

Definition 5. r(P, S)= sup(P, S)/ofs(P,S) is called the
support ratio. If r(P, S) is not less than a pre-specified
threshold ρ , pattern P is a frequent pattern, otherwise P is
an infrequent pattern.

Apparently, sup(P, S) is not greater than ofs(P, S) since
each offset sequence can be a support. So 0 ≤ r(P, S) ≤ 1.
Zhang et al. [20] gave a method to calculate ofs(P,S) with gap
constraints [M, N]. Suppose m and n are the length of pattern P
and the given sequence, respectively. Let W=N-M+1, l1=
⎣ ⎦)1/()(++ MMn , and l2= ⎣ ⎦)1/()(++ NNn . ofs(P,S) is
calculated as follows.

For m>l1, ofs(P,S)=0. (1)
For m ≤ l2, ofs(P,S)=(n-(m-1)((M+N)/2+1))W^(m-1) (2)

For l2<m ≤ l1, ofs(P,S) can be calculated by a recursive formula.
 (3)

Example 1. Suppose patterns P1= A[1,3]C and P2=G[1,
3]C, a sequence S=s0s1s2s3s4s5=AGCCCT and ρ =0.25.

We can easily enumerate all 9 offset sequences of P1 and
P2 in S which are <0,2>,<0,3>,<0,4>, <1,3>, <1,4>, <1,5>,
<2,4>, <2,5>, and <3,5>. Hence ofs(P1, S)=ofs(P2, S)=9. The

supports of P1 in S include <0,2>,<0,3>, and <0,4> and sup(P1,
S)=3. P1 is a frequent pattern since the support ratio r(P1,
S)=3/9=0.333. We can see that sup(P2, S)=2 and the supports
are <1, 3> and <1, 4>. So r(P2, S)=2/9=0.222 < ρ and P2 is
an infrequent pattern.

Definition 6. Given patterns P and Q, if Q is a sub-string
of P, P and Q are called the super-pattern and sub-pattern,
respectively. If sub-pattern Q contains the first |P|-1 characters
of P, Q is a prefix pattern of P denoted by Prefix (P).
Similarly, if sub-pattern Q contains the last |P|-1 characters of P,
Q is a suffix pattern of P denoted by Suffix (P).

Example 2. Suppose patterns P3= A[1, 3]C[1, 3]T, Q1=A,
Q2=C, and Q3=A[1, 3]C.

Q1, Q2, and Q3 are sub-patterns of P3 and P3 is a
super-pattern of Q1, Q2, and Q3. The prefix pattern and suffix
pattern of P3 are Q3 and C[1,3]T, respectively.

One of the most important tasks of the mining problem is
how to calculate the number of supports of a pattern in order to
determine whether the pattern is frequent or not. Zhu and Wu
[25] proposed the GCS algorithm to calculate the number of
supports of pattern P in sequence S. An illustrative example
shows the principle of GCS.

Example 3. Suppose a pattern P=T[0,3]C[0,3]G and a
sequence S=s0s1s2s3s4s5s6s7s8s9 = TTCCTCCGCG.

Figure 1 shows the principle of the GCS algorithm which
creates a two-dimensional array A. If pi<>sj (0 ≤ i ≤ m-1), then
A(i, j)=0. If i=0 and pi=sj, then A(i, j)=1, otherwise A(i, j)=

∑ =

=

Nk
Mk

A (i-1, j-k-1) (0<i ≤ m-1). The sum of the elements in the

last row is the number of supports of the pattern in the
sequence. Hence we know that the number of supports of P in S
is 0+0+0+0+0+0+0+5+0+4=9.

 0 1 2 3 4 5 6 7 8 9
 T T C C T C C G C G

T 1 1 0 0 1 0 0 0 0 0
C 0 0 2 2 0 2 1 0 1 0
G 0 0 0 0 0 0 0 5 0 4

Figure 1. Gap constrained pattern search

We know that the array in Figure 1 is a sparse array. So
GCS must deal with much useless zero data that makes it
ineffective to compute the number of supports of a pattern. We
employ an incomplete Nettree data structure to overcome its
shortcomings and improve the effectiveness. It is necessary to
design a good data structure to speed up the calculation of the
number of supports of a pattern, in terms of the mining
efficiency.

What is more, a preferable pruning strategy also plays an
important role. As we know, the Apriori property does not hold
in our mining problem. Example 4 shows that not only the
number of supports but also the support ratio of a pattern does
not satisfy monotonicity.
Example 4. Suppose a sequence S=TCGGG, a pattern
Q=T[0,3]C and its super-pattern P=T[0,3]C[0,3]G.

We know that sup(Q,S)=1 and sup(P,S)=3. So the number
of supports of a pattern can exceed that of its sub-pattern. The
offset sequences of Q in S are <0,1>, <0,2>, <0,3>, <0,4>,
<1,2>, <1,3>, <1,4>, <2,3>, <2,4>, and <3,4>. The offset
sequences of P in S are <0,1,2>, <0,1,3>, <0,1,4>, <0,2,3>,
<0,2,4>, <0,3,4>, <1,2,3>, <1,2,4>, <1,3,4>, and <2,3,4>. So
both ofs(Q,S) and ofs(P,S) are 10. Hence r(Q, S) is less than r(P,
S). Therefore, this example shows that not only is sup(Q,S) less
than sup(P,S) but also ofs(Q,S) is less than ofs(P,S).

But luckily, Zhang et al. [20] proposed the Apriori-like
property to prune candidate patterns effectively and can get all

frequent patterns. This property means that if the support ratio
of a pattern is less than some value, all its super-patterns are not
frequent.

Lemma 1. For any length-m pattern Q and its length-(m+1)
super-pattern P, we know that sup(P)<=sup(Q)*W, where
W=N-M+1 and M and N are the minimum and maximum gap,
respectively.

Proof: Let I=<i0,i1…, ij ,… ,im-1> be a support of the
pattern Q. P has at most W supports with prefix-support I in
sequence S which are I1=<i0, i1, …, ij,…, im-1, im-1+M+1>,
I2=<i0,i1, …, ij, …, im-1，im-1+M+2>,...IW=<i0,i1, …, ij ,… , im-1，

im-1+N+1>. So sup(P)<= sup(Q)* W. Likewise, when Q is the
suffix pattern of P, we can get the same formula as above.

Theorem 1. If the support ratio of a length-m pattern Q is

less than ρ*
)1(*)1(
)1(*)1(

+−−
+−−

wmn
wdn , all its super-patterns which

contain it can be thought infrequent, where d (d>m) is the
length of the longest frequent patterns.

Proof: We know that
),(
),sup(

SQofs
SQ < ρ*

)1(*)1(
)1(*)1(

+−−
+−−

wmn
wdn .

Suppose P is a super-pattern of pattern Q with length k
(m<k<=d), then we know that ofs(Q,S)=(n-(m-1)*(w+1))*Wm-1
and ofs(P)=(n-(k-1) *(w+1))*Wk-1 according to the offset

equation. So ofs(P,S)= **
)1(*)1(
)1(*)1(mkW

wmn
wkn −

+−−
+−− ofs(Q,S).

We know that sup(P,S)<= sup(Q,S)*Wk-m according to Lemma
1. Hence sup(P,S)/ofs(P,S)<=

ρ*
)1(*)1(
)1(*)1(*

),(
),sup(

+−−
+−−

wkn
wmn

SQofs
SQ <=

ρ*
)1(*)1(
)1(*)1(*

),(
),sup(

+−−
+−−

wdn
wmn

SQofs
SQ < ρ . Therefore Theorem 1

is proved.
Definition 7. All frequent patterns with the Apriori or

Apriori-like property can be described by a tree which is called
a frequent pattern tree. The root of the tree is null. A path
from the root to a node in the tree is a frequent pattern.

Example 5. Suppose all frequent patterns of a DNA
sequence are {A, T, C, G, AA, AC, AG, TA, TT, TC, CA, CC,
CG, GA, GT , GC, GG, AGA, AGT, AGC} which can be
expressed as a frequent pattern tree as shown in Figure 2.

null

A T C G

A C G A T C A C G A T C G

A T C

Figure 2. A frequent pattern tree

4. Nettree and the algorithms

4.1. Nettree
Definition 8. A Nettree data structure is a collection of nodes.
The collection can be empty, otherwise a Nettree consists of
some distinguished nodes r1,…,rm (root), and 0 or more
non-empty subNettrees T1,T2, …, Tn, each of whose roots can
be connected by at least an edge from root ri, where 1 ≤ m,
1 ≤ n, and 1 ≤ i ≤ n. A generic Nettree is shown in Figure 3.

r1 rm…

T1 T2 Tn…

Figure 3. A generic Nettree

A Nettree is an extension of a tree because it has similar
concepts of a tree, such as the root, leaf, level, parent, child,
and so on. In order to show the differences between tree data
structure and Nettree data structure, Property 1 is given as
follows.

Property 1. A Nettree [32,33] has the following four
properties.

(1) A Nettree may have more than one root.
(2) Some nodes except roots in a Nettree may have more

than one parent.
(3) There may be more than one path from a node to a

root.
(4) Some nodes may occur more than once.
Definition 9. Given a Nettree, if the same node can occur

once or more, we use the node name to denote each of them if
each node occurs only once. Otherwise i

jn denotes node i on
the jth level if a node occurs more than once on different levels
in the Nettree [32, 33].

Example 6. Figure 4 shows a Nettree. Node 3 occurs 3
times in the Nettree. 3

1n , 3
2n and 3

3n denote node 3 on the

1st, 2nd and 3rd levels, respectively. Node 4
2n has two parents,

1
1n and 3

1n .

Figure 4. A Nettree

Definition 10. A path from a root to node i
jn is called a

root path. R(i
jn) denotes the Number of Root Paths (NRP) of

node i
jn . The NRPs of a root and a jth level node i

jn (j>1)
are 1 and the sum of the NRPs of its parents, respectively.

A pattern matching problem with gaps can be used to
construct a Nettree according to the pattern and the sequence
[32, 33]. On one hand, a Nettree can clearly express all
supports of the pattern in the sequence [32]. On the other hand,
it is easy to calculate the number of supports and find the
optimal supports under the one-off conditions [33]. An
illustrative example is shown as follows:

Example 7. Suppose pattern P = T[0,3]C and sequence
S=s0s1s2s3s4s5s6s7s8s9=TTCCTCCGCG.

Figure 5 shows a Nettree for the pattern matching problem.
The numbers in the white and grey circles are the name of a
node and its NRP, respectively. A path from a root to a 2nd
level node in the Nettree is a support of pattern P in sequence S.
For example, path (0,3) which is from node 0 in the first level
to node 3 in the second level is a support <0,3> of P in S. So a
Nettree can show all supports of P in S effectively. Hence, the
number of supports is 2+2+2+1+1=8. This is the solution of
literature [32]. However, if each position can be used no more

than once, called the one-off condition [29], supports <0,3> and
<4,5> are not the optimal supports under the one-off condition.
This instance has many optimal solutions and one of the
solutions is <0,3>, <1,5> and <4,8>. Literature [33] designed
an algorithm to find the optimal supports using Nettree.

0T 3

C 5

1 4

2 3 5 6 8

1 1 1

2 2 1 12

1st level

2nd level

Figure 5. A Nettree for P in S

Therefore, literatures [32] and [33] which deal with two
pattern matching problems use Nettree to calculate the number
of supports and find the optimal supports under the one-off
condition when pattern P and sequence S are given,
respectively. Literature [32] can be seen as calculating the
searching space of literature [33]. Whereas this study focuses
on a pattern mining problem that is to find all frequent patterns
when sequence S is given.

4.2. Algorithms
It is very easy to get a path from a node in the first level to a
node in the last level in a Nettree if a Nettree has parent-child
and child-parent relationships. A path is a support (or
occurrence) of pattern P in sequence S for the pattern matching
problem. So a Nettree has parent-child and child-parent
relationships in [32, 33]. However, we only want to know the
number of supports in the pattern mining problem. Hence it is
not necessary to store the parent-child and child-parent
relationships of the Nettree in this study. The Nettree is usually
stored in a node array and each element in the node array stores
the node name and its NRP.

Lemma 2. The sum of NRPs of the jth (1 ≤ j ≤ |P|) level
nodes is the number of supports of sub-pattern Q which is the
first j characters of pattern P.

Proof: Let Q be the first j characters of pattern P. R(i
jn) is

the number of supports of Q at position i. So the sum of NRPs
of the jth (1 ≤ j ≤ |P|) level nodes is the number of supports of Q
in S.

By Lemma 2, we know that the sum of NRPs of the first
level nodes, 1+1+1=3, is the number of supports of Prefix (P)
in S in Example 7. The sum of NRPs of the last level nodes
(2+2+2+1+1=8) is the number of supports of pattern P. It is
easily seen that the top m-1 level nodes of the Nettree of the
length-m pattern P are redundant in calculating the number of
supports of its super-pattern. So we only store the last level
nodes of the Nettree of a pattern which is called an incomplete
Nettree.

The reasons for using an incomplete Nettree to solve the
problem are as follows. (1) The incomplete Nettree only stores
useful information and avoids calculating useless data, which
makes the algorithm more effective and consumes less
memory. But in [24, 25], a two-dimensional array is used to
calculate the number of supports. So the two algorithms in [24,
25] have to deal with useless information which influences the
efficiency of mining since the array is sparse. (2) We can use
the incomplete Nettree of pattern P to construct a new
incomplete Nettree and calculate the number of supports of its
super-pattern. This can take full advantage of the previous
calculating results.

However, if we can simultaneously calculate the numbers
of supports of super-patterns with the same prefix pattern in a
one-way scan, the pattern mining algorithm will further

enhance its efficiency. For example, suppose that a pattern
P=T[0,3]C is frequent in a DNA sequence and we need to
determine whether super-patterns P1= T[0,3]C[0,3]A,
P2=T[0,3]C[0,3]T, P3=T[0,3]C[0,3]C, and P4=T[0,3]C[0,3]G
are frequent or not. It will be less effective to calculate the
numbers of supports of these four super-patterns in a four-way
scan than in a one-way scan. The principle of calculating the
numbers of supports of all super-patterns P[M, N]a (a∈ Σ) in a
one-way scan is as follows.

According to gap constraints [M, N], we create all child
nodes of node q which is a node in an incomplete Nettree of P.
If sj= Σk (q+M+1 ≤ j ≤ q+N+1, 0 ≤ k<|Σ|), we check whether
node j is a node in the incomplete Nettree of super-pattern Pk or
not. If it is not in an incomplete Nettree of Pk, we create node j
and store it in the incomplete Nettree and the NRP of node j is
the NRP of node q, otherwise we only update the NRP of node
j, making it plus the NRP of node q. So the number of supports
of super-pattern Pk is the sum of the NRPs of all nodes of the
incomplete Nettree of Pk. Hence, we can calculate the numbers
of supports of these super-patterns in a one-way scan. The
algorithm is named INSupport.

Here we employ a structure named IINettree (Information
of the Incomplete Nettree) to describe the mined pattern string,
the number of its supports and its incomplete Nettree in
INSupport. For the sake of simplicity, we use the terms pattern,
sup and INtree for short. So IINettree can be expressed as
{pattern, sup, INtree}. Due to that the representation of the
incomplete Nettree is relatively straightforward, an incomplete
Nettree is composed of a size and an array which contains
names of all nodes and their corresponding NRPs. Hence,
IINettree can again be written as {pattern, sup, {size, (name0,
NRP0), …, (namesize-1, NRPsize-1)}}. The inputs of INSupport
are P, S and INtree which is an incomplete Nettree of P. The
output of INSupport is superps which is an array of IINettree.
The size of superps is |Σ|. For example, given a sequence S=
TTCCTCCGCG and a prefix pattern P=T[0,3]C (shown in
Example 8). superps2 can be expressed as {T[0,3]C[0,3]C, 15,
{4, (3,2),(5,4),(6,6),(8,3)}} since “C” is the third letter in ∑ in a
DNA sequence. Algorithm INSupport is shown as follows.
Algorithm 1: INSupport (P,S, INtree);
Input: P, S, INtree
Output: superps
1: superps.sup=0;
2: superps.pattern= P[M, N]Σ;
3:for (i=0; i<|INtree|; i++)
4: oldnode= INtree i;
5: for (j=oldNode.name+M+1; j ≤ oldNode.name +N+1;
j++)
6: if (sj==Σk) then
7: superps k.sup +=oldnode.NRP;
8: position=search(superps k..INtree, j);
9: //The result will be -1 if j is not in superps k.INtree.
10: if (position==-1) then
11: newnode.name= j;
12: newnode.NRP=oldNode.NRP;
13: superpsk.INtreesize++ =newNode;
14: else
15: superpsk.INtreeposition.NRP+= oldNode.
NRP;
16: end if
17: end if
18: end for
19:end for
20: return superps;

The principle of MAPB is given as follows. Firstly, each
character in Σ is seen as a length-1 pattern P. We create |Σ|
incomplete Nettrees for each pattern and calculate the numbers
of their supports. Then we need to determine whether the
support ratio of each pattern is not less than
β = ρ *(n-(d-1)*(w+1))/(n-(m-1)*(w+1)) or not, where
w=(M+N)/2, d and m are the length of the longest frequent
patterns and the length of pattern P, respectively. If it is not less
than the value, pattern P and its incomplete Nettree will be
stored in a queue. After this, prefix pattern P and its incomplete
Nettree is dequeued and we need to check whether pattern P is
a frequent pattern or not. Algorithm 1 is used to calculate the
number of supports of all super-patterns with pattern P and
create |Σ| incomplete Nettrees of the super-patterns. Finally, we
check whether each super-pattern is not less than β or not. If
yes, we store it and its incomplete Nettree in the queue and then
iterate this process till the queue is empty. Apparently, this
method is a kind of Apriori-like property to prune the number
of candidate patterns and constructs the frequent pattern tree
based on BFS. The algorithm named MAPB is given as
follows.
Algorithm 2. MAPB
Input: S=s0s1…sn-1, M, N, ρ , and d, where d is the length of
the longest frequent patterns
Output: All patterns with frequency not less than ρ
1:patterns.pattern=Σ;
2:for (i=0; i<|S|; i++)
3: if (si==Σj) then
4: node.name=i;
5: node.NRP=1;
6: patternsj.INtreesize++ =node;
7: end if
8:end for
9:for (j=0; j<|Σ|; j++)
10: patternsj.sup= patternsj.INtree.size;
11: if (patternsj.sup/|S|>= ρ *(n-(d-1)*(w+1))/n)) then
meta. enqueue(patternsj);
12:end for
13:while (!meta.empty())
14: subP =meta.dequeue ();
15: P=subP.pattern;
16: INtree= subP.INtree;
17: length=|P|;
18: calculate r(P,S);
19: if (r(P,S)>= ρ) then Clength= Clength U P;
20: superps = INSupport(P,S, INtree);
21: for (j=0; j<|Σ|; j++)
22: Q= superps j. pattern;
23: calculate r (Q,S);
24: if(length+1<=d) then
25: if (r(Q,S) >= ρ *(n-(d-1)*(w+1))/
(n-length* (w+1))) then meta.enqueue(superps j);
26: else
27: if (r(Q,S) >= ρ) then
meta.enqueue(superps j);
28: end if
29: end for
30:end while
31:return C=U Ci

Although MAPB employs a pattern matching strategy
(INSupport) to calculate the numbers of supports of candidate
patterns, INSupport and the algorithm in [32] are significantly
different. The reasons are given as follows. Firstly, the
algorithm in [32] is used to calculate the number of supports for

only one pattern, while INSupport can simultaneously calculate
the numbers of supports for many patterns with a common
prefix pattern. Secondly, the algorithm in [32] does not need
any previous result to solve the problem, while INSupport
calculates the numbers of supports depending on previous
results.

MAPB stores the frequent patterns in a queue. A new
algorithm named MAPD stores the frequent patterns in a stack
and the frequent pattern tree is constructed based on DFS. We
can know that lines 11, 14, 25, and 27 of MAPD are then
modified as:
11: if (patternsj.sup/|S|>= ρ *(n-(d-1)*(w+1))/n) then
meta.Push(patternsj);
14: subPattern=meta.Pop();
25: if (r(Q,S) >= ρ *(n-(d-1)*(w+1))/(n-length*
(w+1))) then meta.Push(superpsj);
27: if (r(Q,S) >= ρ) then meta.Push(superps j);

4.3. A running example
An illustrative example is used to show how Algorithm 1
works.

Example 8. Suppose sequence S=s0s1s2s3s4s5s6s7s8s9=
TTCCTCCGCG, patterns P0= T[0,3]C[0,3]A, P1=
T[0,3]C[0,3]T, P2=T[0,3]C[0,3]C, P3=T[0, 3]C[0,3]G and the
incomplete Nettree of P=T[0,3]C which is shown in the black
frame in Figure 5.

R(node) is used to express the NRP of a node according to
Definition 10. We create child nodes of n2

2 from s3 to s6 since
gap constraints are [0, 3]. Because s3=C, P2=T[0,3]C[0,3]C and
node n3

3 is not in the incomplete Nettree of P2, we create node
n3

3 in the incomplete Nettree of P2 and R(n3
3)=R(n2

2)=2. We
create node n3

4 in the incomplete Nettree of P1 and
R(n3

4)=R(n2
2)=2. Similarly, we create nodes n3

5 and n3
6 in the

incomplete Nettree of P2, R(n3
5)= R(n3

6)= R(n2
2)=2. Then we

create child nodes of n2
3 from s4 to s7. Because s4=T and node

n3
4 is in the incomplete Nettree of P1, we update the value of

R(n3
4)= R(n3

4)+ R(n2
3)=4. Similarly, we can know that R(n3

5)=
R(n3

5)+ R(n2
3)=4, R(n3

6)= R(n3
6)+ R(n2

3)=4, and R(n3
7) =

R(n2
3)=2. Finally, we create all child nodes of node n2

5, n2
6, and

n2
8. Figure 6 shows incomplete Nettrees of P, P0, P1, P2, and P3.

It is straightforward to know that the numbers of supports of P0,
P1, P2, and P3 in S are 0, 4, 2+4+6+3=15, and 5+4=9,
respectively.

Figure 6. Incomplete Nettrees of P, P0, P1, P2, and P3

4.4. Correctness and completeness
The main difference between MAPB and MAPD is using
different strategies to create the frequent pattern tree. So we
only prove the correctness and completeness of MAPB. The
same proofs apply to the correctness and completeness of
MAPD.

Theorem 2. (Correctness of MAPB) The output of
MAPB is the frequent patterns.

Proof: We know that Algorithm 1 is correct according to
Lemma 2. So MAPB can calculate the numbers of supports of

super-patterns with prefix P correctly. Zhang et al. [20] gave
the method to calculate ofs(P,S) and proved the correctness of
the method. Therefore Theorem 2 is proved.

Theorem 3. (Completeness of MAPB) MAPB can find
all frequent patterns whose lengths are less than l2.

Proof: We know that d is less than or equal to l2 and if the

support ratio of pattern P is less than ρ*
)1(*)1(
)1(*)1(

+−−
+−−

wmn
wdn ,

all its super-patterns which contain it can be thought infrequent
according to Theorem 1, where w= (M+N)/2 and l2 =
⎣ ⎦)1/()(++ NNn and n, m, d, M, and N are the length of
sequence, the length of pattern, the length of the longest
frequent patterns, the minimum gap, and the maximum gap,
respectively. So MAPB enqueues pattern P if its support ratio

is not less than ρ*
)1(*)1(
)1(*)1(

+−−
+−−

wmn
wdn and checks whether its

super-patterns are frequent or not. Therefore all frequent
patterns can be found by MAPB. Hence Theorem 3 is proved.
Generally d is far less than l2 in our mining problem, so the
algorithms can usually find all frequent patterns in a sequence.

4.5. Complexities analysis
Both MAPB and MAPD can create the same frequent pattern
tree. So the time complexities of these two algorithms are the
same. Algorithm 1 creates the child nodes of the incomplete
Nettree of a sub-pattern. It is easy to see that the average size of
the incomplete Nettrees is n/|Σ|, where n is the length of the
sequence. Each node has W=N-M+1 children. So the time
complexity of Algorithm 1 is O(W*n/|Σ|). Algorithm 1 runs

∑ =

d
j jlen1

 times, where lenj and d are the number of length-j

frequent patterns and the length of the longest frequent pattern,
respectively. Hence the time complexities of MAPB and
MAPD are both O(∑ =

d
j jlen1

*W*n/|Σ|). However, the mining

algorithm using GCS (MGCS) creates j rows for pattern P and
|Σ| rows for all super-patterns with prefix P to calculate the
numbers of supports of these patterns. Each row has n elements
and each element is calculated W times. So the time complexity
of GCS is O((j+|Σ|)*n*W). Thus, the time complexity of MGCS
is O(∑ =

d
j jlen1

*(j+|Σ|)*n*W).

The average size of an incomplete Nettree is n/|Σ| and each
node stores its name and NRP. So the space complexity of an
incomplete Nettree is O(n/|Σ|). MAPB uses a queue and the
max size of the queue is O(|Σ|^x), where x is the position of
max lenj. So the space complexity of MAPB is O(|Σ|^(x-1)*n).
MAPD uses a stack and the max size of the stack is O(d*|Σ|).
So the space complexity of MAPD is O(d*n). We can see that
the space complexity of MGCS is O((d+|Σ|)*n). Table 2 gives a
comparison of the time and space complexities among MGCS,
MAPB, and MAPD.

Table 2. Comparison of the time and space complexities

Algorithm Time complexity Space complexity

MGCS O(∑ =

d

j jlen
1

*(j+|Σ|)*n*W) O((d+|Σ|)*n)

MAPB O(∑ =

d

j jlen
1

*W*n/|Σ|) O(|Σ|^(x-1)*n)

MAPD O(∑ =

d

j jlen
1

*W*n/|Σ|) O(d*n)

C 5 2 3 5 6 8
2 2 1 12

P

T 1 4
4

C 4 3
2

G 2 7
5

5 6 8
4 6 3

9
4

A 0P0

P1

P2

P3

2nd level

3rd level

5. Top-K mining
Both MAPB and MAPD are mining algorithms based on the
pattern matching approach to discover all possible frequent
patterns. This kind of pattern mining approach can also be
employed to find special frequent patterns effectively. For
example, when we discover thousands of frequent patterns or
more, it is difficult to use all these patterns. The most valuable
patterns are Top-K frequent patterns with various lengths and
the longest frequent patterns, where K is a specified parameter,
and this is called the Top-K mining problem.

Like Apriori, algorithm MPP-best [20] acts iteratively,
generating length-(m+1) candidate patterns using length-m
frequent patterns and verifying their supports, till there is no
candidate pattern. So it is difficult to employ this kind of
approach to construct an algorithm to solve this problem.

An easy method is to propose an algorithm which finds all
frequent patterns and sorts these patterns and then outputs the
Top-K frequent patterns to satisfy users’ needs. Another similar
method is to introduce an algorithm that checks all possible
candidate patterns and selects the Top-K frequent patterns. But
these methods take a long time to solve the Top-K mining
problem in long sequences using MAPD because many useless
frequent patterns are found or useless possible candidate
patterns are checked. To discover these patterns effectively, a
heuristic algorithm named MAPBOK is proposed. The
principle of MAPBOK is as follows.

If sub-pattern P is a Top-K length-m frequent pattern, its
super-pattern Q is a Top-K length-(m+1) frequent pattern in
high probability. Firstly, we mine the Top-(e*K) length-m
frequent patterns and output the Top-K frequent patterns, where
e is not less than 1. Then the Top-(e*K) frequent patterns are
used to mine the length-(m+1) frequent super-patterns. We
select the Top-(e*K) frequent super-patterns and iterate this
process till no new frequent patterns can be found. Apparently,
this method constructs the frequent pattern tree based on BFS.
The algorithm of MAPBOK is not given, since the change is
straightforward from MAPB.

It is easy to see that the time complexity of MAPBOK is
O(e*K*d*W*n/|Σ|) since MAPBOK runs Algorithm 1 O(e*K*d)
times. The space complexity of MAPBOK is O(e*K* n/|Σ|)
since the max size of the queue is O(e*K).

6. Performance evaluation
From Table 1 in section 2, we know that this study focuses on
the same pattern mining problem as literatures [20] and [25].
Besides, the most related issue is literature [24] in which the
problem is redefined and the Apriori property is used. Here we
call the algorithm in [24] AMIN. Therefore we present
experimental results by comparing MPP-best, MGCS, AMIN,
MAPB, and MAPD. In order to show that our algorithms are
superior to the state-of-the-art algorithms, we evaluate their
performance based on the running time and memory
requirements. For the Top-K mining problem for each length,
we pay more attention to the mining accuracy of longer
frequent patterns. Weighted accuracy can be calculated
according to the following equation.

Accuracy =)*/()*(
33 ∑∑ ==

d

i i
d

i i biai (4)

where ai, bi, and d are the numbers of correct Top-K frequent
patterns, Top-K length-i frequent patterns, and the length of the
longest frequent patterns, respectively. Generally, bi is K. But
when c is less than K, bi becomes c, where c is the number of
length-i frequent patterns.

6.1. Experimental environment and data
The data used in this paper are DNA sequences provided by the
National Center for Biotechnology Information website. Homo
Sapiens AX829174, AL158070 and AB038490 are chosen as
our test data and can be downloaded from http://www.ncbi.
nlm.nih.gov/nuccore/AX829174, http://www.ncbi.nlm.nih.gov/
nuccore/AL158070.11 and http://www.ncbi.nlm.nih.gov/
nuccore/ AB038490, respectively. The source codes of
MPP-best, MGCS, MAPB, MAPD, and MAPBOK can be
obtained from http://wuc.scse.hebut.edu.cn/msppwg/index.html.
All experiments were run on a laptop with Pentium(R)
Dual-Core T4500@ 2.30GHz CPU and 2.0 GB of RAM,
Windows 7. Java Development Kit (JDK) 1.6.0 is used to
develop all algorithms. In this study, the greatest length of
frequent patterns is considered to be 13, the minimum and
maximum gap constraints are 9 and 12, respectively and the
threshold ρ is 3*10^-5 because all these parameters were used
in [20, 24, 25]. What is more, considering that the default stack
memory of JVM is too small, we assign 1.5GB memory space
for every algorithm which is the maximal memory space of the
Java virtual machine on the laptop. Table 3 shows all the
sequences used in this paper.

Table 3. Bio-data sequences

Sequence From Length

S1 Homo Sapiens AX829174 1000
S2 Homo Sapiens AX829174 2000
S3 Homo Sapiens AX829174 4000
S4 Homo Sapiens AX829174 8000
S5 Homo Sapiens AX829174 10011
S6 Homo Sapiens AL158070 20000
S7 Homo Sapiens AL158070 40000
S8 Homo Sapiens AL158070 80000
S9 Homo Sapiens AL158070 167005
S10 Homo Sapiens AB038490 15000
S11 Homo Sapiens AB038490 30000
S12 Homo Sapiens AB038490 60000
S13 Homo Sapiens AB038490 131892

With the above presented test environment and data, Table
4 and Table 5 show the mining results and the comparison of
max size of MAPB and MAPD, respectively.

Table 4. Mining results

Sequence The length of the longest frequent patterns, the number of frequent
patterns for various lengths and total frequent patterns

S1 13, {4,16,64,256,1024,4096,13374,5678,1514,623, 242, 55, 12},
26958

S2 12, {4,16,64,256,1024,4096,15205,3436,350,85,8,3}, 24547
S3 10, {4,16,64,256,1024,4096,15965,1937,59,3}, 23424
S4 10, {4,16,64,256,1024,4096,14970,4283,241,1}, 24955
S5 10, {4,16,64,256,1024,4096,14422,4811,299,1}, 24993
S6 10, {4,16,64,256,1024,4096,12619,7068,614,8}, 25769
S7 10, {4,16,64,256,1024,4096,12388,6960,749,11}, 25568
S8 10, {4,16,64,256,1024,4096,12947,6303,666,11},25387
S9 10, {4,16,64,256,1024,4096,13438,5767,604,1}, 25270
S10 10, {4,16,64,256,1024,4096,12507,7197,563,2}, 25729
S11 11, {4,16,64,256,1024,4096,11126,7634,1164,54,1}, 25439
S12 10, {4,16,64,256,1024,4096,12799,6404,699,11}, 25373
S13 10, {4,16,64,256,1024,4096,12913,6558,672,11},25614

Table 5. Comparison of max size

Sequence Max size of MAPB Max size of MAPD

S1 14092 24
S2 15402 25
S3 16017 25
S4 15119 26
S5 14582 26
S6 12878 27
S7 12754 26
S8 / 27
S9 / 26
S10 12768 28
S11 11666 26
S12 12949 28
S13 / 28

Note: “Empty” means overflow error.

6.2. Running time evaluation
Here we compare the running time on several real DNA
fragments of different lengths (shown in Figures 7~9). It is
worth noting that the running time of MPP-best refers to the
time data on the left and the other algorithms refer to the right
because the MPP-best needs to take much time to finish the
mining task. We can analyze the running results from the
following aspects:

Homo Sapiens AX829174

0.0

400.0

800.0

1200.0

1600.0

Length

R
un

ni
ng

 ti
m

e
(s

)

0.0

20.0

40.0

60.0

80.0

MPP-best 47.0 87.2 259.7 886.1 1380.8

MGCS 6.9 11.9 22.5 48.6 61.3

AMIN 5.3 9.9 19.2 41.8 53.5

MAPB 1.3 2.5 5.1 10.5 13.7

MAPD 1.0 2.0 4.0 8.7 10.7

1000 2000 4000 8000 10011

Figure 7. Comparison of the running time on Homo Sapiens
AX829174

Homo Sapiens AL158070

0.0

10000.0

20000.0

30000.0

40000.0

Length

R
un

ni
ng

 ti
m

e
(s

)

0.0

300.0

600.0

900.0

1200.0

MPP-best 6841.0 35045.4

MGCS 129.8 257.5 510.0 1054.0

AMIN 110.8 222.1 439.7 909.8

MAPB 32.5 85.5

MAPD 25.5 53.6 111.3 246.7

20000 40000 80000 167005

Figure 8. Comparison of the running time on Sapiens
AL158070

Homo Sapiens AB038490

0.0

5000.0

10000.0

15000.0

20000.0

Length

R
un

ni
ng

 ti
m

e
(s

)

0.0

250.0

500.0

750.0

1000.0

MPP-best 3813.5 16959.9

MGCS 97.2 196.7 385.0 853.5

AMIN 83.4 167.4 329.4 732.0

MAPB 22.8 53.5 125.9

MAPD 18.8 41.2 81.0 198.0

15000 30000 60000 131892

Figure 9. Comparison of the running time on Homo Sapiens
AB038490

Note: “Empty” means overflow error.

(1) From Figures 7~9, we can see that MPP-best not only
is the slowest, but also cannot be used to find frequent patterns
in long sequences. Only MPP-best uses the left axis to show its
running time and other algorithms use the right axis to show
theirs running time. The value of the left axis is far greater than
that of the right axis. So we can easily notice that MPP-best is
the slowest. For example, MPP-best costs nearly 10 hours to
find the frequent patterns in sequence with length 40000
(shown in Figure 8), while MAPD costs no more than 1 minute.
Furthermore, we observe that the running time of MPP-best
grows faster than the length of a sequence. For example, the
data table in Figure 7 shows that the running time of MPP-best
grows about 29 times when the length of a sequence grows
about 10 times from S1 to S5. Moreover, according to the
running time in the tables of Figures 7~9, we can see that the
running time of MGCS, AMIN MAPB, and MAPD is in linear
growth with the length of a sequence. For example, when the
length of a sequence grows about 10 times from S1 to S5, theirs
running time grows about 10 times. However, if we mine
frequent patterns in long sequences using MPP-best, we will
also face the risk of out of memory when the length of a
sequence is longer than 60000. The reason is that MPP-best
employs a PIL (Partial Index List) structure which consumes
lots of memory to calculate the number of supports.

(2) It is clear that MGCS and AMIN run faster than
MPP-best according to Figures 7~9. In [25], MCPaS is about
40 times faster than MPP-best in S1 but MGCS is about 6.84
times faster than MPP-best in our experiment. The reason is
that MCPaS employs not only GCS but also an effective
pruning strategy. If both MPP-best and MCPaS employ the
same pruning strategy, MCPaS cannot be about 40 times faster
than MPP-best. AMIN is a little faster than MGCS according to
the figures. The reason is that AMIN redefines the issue and
can use Apriori property which is a more effective pruning
strategy than Apriori-like property. AMIN is a kind of
approximate algorithm and [24] detailed the difference between
the approximate solutions and the accurate solutions. Moreover,
both MGCS and AMIN can be used to mine in long sequences.
The reason is that MGCS and AMIN use pattern matching
approaches to calculate the number of supports for each
candidate pattern. And this kind of approach consumes less
memory than MPP-best.

(3) Both MAPB and MAPD run faster than MPP-best and
MGCS although they employ the same pruning strategy.
MAPD runs about 45 and 128 times faster than MPP-best in S1
and S5, respectively. And MAPD runs about 5 times faster than
MGCS in all sequences. So does MAPB. Hence these two

algorithms are better than their peers because they avoid an
amount of duplicated calculations.

(4) The running time of MAPB and MAPD should be
consistent but actually MAPD runs faster than MAPB because
MAPB consumes too much memory, which can influence the
mining efficiency. The main reason is that the size of the
maximum width of the frequent pattern tree is far greater than
its maximum depth according to Table 5. So the max size of the
queue is far greater than that of the stack. Therefore MAPB
consumes much more memory than MAPD to solve the
problem. Hence, MAPD is faster than MAPB and more suitable
for the long-sequence mining problem.

(5) We can observe that MAPD can be used to mine
frequent pattern in long sequences, while MAPB can not. For
example, when the length of a sequence reaches 80000, MAPD
can smoothly finish the mining task while MAPB leads to
memory-overflow error. Hence it can be concluded that MAPB
consumes more memory space than MAPD and it is more
desirable to employ DFS to construct the frequent pattern tree.

(6) From Table 4, we can calculate ∑ =
d
j jlen1

*(j+|Σ|) and

∑ =

d
j jlen1

, where d and Lenj are the maximum length of

frequent patterns and the number of the length-j frequent
patterns, respectively. For example, ∑ =

d
j jlen

1
* (j+|Σ|) and

∑ =

d
j jlen1

 in S1 are 274198 and 26958, respectively. The time

complexities of MGCS and MAPD are O(∑ =

d
j jlen1

(j+|Σ|)

W*n) and O(∑ =

d

j jlen
1

* W*n/|Σ|), respectively. The running

times of MGCS and MAPD in S1 are 6864ms and 1031ms,
respectively, combined with the above analysis, MAPD should
be about 274198/26958 *4≈40 times faster than MGCS. But
MAPD is actually about 6864/1031≈6.65 times faster than
MGCS. This is due to the fact that MGCS is easier to realize.
Thus it also verifies the correctness of the time complexity
analysis of MGCS and MAPD.

(7) From Tables 4 and 5, we can observe that the max size
of the queue is slightly greater than the max number of frequent
patterns for various lengths, because MAPB employs BFS to
construct the frequent pattern tree. The max size of the stack is
less than d*|Σ|, because MAPD employs DFS to construct the
frequent pattern tree, where d means the max length of frequent
patterns. For example, the number of length-7 frequent patterns
is 15205 and the max size of queue is 15402 in S2 and the max
size of stack is 24 which is less than 13*4=52 in S1.

Both MGCS and AMIN which consume less memory can
be used to find frequent patterns in long sequences because the
two algorithms calculate the number of supports for each
pattern without using the previous results. MAPB can not be
used to discover frequent patterns in long sequences, but it can
avoid an amount of duplicated calculations using the previous
results. MAPD not only can avoid an amount of duplicated
calculations, but also consumes less memory. So MAPD is the
fastest algorithm and can be used in long sequences. Therefore
MAPD is superior to the state-of-the-art algorithms. Based on
MAPB we propose a heuristic algorithm named MAPBOK. We
will show the performance of MAPBOK in the next subsection.

6.3. Top-K mining evaluation
In order to illustrate how e, K and the length of a sequence
affect the running time of MAPBOK, the results of various
sequences mined with different e, K and the lengths of the
sequences are shown in Figures 10~18.

The running time for Top-10 Mining on AX829174

0
50

100
150
200
250
300
350
400

1000 2000 4000 8000 10011
Length

R
un

ni
ng

 ti
m

e
(m

s)

e=1 e=1.5 e=2 e=3

Figure 10. The running time for Top-10 Mining on AX829174

The running time for Top-10 Mining on AL158070

0

2000

4000

6000

8000

10000

12000

20000 40000 80000 167005
Length

R
un

ni
ng

 ti
m

e
(m

s)

e=1 e=1.5 e=2 e=3

Figure 11. The running time for Top-10 Mining on AL158070

The running time for Top-10 Mining on AB038490

0

2000

4000

6000

8000

10000

15000 30000 60000 131892
Length

R
un

ni
ng

 ti
m

e
(m

s)

e=1 e=1.5 e=2 e=3

Figure 12. The running time for Top-10 Mining on AB038490

The running time for Top-30 Mining on AX829174

0

200

400

600

800

1000

1000 2000 4000 8000 10011
Length

R
un

ni
ng

 ti
m

e(
m

s)

e=1 e=1.5 e=2 e=3

Figure 13. The running time for Top-30 Mining on AX829174

The running time for Top-30 Mining on AL158070

0

5000

10000

15000

20000

25000

20000 40000 80000 167005
Length

R
un

ni
ng

 ti
m

e(
m

s)

e=1 e=1.5 e=2 e=3

Figure 14. The running time for Top-30 Mining on AL158070

The running time for Top-30 Mining on AB038490

0

3000

6000
9000

12000

15000
18000

21000

15000 30000 60000 131892
Length

R
un

ni
ng

 ti
m

e(
m

s)

e=1 e=1.5 e=2 e=3

Figure 15. The running time for Top-30 Mining on AB038490

The running time for Top-50 Mining on AX829174

0
200
400
600
800

1000
1200
1400

1000 2000 4000 8000 10011

Length

R
un

ni
ng

 ti
m

e(
m

s) e=1 e=1.5 e=2 e=3

Figure 16. The running time for Top-50 Mining on AX829174

The running time for Top-50 Mining on AL158070

0
5000

10000
15000
20000
25000
30000
35000
40000

20000 40000 80000 167005
Length

R
un

ni
ng

 ti
m

e(
m

s)

e=1 e=1.5 e=2 e=3

Figure 17. The running time for Top-50 Mining on AL158070

The running time for Top-50 Mining on AB038490

0

5000

10000

15000

20000

25000

30000

15000 30000 60000 131892
Length

R
un

ni
ng

 ti
m

e(
m

s)

e=1 e=1.5 e=2 e=3

Figure 18. The running time for Top-50 Mining on AB038490

From the above figures, we can clearly observe that the
longer the sequence is, the greater e and K are, and the longer
the running time is.

(1) It is found that the running time approximately grows
in a linear way with the length of a sequence. For example, the
running time grows about 10 times while the length of a
sequence grows from 1000 to 10011 no matter what e is in
Figure 10.

(2) Obviously, the greater e is, the running time is longer
for every sequence. Taking the length-131892 sequence on
AB038490 in Figure 15 for example, the running times are
about 9000, 12000, 15000, and 20000 ms when e are 1, 1.5, 2,
and 3, respectively. However, we find that when e increases
from 1 to 3, the running time is less than three times. This is no

surprise because the number of candidate patterns is invariable
when the length of frequent patterns is shorter or longer. For
example, the number of length-2 candidate patterns is 16 no
matter what e and K are. So the running time grows less than
three times when e changes from 1 to 3.

(3) Of course K also has an important effect on the
running time. The running time will be longer as K is greater
because the number of candidate patterns is also increasing. We
can clearly see that with regard to the same sequence and e in
Figures 10, 13 and 16, the running time for the Top-10 mining
in Figure10 is the shortest, the Top-30 mining in Figure13 takes
second place and the Top-50 mining in Figure 16 needs the
longest time. The other figures also show the same
phenomenon. Likewise, we can observe that the running time is
less than 5 times when K increases from 10 to 50. The reason is
extremely similar to e in (2) and we will not elaborate it again
here.

Therefore, these phenomena are consistent with the time
complexity of MAPBOK O(e*K*d*W*n/|Σ|) mentioned above
and validate the correctness of the analysis of time complexity
of MAPBOK.

Figures 19~27 show how e, K and the length of a sequence
affect the accuracy of MAPBOK.

The accuracy for Top-10 Mining on AX829174

0

0.2

0.4

0.6

0.8

1

1.2

1000 2000 4000 8000 10011
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2 e=3

Figure 19. The accuracy for Top-10 Mining on AX829174

The accuracy for Top-10 Mining on AL158070

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

20000 40000 80000 167005
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2 e=3

Figure 20. The accuracy for Top-10 Mining on AL158070

The accuracy for Top-10 Mining on AB038490

0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

15000 30000 60000 131892
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2 e=3

Figure 21. The accuracy for Top-10 Mining on AB038490

The accuracy for Top-30 Mining on AX829174

0.5

0.6

0.7

0.8

0.9

1

1.1

1000 2000 4000 8000 10011
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2 e=3

Figure 22. The accuracy for Top-30 Mining on AX829174

The accuracy for Top-30 Mining on AL158070

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

20000 40000 80000 167005
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2 e=3

Figure 23. The accuracy for Top-30 Mining on AL158070

The accuracy for Top-30 Mining on AB038490

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

15000 30000 60000 131892
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2 e=3

Figure 24. The accuracy for Top-30 Mining on AB038490

The accuracy for Top-50 Mining on AX829174

0.5

0.6

0.7

0.8

0.9

1

1.1

1000 2000 4000 8000 10011
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2 e=3

Figure 25. The accuracy for Top-50 Mining on AX829174

The accuracy for Top-50 Mining on AL158070

0.94
0.95
0.96

0.97
0.98
0.99

1
1.01

20000 40000 80000 167005
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2 e=3

Figure 26. The accuracy for Top-50 Mining on AL158070

The accuracy for Top-50 Mining on AB038490

0.94

0.95

0.96

0.97
0.98

0.99

1

1.01

15000 30000 60000 131892
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2 e=3

Figure 27. The accuracy for Top-50 Mining on AB038490

(4) According to Figures 19, 22 and 25, we find that the
accuracy of MAPBOK is low in short sequences no matter
what e and K are. The accuracy can sometimes be less than 0.5
when both e and K are very small. But meanwhile MAPD can
get the Top-K patterns precisely in a short time. For example, it
takes about 10 seconds to solve the Top-K problem in S5 with
length 10011. For longer sequences, we can observe that the
lowest accuracy for MAPBOK is more than 0.94 and,
compared with MAPD, the running time is much less. When e
and K are larger, the performance is more prominent. For
example, the average accuracy from S6 to S13 of MAPBOK is
0.995 and the average running time is about 23 times faster
than that of MAPD in the case of K=30 and e=1.5. So in terms
of the Top-K mining problem it can be concluded that
MAPBOK is more suitable for long sequences and MAPD
suitable for shorter sequences. The main reason for this
situation is that frequent patterns may change easily when
sequences are short and it is not easy to change frequent
patterns when sequences are long.

(5) From the accuracy results of every sequence, it can be
clearly observed that e is an important factor to improve
accuracy. Accuracy will be higher and can even reach 100%
when e is bigger. We use average accuracy to reflect the effect.
Taking the Top-30 mining from S6 to S13, for example, when
e=1 the average accuracy of MAPBOK is 0.977 and when e=2
the average accuracy reaches 0.997. This can self-evidently be
attributed to more generated candidate patterns. Although with
e being greater the running time is also growing (here the
average running time grows about 0.67 times) because more
patterns need to be checked, it is still much less than that of
MAPD. Hence, it is preferable to suitably increase e in order to
improve accuracy. According to Figures 20, 21, 23, 24, 26, and
27, when the length of a sequence is equal to or greater than
15000, e=1.5 or e=2 can achieve a satisfying accuracy.

(6) As we know, the larger e and K are, the number of
candidate patterns is bigger. So K has the same effect on
accuracy as e. Accuracy will be higher when K is bigger
according to Figures 20, 21, 23, 24, 26, and 27.

7. Conclusions
In this paper, we propose two new effective pattern mining
algorithms, MAPB and MAPD, to find frequent patterns with
periodic wildcard gaps. A pattern matching approach is used to
calculate the number of supports of a pattern in the given
sequence and determine whether the pattern is frequent or not.
MAPB and MAPD store frequent patterns and their incomplete
Nettrees in a queue and a stack, respectively. Experimental
results validate that both MAPB and MAPD are superior to the
state-of-the-art algorithms and MAPD achieves better
performance than MAPB. So MAPD can be used to discover
all frequent patterns in long sequences. However, it takes a

long time to solve the Top-K frequent patterns for each length
in long sequences using MAPD. We furthermore propose a
heuristic algorithm, named MAPBOK based on MAPB, which
can accelerate the mining speed and achieve high accuracy.

Acknowledgments
This research is supported by the National Natural Foundation
of China under grants No. 61229301, 61170190, and 61370144,
the Natural Science Foundation of Hebei Province of China
under grant No. F2013202138, and the Key Project of the
Educational Commission of Hebei Province under grant No.
ZH2012038.

References
[1] Kang U, Tsourakakis CE, Appel AP, Faloutsos C,

Leskovec J (2011). Hadi: Mining radii of large graphs.
ACM Transactions on Knowledge Discovery from Data
(TKDD), 5(2): Article NO. 8

[2] Zheng YT, Zha ZJ, Chua TS (2012) Mining travel patterns
from geotagged photos. ACM Transactions on Intelligent
Systems and Technology (TIST), 3(3): Article No. 56

[3] Liu YH (2013) Stream mining on univariate uncertain data.
Applied Intelligence, 39(2): 315-344

[4] Agrawal R, Srikant R (1995) Mining sequential patterns.
In: Proceedings of International Conference on Data
Engineering, San Jose, CA, pp 3-14

[5] Mooney CH, Roddick JF (2013) Sequential pattern mining
- approaches and algorithms. ACM Computing Surveys,
45(2): Article No. 19

[6] Li Z, Han J, Ji M, Tang LA, Yu Y, Ding B, Lee JG, Kays
R (2011) MoveMine: Mining moving object data for
discovery of animal movement patterns. ACM
Transactions on Intelligent Systems and Technology
(TIST), 2(4): Article No. 37

[7] Wu SY, Yen E (2009) Data mining-based intrusion
detectors. Expert Systems with Applications, 36(3-1):
5605-5612.

[8] Huang TCK (2012) Mining the change of customer
behavior in fuzzy time-interval sequential patterns.
Applied Soft Computing, 12(3): 1068-1086

[9] Liao VCC, Chen MS (2013) DFSP: a Depth-First SPelling
algorithm for sequential pattern mining of biological
sequences. Knowledge and Information Systems.
Published online: 26 January.

[10] Hu YH, Chen YL, Tang K. Mining sequential patterns in
the B2B environment. Journal of Information Science.
2009, 35(6): 677-694

[11] Shie BE, Yu PS, Tseng VS (2013) Mining interesting user
behavior patterns in mobile commerce environments.
Applied Intelligence, 38 (3): 418-435

[12] Yin J, Zheng Z, Gao L (2012) USpan: An Efficient
Algorithm for Mining High Utility Sequential Patterns. In:
Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Beijing, China, pp 660-668

[13] Zhu F, Qu Q, Lo D, Yan X, Han J, Yu PS (2011) Mining
Top-K Large Structural Patterns in a Massive Network.
Proceedings of the VLDB Endowment, 4(11): 807-818

[14] Wu C, Shie BE, Yu PS, Tseng VS (2012) Mining Top-K
high utility itemsets. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, Beijing, China, pp 78-86

[15] Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U,
Hsu M (2001) PrefixSpan: Mining sequential patterns
efficiently by prefix-projected pattern growth. In:
Proceedings of International Conference on Data
Engineering, Heidelberg, Germany, pp 215-224

[16] Rasheed F, Alhajj R (2010) STNR: A suffix tree based
noise resilient algorithm for periodicity detection in time
series databases. Applied Intelligence, 32(3): 267-278

[17] Wang YT, Cheng JT (2011) Mining periodic movement
patterns of mobile phone users based on an efficient
sampling approach. Applied Intelligence, 35(1): 32-40

[18] Yen SJ, Lee YS (2012) Mining time-gap sequential
patterns. In: 25th International Conference on Industrial
Engineering and Other Applications of Applied Intelligent
Systems, Dalian, China, 7345: 637-646

[19] Yen SJ, Lee YS (2013) Mining non-redundant time-gap
sequential patterns. Applied Intelligence, 39(4): 727-738

[20] Zhang M, Kao B, Cheung DW, Yip KY (2007) Mining
periodic patterns with gap requirement from sequences.
ACM Transactions on Knowledge Discovery from Data,
1(2): Article No. 7

[21] Ji X, Bailey J, Dong G (2007) Mining minimal
distinguishing subsequence patterns with gap constraints.
Knowledge and Information Systems, 11(3): 259-286.

[22] Li C, Wang J (2008) Efficiently mining closed
subsequences with gap constraints. In: SIAM International
Conference on Data Mining, Georgia, USA, pp 313-322

[23] Li C, Yang Q, Wang J, Li M (2012) Efficient mining of
gap-constrained subsequences and its various applications.
ACM Transactions on Knowledge Discovery from Data,
6(1): Article No. 2

[24] Min F, Wu Y, Wu X (2012) The Apriori property of
sequence pattern mining with wildcard gaps. International
Journal Functional Informatics and Personalised Medicine.
4(1): 15–31

[25] Zhu X, X. Wu (2007) Mining complex patterns across
sequences with gap requirements. In: Proceedings of the
20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, pp 2934-2940

[26] He Y, Wu X, Zhu X, Arslan AN (2007) Mining frequent
patterns with wildcards from biological sequences. In:
IEEE International Conference on Information Reuse and
Integration, Las Vegas, USA, pp 329-334

[27] Xie F, Wu X, Hu X, Gao J, Guo D, Fei Y, Hua E (2010)
Sequential pattern mining with wildcards. Proceedings of
the 22nd International Conference on Tools with Artificial
Intelligence, Arras, France, pp 241-247

[28] Guo D, Hu X, Xie F, Wu X (2013) Pattern matching with
wildcards and gap-length constraints based on a centrality-
degree graph. Applied Intelligence, 39(1): 57-74

[29] Chen G, Wu X, Zhu X, Arslan AN, He Y (2006) Efficient
string matching with wildcards and length constraints,
Knowledge and Information Systems. 10(4): 399-419

[30] Ding B, Lo D, Han J, Khoo SC (2009) Efficient mining of
closed repetitive gapped subsequences from a sequence
database. In: Proceedings of Conference on Data
Engineering, Shanghai, China, pp 1024-1035

[31] Ahmed CF, Tanbeer SK, Jeong BS, Lee YK (2011)
HUC-Prune: an efficient candidate pruning technique to
mine high utility patterns. Applied Intelligence, 34(2):
181-198

[32] Wu Y, Wu X, Min F, Li Y (2011) A Nettree for pattern
matching with flexible wildcard constraints. In:
Proceedings of the 2010 IEEE International Conference on
Information Reuse and Integration, Las Vegas, USA, pp
109-114

[33] Wu Y, Wu X, Jiang H, Min F (2011) A Nettree for
approximate maximal pattern matching with gaps and
one-off constraint. In: Proceedings of the 22nd

International Conference on Tools with Artificial
Intelligence, Arras, France, pp 38-41

