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 Abstract  Mining frequent patterns with periodic 
wildcard gaps is a critical data mining problem to deal 
with complex real-world problems. This problem can be 
described as follows: given a subject sequence, a 
pre-specified threshold, and a variable gap-length with 
wildcards between each two consecutive letters. The task 
is to gain all frequent patterns with periodic wildcard 
gaps. State-of-the-art mining algorithms which use 
matrix or other linear data structures to solve the problem 
not only consume a large amount of memory but also run 
slowly. In this study, we use an Incomplete Nettree 
structure (the last layer of a Nettree which is an 
extension of a tree) of a sub-pattern P to efficiently 
create Incomplete Nettrees of all its super-patterns with 
prefix pattern P and compute the numbers of their 
supports in a one-way scan. We propose two new 
algorithms, MAPB (Mining sequentiAl Pattern using 
incomplete Nettree with Breadth first search) and MAPD 
(Mining sequentiAl Pattern using incomplete Nettree 
with Depth first search), to solve the problem effectively 
with low memory requirements. Furthermore, we design 
a heuristic algorithm MAPBOK (MAPB for tOp-K) 
based on MAPB to deal with the Top-K frequent patterns 
for each length. Experimental results on real-world 
biological data demonstrate the superiority of the 
proposed algorithms in running time and space 
consumption and also show that the pattern matching 
approach can be employed to mine special frequent 
patterns effectively. 
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1. Introduction  
Pattern mining plays an essential role in many critical data 
mining tasks, such as graph mining [1], spatiotemporal data 
mining [2], and univariate uncertain data streams [3]. 
Sequential pattern mining, first introduced by Agrawal and 
Srikant [4], is a very important data mining problem [5] with 
broad applications including analyzing moving object data [6], 
detecting intrusion [7], and discovering changes in customer 
behaviour [8] etc. In order to solve the specific applications, 
researchers have also proposed some special approaches. For 
example, Liao and Chen [9] proposed a Depth-First SPelling 
algorithm for mining sequential patterns in long biological 
sequences. To avoid producing a large number of uninteresting 
and meaningless patterns, Hu et al. [10] proposed an algorithm 
which considers compactness, repetition, recency and 
frequency jointly to select sequential patterns and it is efficient 
in the business-to-business environment. Shie et al. [11] 
proposed an efficient algorithm named IM-Span to mine user 
behaviour patterns in mobile commerce environments. Yin et al. 
[12] proposed an efficient algorithm USpan for mining 
high-utility sequential patterns. Zhu et al. [13] proposed an 
efficient algorithm Spider-Mine to mine the Top-K largest 
frequent patterns from a single massive network with any 
user-specified probability. Wu et al. [14] proposed a novel 
framework for mining the Top-K high-utility itemsets. 
Classical sequential pattern mining algorithms include GSP [4] 
and Prefix Span [15]. 

Researchers have recently focused on periodic detection 
[16] and mining frequent patterns with periodic wildcard gaps 
[17], since this kind of pattern can flexibly reflect sequential 
behaviours and is often exhibited in many real-world fields. For 
example, in business, retail companies may want to know what 
products customers will usually purchase at regular time 
intervals rather than in continuous time according to time gaps. 
So managers can adjust marketing methods or strategies and 
improve sales profit [18, 19]. In biology, periodic patterns are 
redeemed as having significant biological and medical values. 
Considering that genes and proteins both contain many 
repetitive fragments, many periodic patterns of different 
lengths and types can therefore be found. Some of the patterns 
with excessively high frequency have been determined as the 
suspected cause of some diseases [20, 21]. In data mining, 
researchers found that some frequent periodic patterns can be 
used in feature selection for the purpose of classification and 
clustering [22, 23]. So an extraordinary task is how to mine all 
these frequent patterns and the Top-K patterns for each length 
from a mass of data to improve its efficiency in each 
application field. 

In this study, we focus on mining frequent patterns with 
periodic wildcard gaps. This problem can be described as 
follows: given a subject sequence, a pre-specified threshold, 
and a variable gap-length with wildcards between each two 
consecutive letters. Our goal is to gain all frequent patterns 
with periodic wildcard gaps and the Top-K frequent patterns for 
each length. The pattern with periodic wildcard gaps means 
that all these wildcard gap constraints are the same. For 
example, pattern P1=p0[min0, max0]p1[min1, max1]p2 =A[0, 



2]T[0, 2]G is a pattern with periodic wildcard gaps since 
min0=min1=0 and max0=max1 =2. We can easily know that both 
patterns P2=p0[min0, max0]p1[min1, max1]p2=A[1,2]T[0,2]G 
and P3=p0[min0, max0]p1[min1, max1]p2=A[0,3]T[0,2]G are not 
patterns with periodic wildcard gaps since the wildcard gaps 
between letters are not completely the same. 

In existing work, a series of algorithms had been proposed 
on the pattern mining with flexible wildcards, as detailed in 
Sect. 2. But all these state-of-the-art mining algorithms use a 
matrix or other linear data structure to solve the problem and 
consume a large amount of memory and run slowly [20, 24, 25]. 
It is also very difficult to mine frequent patterns in long 
sequences. Therefore, we propose two more efficient mining 
algorithms by using an incomplete Nettree structure and can get 
all frequent patterns in a shorter time with less memory space. 
In addition, we also design a heuristic algorithm to gain the 
Top-K frequent patterns for each length effectively. The 
contributions of this paper are described specifically as follows: 

 We propose an incomplete Nettree structure (see Part 4.2) 
which can be used to compute the numbers of supports of 
those super-patterns in a one-way scan. 

 We design two algorithms named MAPB (Mining 
sequentiAl Pattern using incomplete Nettree with Breadth 
first search) and MAPD (Mining sequentiAl Pattern using 
incomplete Nettree with Depth first search) to solve the 
problem effectively with low memory requirements. 
Experiments on real-world bio-data show that MAPD is 
much faster than MAPB and can be employed to mine 
frequent patterns in long sequences.  

 Furthermore, a heuristic algorithm named MAPBOK 
(MAPB for tOp-K) which is designed based on MAPB is 
presented to solve the Top-K mining problem, although 
MAPB is slower than MAPD. This algorithm can 
efficiently get the Top-K frequent patterns for each length 
without having to sort all frequent patterns or to check all 
possible candidate patterns. 

The paper is organized as follows. Section 2 reviews 
related work. Section 3 presents the problem definition and 
preliminaries. Section 4 introduces Nettree and the incomplete 
Nettree structure and then proposes the MAPB and MAPD 
algorithms. The analysis of the time and space complexities of 
these two algorithms and an illustrative example are also shown 
in section 4. Section 5 proposes a heuristic algorithm to find the 
Top-K frequent patterns for each length and the longest 
frequent patterns. Section 6 reports comparative studies and 
Section 7 concludes the paper. 

2. Related work 
We discuss the existing work from the following features: 

(1) Pattern P has many wildcard gap constraints. In some 
studies the gap constraints can be different [26]. But in this 
paper all these wildcard gap constraints are the same. The 
pattern is called a pattern with periodic wildcard gaps.  

(2) In some studies, only one or two positions of the given 
sequence are considered [23], whereas we consider that a group 
of positions are used to denote a support of a pattern in the 
given sequence. This means that each position pj should be 
considered. For example, for a given sequence S=s0s1s2s3s4s5= 
AATTGG and a pattern P=p0[min0, max0]p1[min1, 
max1]p2=A[0,2]T[0,2]G, <0, 2, 4> is a support of P in S due to 
the fact that s0=p0=A, s2=p1=T, and s4=p2=G. So it is easy for 
us to know that there are 2*2*2=8 supports in the problem.  

(3) Each position can be used many times in this study. In 
the literature [26-28] each position in the sequence can be used 
at most once, which is called the one-off condition first 

introduced by Chen et al. [29]. Under the one-off condition 
there are only two supports of P=A[0,1]T[0,1]G in 
S=s0s1s2s3s4s5=AATTGG which are <0, 2, 4> and <1, 3, 5>. 
Another kind of study is under the non-overlapping condition 
[30]. For instance, given S1=s0s1s2s3s4 =ATATA and 
P1=A[0,1]T[0,1]A, it is easy to know that <0, 1, 2> and <2, 3, 
4> are two supports of P1 in S1. We notice that position 2 is 
used twice in <0, 1, 2> and <2, 3, 4>, but position 2 does not 
appear at the same indication of the supports. Hence <0, 1, 2> 
and <2, 3, 4> are two supports of P1 in S1 under the 
non-overlapping condition rather than the one-off condition. 
But in this study, we do not have these kinds of constraints.  

(4) In the literature [26, 27, 30] it is shown that the Apriori 
property can be used to prune candidate patterns if the 
sequential pattern mining has the one-off condition or the 
non-overlapping condition, since the number of supports of any 
super-pattern is less than that of its sub-patterns under these 
conditions. So if a pattern is not frequent, all its super-patterns 
are not frequent. Whereas the Apriori property does not hold in 
our mining problem, since the number of supports (even 
support ratio) of a super-pattern can be greater than that of its 
sub-patterns. To reduce redundant candidate patterns, the 
Apriori-like property was proposed [20]. The property can be 
described as that all super-patterns are not frequent if the 
support ratio of a pattern is less than a value which is less than 
the given threshold. 

(5) Generally, pattern mining algorithms can find all 
frequent patterns whose number of supports is not less than the 
given threshold. However, it is not easy for users to use the 
frequent patterns when they face thousands of patterns or more. 
In some cases, parts of the duplicated frequent patterns need to 
be removed to prune the uninteresting patterns because these 
patterns and their super-patterns have the same number of 
supports. This is called closed frequent patterns. Moreover, 
some issues focus on the Top-K mining problem [13, 14, 31] 
since the Top-K frequent patterns are more useful than other 
frequent patterns. 

Mining frequent patterns with periodic wildcard gaps 
essentially relies on a counting mechanism to calculate the 
number of supports (or occurrences) of a pattern and then 
determine whether the pattern is frequent or not. However, on 
one hand, the number of supports generally grows 
exponentially with the length of the checked patterns. On the 
other hand, both the number of supports and support ratio do 
not satisfy monotonicity and the Apriori property cannot be 
used to reduce the size of the set of candidate patterns. Thus it 
is infeasible for traditional algorithms to solve this problem. 
Researchers have explored several major approaches to 
untangle this hard problem: (1) The set of length-m candidate 
patterns is used to generate a set of length-(m+1) candidate 
patterns. Then select frequent patterns from the set of candidate 
patterns and iterate this process till it is done [20, 22, 23]. (2) 
The Apriori-like property is employed to reduce the size of the 
set of candidate patterns [20]. (3) Min et al. [24] redefined the 
problem of [20] and the support ratio is monotonous in the new 
definitions. So the Apriori property can be used. (4) Pattern 
matching techniques are used to calculate the numbers of 
supports of patterns in the given sequence to find frequent 
patterns [24, 25]. 

Table 1 shows a comparison of related work.  
 
 



Table 1. Comparison of related work 

Algorithms Periodic wildcard gaps Apriori property Occurrences Output patterns 
He et al. [26] No Apriori One-off All frequent patterns 
Ding et al. [30] No Apriori Non-overlap All/closed frequent patterns 
Xie et al. [27] Yes Apriori One-off All frequent patterns 
Li et al. [23] Yes Apriori First-last Closed/long frequent patterns 
Ji et al. [21] Yes Apriori-like All Minimal distinguishing subsequence patterns 
Min et al. [24] Yes Apriori All All frequent patterns 
Zhang et al. [20] Yes Apriori-like All All frequent patterns 
Zhu and Wu [25] Yes Apriori-like All All frequent patterns 
This paper Yes Apriori-like All All/Top-K frequent patterns for each length 
 
In Table 1, Zhang et al. [20] studied the problem of mining 
frequent patterns with periodic wildcard gaps in a genome 
sequence and proposed the MPP algorithm based on the 
Apriori-like property which employed an effective pruning 
mechanism to reduce the size of the set of candidate patterns. 
Min et al. [24] redefined the issue of [20] and the Apriori 
property can become available. The mining algorithm uses a 
pattern matching approach to calculate the number of supports 
(or occurrences) of a pattern in the given sequence. Zhu and 
Wu [25] explored the MCPaS algorithm to discover frequent 
patterns with periodic wildcard gaps from multi-sequences. The 
proposed Gap Constrained Search (GCS) algorithm used a 
sparse array to calculate the number of supports of a pattern. Ji 
et al. [21] proposed an algorithm to mine all minimal 
distinguishing subsequences satisfying the minimum and 
maximum gap constraints and a maximum length constraint. Li 
et al. [23] proposed Gap-BIDE to discover the complete set of 
closed sequential patterns with gap constraints, and 
Gap-Connect to mine the approximate set of long patterns. 
They further explored several feature selection methods from 
the set of gap-constrained patterns on the issue of classification 
and clustering. A triple (bP, eP, count) was used to represent a 
set of supports of a pattern which share the same beginning 
position and ending position, where bP, eP, and count are the 
beginning position of the supports in the sequence, the ending 
position of the supports in the sequence, and the total number 
of supports, respectively. Xie et al. [27] and He et al. [26] both 
studied the problem of mining frequent patterns under the 
one-off condition which can greatly improve the time 
performance. In [27], the MAIL algorithm employing the 
left-most and the right-most pruning methods is designed to 
find frequent patterns with periodic wildcard gaps. In [26], two 
heuristic algorithms, namely one-way scan and two-way scan, 
are proposed to mine all frequent patterns. Ding et al. [30] 
studied the repetitive gapped subsequence mining problem and 
focused on mining closed frequent patterns with 
non-overlapping supports. 

According to Table 1, we can see that studies [20, 24, 25] 
are the most closely related with our study. The support ratio is 
used to determine whether a pattern is frequent or not in this 
kind of issue and a pattern and its super-patterns generally have 
different support ratios. So we pay more attention to mining all 
frequent patterns rather than closed frequent patterns. Whereas 
the algorithm in [20] is less effective to mine all frequent 
patterns, especially in long sequences. Moreover, traditional 
Top-K mining studies such as Zhu et al. [13] and Wu et al. [14] 
focus on mining the Top-K frequent patterns in all frequent 
patterns. But those strategies are invalid when users are 
interested in the Top-K frequent patterns with length t (1<=t 
<=m and m is the length of the longest frequent patterns). For 
example, suppose the length of the longest frequent patterns is 
10 and the numbers of frequent patterns for various lengths are 
4, 16, 64, 256, 1024, 4096, 13438, 5767, 604, and 1, 
respectively. Users may be interested in the Top-10 frequent 
patterns with length 8 and the Top-10 frequent patterns with 

length 9. But the traditional Top-K mining algorithm can only 
find the Top-10 frequent patterns in all frequent patterns. 
Therefore, more effective mining algorithms especially in long 
sequences and mining the Top-K frequent patterns for each 
length are worth exploring. 

3. Problem definition and preliminaries 
We first give some definitions related with the proposed 
methods. 

Definition 1. S=s0 ... si ... sn-1 is called a subject sequence, 
where si ∑∈  is a symbol and n is the length of S. ∑ can be a 
different symbol set in different applications and the size of ∑ 
is denoted by |∑|. In a DNA sequence, ∑={A,T,C,G } and 
|∑|=4. 

Definition 2. P=p0[min0,max0]p1 ... [minj-1,maxj-1] pj ... 
[minm-2,maxm-2] pm-1 is a pattern, where pj ∑∈ , m is the length 
of P, minj-1 and maxj-1 are integer numbers and 0≤minj-1 ≤maxj-1. 
minj-1 and maxj-1 are gap constraints, presenting the minimum 
and maximum number of wildcards between two consecutive 
letters pj-1 and pj, respectively. If min0= min1 =… = minm-2=M 
and max0= max1 =… = maxm-2 =N, pattern P is called a pattern 
with periodic wildcard gaps. For example, A[1,3]C[1,3]C is a 
pattern with periodic wildcard gaps [1,3] . 

Definition 3. If a sequence of indices D=<d0, d1, …, dm-1 > 
is subject to M≤dj-dj-1-1≤N (1≤j≤m-1), D is an offset sequence 
of P with periodic wildcard gaps [M, N] in S. The number of 
offset sequences of P in S is denoted by ofs(P, S). 

Definition 4. If an offset sequence I=<i0,… ,ij ,… ,im-1 > is 
subject to ji ps

j
=  (0≤j≤m-1 and 0≤ij≤n-1), I is a support (or 

occurrence) of P in S. The number of supports of P in S is 
denoted by sup(P, S).  

Definition 5. r(P, S)= sup(P, S)/ofs(P,S) is called the 
support ratio. If r(P, S) is not less than a pre-specified 
threshold ρ , pattern P is a frequent pattern, otherwise P is 
an infrequent pattern. 

Apparently, sup(P, S) is not greater than ofs(P, S) since 
each offset sequence can be a support. So 0 ≤  r(P, S) ≤ 1. 
Zhang et al. [20] gave a method to calculate ofs(P,S) with gap 
constraints [M, N]. Suppose m and n are the length of pattern P 
and the given sequence, respectively. Let W=N-M+1, l1= 
⎣ ⎦)1/()( ++ MMn , and l2= ⎣ ⎦)1/()( ++ NNn . ofs(P,S) is 
calculated as follows. 

For m>l1, ofs(P,S)=0.        (1) 
For m ≤ l2, ofs(P,S)=(n-(m-1)((M+N)/2+1) )W^(m-1)  (2) 

For l2<m ≤ l1, ofs(P,S) can be calculated by a recursive formula.
 (3) 

Example 1. Suppose patterns P1= A[1,3]C and P2=G[1, 
3]C, a sequence S=s0s1s2s3s4s5=AGCCCT and ρ =0.25. 

We can easily enumerate all 9 offset sequences of P1 and 
P2 in S which are <0,2>,<0,3>,<0,4>, <1,3>, <1,4>, <1,5>, 
<2,4>, <2,5>, and <3,5>. Hence ofs(P1, S)=ofs(P2, S)=9. The 



supports of P1 in S include <0,2>,<0,3>, and <0,4> and sup(P1, 
S)=3. P1 is a frequent pattern since the support ratio r(P1, 
S)=3/9=0.333. We can see that sup(P2, S)=2 and the supports 
are <1, 3> and <1, 4>. So r(P2, S)=2/9=0.222 < ρ  and P2 is 
an infrequent pattern. 

Definition 6. Given patterns P and Q, if Q is a sub-string 
of P, P and Q are called the super-pattern and sub-pattern, 
respectively. If sub-pattern Q contains the first |P|-1 characters 
of P, Q is a prefix pattern of P denoted by Prefix (P). 
Similarly, if sub-pattern Q contains the last |P|-1 characters of P, 
Q is a suffix pattern of P denoted by Suffix (P). 

Example 2. Suppose patterns P3= A[1, 3]C[1, 3]T, Q1=A, 
Q2=C, and Q3=A[1, 3]C.  

Q1, Q2, and Q3 are sub-patterns of P3 and P3 is a 
super-pattern of Q1, Q2, and Q3. The prefix pattern and suffix 
pattern of P3 are Q3 and C[1,3]T, respectively.  

One of the most important tasks of the mining problem is 
how to calculate the number of supports of a pattern in order to 
determine whether the pattern is frequent or not. Zhu and Wu 
[25] proposed the GCS algorithm to calculate the number of 
supports of pattern P in sequence S. An illustrative example 
shows the principle of GCS. 

Example 3. Suppose a pattern P=T[0,3]C[0,3]G and a 
sequence S=s0s1s2s3s4s5s6s7s8s9 = TTCCTCCGCG.  

Figure 1 shows the principle of the GCS algorithm which 
creates a two-dimensional array A. If pi<>sj (0 ≤ i ≤ m-1), then 
A(i, j)=0. If i=0 and pi=sj, then A(i, j)=1, otherwise A(i, j)= 

∑ =

=

Nk
Mk

A (i-1, j-k-1) (0<i ≤ m-1). The sum of the elements in the 

last row is the number of supports of the pattern in the 
sequence. Hence we know that the number of supports of P in S 
is 0+0+0+0+0+0+0+5+0+4=9. 

 0 1 2 3 4 5 6 7 8 9
 T T C C T C C G C G

T 1 1 0 0 1 0 0 0 0 0
C 0 0 2 2 0 2 1 0 1 0
G 0 0 0 0 0 0 0 5 0 4

Figure 1. Gap constrained pattern search 

We know that the array in Figure 1 is a sparse array. So 
GCS must deal with much useless zero data that makes it 
ineffective to compute the number of supports of a pattern. We 
employ an incomplete Nettree data structure to overcome its 
shortcomings and improve the effectiveness. It is necessary to 
design a good data structure to speed up the calculation of the 
number of supports of a pattern, in terms of the mining 
efficiency. 

What is more, a preferable pruning strategy also plays an 
important role. As we know, the Apriori property does not hold 
in our mining problem. Example 4 shows that not only the 
number of supports but also the support ratio of a pattern does 
not satisfy monotonicity.  
Example 4. Suppose a sequence S=TCGGG, a pattern 
Q=T[0,3]C and its super-pattern P=T[0,3]C[0,3]G. 

We know that sup(Q,S)=1 and sup(P,S)=3. So the number 
of supports of a pattern can exceed that of its sub-pattern. The 
offset sequences of Q in S are <0,1>, <0,2>, <0,3>, <0,4>, 
<1,2>, <1,3>, <1,4>, <2,3>, <2,4>, and <3,4>. The offset 
sequences of P in S are <0,1,2>, <0,1,3>, <0,1,4>, <0,2,3>, 
<0,2,4>, <0,3,4>, <1,2,3>, <1,2,4>, <1,3,4>, and <2,3,4>. So 
both ofs(Q,S) and ofs(P,S) are 10. Hence r(Q, S) is less than r(P, 
S). Therefore, this example shows that not only is sup(Q,S) less 
than sup(P,S) but also ofs(Q,S) is less than ofs(P,S). 

But luckily, Zhang et al. [20] proposed the Apriori-like 
property to prune candidate patterns effectively and can get all 

frequent patterns. This property means that if the support ratio 
of a pattern is less than some value, all its super-patterns are not 
frequent.  

Lemma 1. For any length-m pattern Q and its length-(m+1) 
super-pattern P, we know that sup(P)<=sup(Q)*W, where 
W=N-M+1 and M and N are the minimum and maximum gap, 
respectively.  

Proof: Let I=<i0,i1…, ij ,… ,im-1> be a support of the 
pattern Q. P has at most W supports with prefix-support I in 
sequence S which are I1=<i0, i1, …, ij,…, im-1, im-1+M+1>, 
I2=<i0,i1, …, ij, …, im-1，im-1+M+2>,...IW=<i0,i1, …, ij ,… , im-1，

im-1+N+1>. So sup(P)<= sup(Q)* W. Likewise, when Q is the 
suffix pattern of P, we can get the same formula as above. 

Theorem 1. If the support ratio of a length-m pattern Q is 

less than ρ*
)1(*)1(
)1(*)1(

+−−
+−−

wmn
wdn , all its super-patterns which 

contain it can be thought infrequent, where d (d>m) is the 
length of the longest frequent patterns.  

Proof: We know that 
),(
),sup(

SQofs
SQ  < ρ*

)1(*)1(
)1(*)1(

+−−
+−−

wmn
wdn . 

Suppose P is a super-pattern of pattern Q with length k 
(m<k<=d), then we know that ofs(Q,S)=(n-(m-1)*(w+1))*Wm-1 
and ofs(P)=(n-(k-1) *(w+1))*Wk-1 according to the offset 

equation. So ofs(P,S)= **
)1(*)1(
)1(*)1( mkW

wmn
wkn −

+−−
+−− ofs(Q,S). 

We know that sup(P,S)<= sup(Q,S)*Wk-m according to Lemma 
1. Hence sup(P,S)/ofs(P,S)<= 

ρ*
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)1(*)1(*

),(
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+−−
+−−

wkn
wmn

SQofs
SQ  <= 

ρ*
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+−−
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wdn
wmn

SQofs
SQ  < ρ . Therefore Theorem 1 

is proved. 
Definition 7. All frequent patterns with the Apriori or 

Apriori-like property can be described by a tree which is called 
a frequent pattern tree. The root of the tree is null. A path 
from the root to a node in the tree is a frequent pattern. 

Example 5. Suppose all frequent patterns of a DNA 
sequence are {A, T, C, G, AA, AC, AG, TA, TT, TC, CA, CC, 
CG, GA, GT , GC, GG, AGA, AGT, AGC} which can be 
expressed as a frequent pattern tree as shown in Figure 2.  

null

A T C G

A C G A T C A C G A T C G

A T C
 

Figure 2. A frequent pattern tree 

4. Nettree and the algorithms 

4.1. Nettree 
Definition 8. A Nettree data structure is a collection of nodes. 
The collection can be empty, otherwise a Nettree consists of 
some distinguished nodes r1,…,rm (root), and 0 or more 
non-empty subNettrees T1,T2, …, Tn, each of whose roots can 
be connected by at least an edge from root ri, where 1 ≤ m, 
1 ≤ n, and 1 ≤ i ≤ n. A generic Nettree is shown in Figure 3.  



r1 rm…

T1 T2 Tn…

 
Figure 3. A generic Nettree 

A Nettree is an extension of a tree because it has similar 
concepts of a tree, such as the root, leaf, level, parent, child, 
and so on. In order to show the differences between tree data 
structure and Nettree data structure, Property 1 is given as 
follows. 

Property 1. A Nettree [32,33] has the following four 
properties. 

(1) A Nettree may have more than one root. 
(2) Some nodes except roots in a Nettree may have more 

than one parent. 
(3) There may be more than one path from a node to a 

root. 
(4) Some nodes may occur more than once. 
Definition 9. Given a Nettree, if the same node can occur 

once or more, we use the node name to denote each of them if 
each node occurs only once. Otherwise i

jn  denotes node i on 
the jth level if a node occurs more than once on different levels 
in the Nettree [32, 33]. 

Example 6. Figure 4 shows a Nettree. Node 3 occurs 3 
times in the Nettree. 3

1n , 3
2n  and 3

3n  denote node 3 on the 

1st, 2nd and 3rd levels, respectively. Node 4
2n  has two parents, 

1
1n  and 3

1n . 

 
Figure 4. A Nettree 

Definition 10. A path from a root to node i
jn  is called a 

root path. R( i
jn ) denotes the Number of Root Paths (NRP) of 

node i
jn . The NRPs of a root and a jth level node i

jn  (j>1) 
are 1 and the sum of the NRPs of its parents, respectively.  

A pattern matching problem with gaps can be used to 
construct a Nettree according to the pattern and the sequence 
[32, 33]. On one hand, a Nettree can clearly express all 
supports of the pattern in the sequence [32]. On the other hand, 
it is easy to calculate the number of supports and find the 
optimal supports under the one-off conditions [33]. An 
illustrative example is shown as follows: 

Example 7. Suppose pattern P = T[0,3]C and sequence 
S=s0s1s2s3s4s5s6s7s8s9=TTCCTCCGCG. 

Figure 5 shows a Nettree for the pattern matching problem. 
The numbers in the white and grey circles are the name of a 
node and its NRP, respectively. A path from a root to a 2nd 
level node in the Nettree is a support of pattern P in sequence S. 
For example, path (0,3) which is from node 0 in the first level 
to node 3 in the second level is a support <0,3> of P in S. So a 
Nettree can show all supports of P in S effectively. Hence, the 
number of supports is 2+2+2+1+1=8. This is the solution of 
literature [32]. However, if each position can be used no more 

than once, called the one-off condition [29], supports <0,3> and 
<4,5> are not the optimal supports under the one-off condition. 
This instance has many optimal solutions and one of the 
solutions is <0,3>, <1,5> and <4,8>. Literature [33] designed 
an algorithm to find the optimal supports using Nettree.  

0T 3

C 5

1 4

2 3 5 6 8

1 1 1

2 2 1 12

1st level

2nd level
 

Figure 5. A Nettree for P in S 

Therefore, literatures [32] and [33] which deal with two 
pattern matching problems use Nettree to calculate the number 
of supports and find the optimal supports under the one-off 
condition when pattern P and sequence S are given, 
respectively. Literature [32] can be seen as calculating the 
searching space of literature [33]. Whereas this study focuses 
on a pattern mining problem that is to find all frequent patterns 
when sequence S is given.  

4.2. Algorithms 
It is very easy to get a path from a node in the first level to a 
node in the last level in a Nettree if a Nettree has parent-child 
and child-parent relationships. A path is a support (or 
occurrence) of pattern P in sequence S for the pattern matching 
problem. So a Nettree has parent-child and child-parent 
relationships in [32, 33]. However, we only want to know the 
number of supports in the pattern mining problem. Hence it is 
not necessary to store the parent-child and child-parent 
relationships of the Nettree in this study. The Nettree is usually 
stored in a node array and each element in the node array stores 
the node name and its NRP. 

Lemma 2. The sum of NRPs of the jth (1 ≤ j ≤ |P|) level 
nodes is the number of supports of sub-pattern Q which is the 
first j characters of pattern P.  

Proof: Let Q be the first j characters of pattern P. R( i
jn ) is 

the number of supports of Q at position i. So the sum of NRPs 
of the jth (1 ≤ j ≤ |P|) level nodes is the number of supports of Q 
in S. 

By Lemma 2, we know that the sum of NRPs of the first 
level nodes, 1+1+1=3, is the number of supports of Prefix (P) 
in S in Example 7. The sum of NRPs of the last level nodes 
(2+2+2+1+1=8) is the number of supports of pattern P. It is 
easily seen that the top m-1 level nodes of the Nettree of the 
length-m pattern P are redundant in calculating the number of 
supports of its super-pattern. So we only store the last level 
nodes of the Nettree of a pattern which is called an incomplete 
Nettree. 

The reasons for using an incomplete Nettree to solve the 
problem are as follows. (1) The incomplete Nettree only stores 
useful information and avoids calculating useless data, which 
makes the algorithm more effective and consumes less 
memory. But in [24, 25], a two-dimensional array is used to 
calculate the number of supports. So the two algorithms in [24, 
25] have to deal with useless information which influences the 
efficiency of mining since the array is sparse. (2) We can use 
the incomplete Nettree of pattern P to construct a new 
incomplete Nettree and calculate the number of supports of its 
super-pattern. This can take full advantage of the previous 
calculating results.  

However, if we can simultaneously calculate the numbers 
of supports of super-patterns with the same prefix pattern in a 
one-way scan, the pattern mining algorithm will further 



enhance its efficiency. For example, suppose that a pattern 
P=T[0,3]C is frequent in a DNA sequence and we need to 
determine whether super-patterns P1= T[0,3]C[0,3]A, 
P2=T[0,3]C[0,3]T, P3=T[0,3]C[0,3]C, and P4=T[0,3]C[0,3]G 
are frequent or not. It will be less effective to calculate the 
numbers of supports of these four super-patterns in a four-way 
scan than in a one-way scan. The principle of calculating the 
numbers of supports of all super-patterns P[M, N]a (a∈ Σ) in a 
one-way scan is as follows. 

According to gap constraints [M, N], we create all child 
nodes of node q which is a node in an incomplete Nettree of P. 
If sj= Σk (q+M+1 ≤ j ≤ q+N+1, 0 ≤ k<|Σ|), we check whether 
node j is a node in the incomplete Nettree of super-pattern Pk or 
not. If it is not in an incomplete Nettree of Pk, we create node j 
and store it in the incomplete Nettree and the NRP of node j is 
the NRP of node q, otherwise we only update the NRP of node 
j, making it plus the NRP of node q. So the number of supports 
of super-pattern Pk is the sum of the NRPs of all nodes of the 
incomplete Nettree of Pk. Hence, we can calculate the numbers 
of supports of these super-patterns in a one-way scan. The 
algorithm is named INSupport. 

Here we employ a structure named IINettree (Information 
of the Incomplete Nettree) to describe the mined pattern string, 
the number of its supports and its incomplete Nettree in 
INSupport. For the sake of simplicity, we use the terms pattern, 
sup and INtree for short. So IINettree can be expressed as 
{pattern, sup, INtree}. Due to that the representation of the 
incomplete Nettree is relatively straightforward, an incomplete 
Nettree is composed of a size and an array which contains 
names of all nodes and their corresponding NRPs. Hence, 
IINettree can again be written as {pattern, sup, {size, (name0, 
NRP0), …, (namesize-1, NRPsize-1)}}. The inputs of INSupport 
are P, S and INtree which is an incomplete Nettree of P. The 
output of INSupport is superps which is an array of IINettree. 
The size of superps is |Σ|. For example, given a sequence S= 
TTCCTCCGCG and a prefix pattern P=T[0,3]C (shown in 
Example 8). superps2 can be expressed as {T[0,3]C[0,3]C, 15, 
{4, (3,2),(5,4),(6,6),(8,3)}} since “C” is the third letter in ∑ in a 
DNA sequence. Algorithm INSupport is shown as follows. 
Algorithm 1: INSupport (P,S, INtree); 
Input: P, S, INtree 
Output: superps 
1: superps.sup=0; 
2: superps.pattern= P[M, N]Σ; 
3:for (i=0; i<|INtree|; i++) 
4:     oldnode= INtree i; 
5:     for (j=oldNode.name+M+1; j ≤ oldNode.name +N+1; 
j++) 
6:         if (sj==Σk) then 
7:             superps k.sup +=oldnode.NRP; 
8:             position=search(superps k..INtree, j);  
9:        //The result will be -1 if j is not in superps k.INtree.
10:           if (position==-1) then 
11:              newnode.name= j; 
12:              newnode.NRP=oldNode.NRP; 
13:              superpsk.INtreesize++ =newNode; 
14:           else 
15:              superpsk.INtreeposition.NRP+= oldNode.
NRP; 
16:           end if 
17:        end if 
18:    end for 
19:end for 
20: return superps; 

The principle of MAPB is given as follows. Firstly, each 
character in Σ is seen as a length-1 pattern P. We create |Σ| 
incomplete Nettrees for each pattern and calculate the numbers 
of their supports. Then we need to determine whether the 
support ratio of each pattern is not less than 
β = ρ *(n-(d-1)*(w+1))/(n-(m-1)*(w+1)) or not, where 
w=(M+N)/2, d and m are the length of the longest frequent 
patterns and the length of pattern P, respectively. If it is not less 
than the value, pattern P and its incomplete Nettree will be 
stored in a queue. After this, prefix pattern P and its incomplete 
Nettree is dequeued and we need to check whether pattern P is 
a frequent pattern or not. Algorithm 1 is used to calculate the 
number of supports of all super-patterns with pattern P and 
create |Σ| incomplete Nettrees of the super-patterns. Finally, we 
check whether each super-pattern is not less than β  or not. If 
yes, we store it and its incomplete Nettree in the queue and then 
iterate this process till the queue is empty. Apparently, this 
method is a kind of Apriori-like property to prune the number 
of candidate patterns and constructs the frequent pattern tree 
based on BFS. The algorithm named MAPB is given as 
follows. 
Algorithm 2. MAPB 
Input: S=s0s1…sn-1, M, N, ρ , and d, where d is the length of 
the longest frequent patterns 
Output: All patterns with frequency not less than ρ  
1:patterns.pattern=Σ; 
2:for (i=0; i<|S|; i++) 
3:    if (si==Σj) then 
4:        node.name=i; 
5:        node.NRP=1; 
6:        patternsj.INtreesize++ =node; 
7:    end if 
8:end for 
9:for (j=0; j<|Σ|; j++) 
10:      patternsj.sup= patternsj.INtree.size; 
11:    if (patternsj.sup/|S|>= ρ *(n-(d-1)*(w+1))/n)) then 
meta. enqueue(patternsj); 
12:end for 
13:while (!meta.empty()) 
14:    subP =meta.dequeue (); 
15:    P=subP.pattern; 
16:    INtree= subP.INtree; 
17:    length=|P|; 
18:    calculate r(P,S);   
19:    if (r(P,S)>= ρ ) then Clength= Clength U P; 
20:    superps = INSupport(P,S, INtree); 
21:    for (j=0; j<|Σ|; j++) 
22:        Q= superps j. pattern; 
23:        calculate r (Q,S); 
24:        if(length+1<=d) then 
25:            if (r(Q,S) >= ρ *(n-(d-1)*(w+1))/ 
(n-length* (w+1))) then meta.enqueue(superps j); 
26:        else 
27:            if (r(Q,S) >= ρ ) then 
meta.enqueue(superps j); 
28:        end if 
29:    end for 
30:end while 
31:return C=U Ci 

Although MAPB employs a pattern matching strategy 
(INSupport) to calculate the numbers of supports of candidate 
patterns, INSupport and the algorithm in [32] are significantly 
different. The reasons are given as follows. Firstly, the 
algorithm in [32] is used to calculate the number of supports for 



only one pattern, while INSupport can simultaneously calculate 
the numbers of supports for many patterns with a common 
prefix pattern. Secondly, the algorithm in [32] does not need 
any previous result to solve the problem, while INSupport 
calculates the numbers of supports depending on previous 
results.  

MAPB stores the frequent patterns in a queue. A new 
algorithm named MAPD stores the frequent patterns in a stack 
and the frequent pattern tree is constructed based on DFS. We 
can know that lines 11, 14, 25, and 27 of MAPD are then 
modified as: 
11:    if (patternsj.sup/|S|>= ρ *(n-(d-1)*(w+1))/n) then 
meta.Push(patternsj); 
14:    subPattern=meta.Pop(); 
25:        if (r(Q,S) >= ρ *(n-(d-1)*(w+1))/(n-length* 
(w+1))) then meta.Push(superpsj); 
27:        if (r(Q,S) >= ρ ) then meta.Push(superps j); 

4.3. A running example 
An illustrative example is used to show how Algorithm 1 
works. 

Example 8. Suppose sequence S=s0s1s2s3s4s5s6s7s8s9= 
TTCCTCCGCG, patterns P0= T[0,3]C[0,3]A, P1= 
T[0,3]C[0,3]T, P2=T[0,3]C[0,3]C, P3=T[0, 3]C[0,3]G and the 
incomplete Nettree of P=T[0,3]C which is shown in the black 
frame in Figure 5. 

R(node) is used to express the NRP of a node according to 
Definition 10. We create child nodes of n2

2 from s3 to s6 since 
gap constraints are [0, 3]. Because s3=C, P2=T[0,3]C[0,3]C and 
node n3

3 is not in the incomplete Nettree of P2, we create node 
n3

3 in the incomplete Nettree of P2 and R(n3
3)=R(n2

2)=2. We 
create node n3

4 in the incomplete Nettree of P1 and 
R(n3

4)=R(n2
2)=2. Similarly, we create nodes n3

5 and n3
6 in the 

incomplete Nettree of P2, R(n3
5)= R(n3

6)= R(n2
2)=2. Then we 

create child nodes of n2
3 from s4 to s7. Because s4=T and node 

n3
4 is in the incomplete Nettree of P1, we update the value of 

R(n3
4)= R(n3

4)+ R(n2
3)=4. Similarly, we can know that R(n3

5)= 
R(n3

5)+ R(n2
3)=4, R(n3

6)= R(n3
6)+ R(n2

3)=4, and R(n3
7) = 

R(n2
3)=2. Finally, we create all child nodes of node n2

5, n2
6, and 

n2
8. Figure 6 shows incomplete Nettrees of P, P0, P1, P2, and P3. 

It is straightforward to know that the numbers of supports of P0, 
P1, P2, and P3 in S are 0, 4, 2+4+6+3=15, and 5+4=9, 
respectively. 

Figure 6. Incomplete Nettrees of P, P0, P1, P2, and P3 

4.4. Correctness and completeness 
The main difference between MAPB and MAPD is using 
different strategies to create the frequent pattern tree. So we 
only prove the correctness and completeness of MAPB. The 
same proofs apply to the correctness and completeness of 
MAPD. 

Theorem 2. (Correctness of MAPB) The output of 
MAPB is the frequent patterns. 

Proof: We know that Algorithm 1 is correct according to 
Lemma 2. So MAPB can calculate the numbers of supports of 

super-patterns with prefix P correctly. Zhang et al. [20] gave 
the method to calculate ofs(P,S) and proved the correctness of 
the method. Therefore Theorem 2 is proved. 

Theorem 3. (Completeness of MAPB) MAPB can find 
all frequent patterns whose lengths are less than l2. 

Proof: We know that d is less than or equal to l2 and if the 

support ratio of pattern P is less than ρ*
)1(*)1(
)1(*)1(

+−−
+−−

wmn
wdn , 

all its super-patterns which contain it can be thought infrequent 
according to Theorem 1, where w= (M+N)/2 and l2 = 
⎣ ⎦)1/()( ++ NNn  and n, m, d, M, and N are the length of 
sequence, the length of pattern, the length of the longest 
frequent patterns, the minimum gap, and the maximum gap, 
respectively. So MAPB enqueues pattern P if its support ratio 

is not less than ρ*
)1(*)1(
)1(*)1(

+−−
+−−

wmn
wdn  and checks whether its 

super-patterns are frequent or not. Therefore all frequent 
patterns can be found by MAPB. Hence Theorem 3 is proved. 
Generally d is far less than l2 in our mining problem, so the 
algorithms can usually find all frequent patterns in a sequence. 

4.5. Complexities analysis 
Both MAPB and MAPD can create the same frequent pattern 
tree. So the time complexities of these two algorithms are the 
same. Algorithm 1 creates the child nodes of the incomplete 
Nettree of a sub-pattern. It is easy to see that the average size of 
the incomplete Nettrees is n/|Σ|, where n is the length of the 
sequence. Each node has W=N-M+1 children. So the time 
complexity of Algorithm 1 is O(W*n/|Σ|). Algorithm 1 runs 

∑ =

d
j jlen1

 times, where lenj and d are the number of length-j 

frequent patterns and the length of the longest frequent pattern, 
respectively. Hence the time complexities of MAPB and 
MAPD are both O( ∑ =

d
j jlen1

*W*n/|Σ|). However, the mining 

algorithm using GCS (MGCS) creates j rows for pattern P and 
|Σ| rows for all super-patterns with prefix P to calculate the 
numbers of supports of these patterns. Each row has n elements 
and each element is calculated W times. So the time complexity 
of GCS is O((j+|Σ|)*n*W). Thus, the time complexity of MGCS 
is O( ∑ =

d
j jlen1

*(j+|Σ|)*n*W). 

The average size of an incomplete Nettree is n/|Σ| and each 
node stores its name and NRP. So the space complexity of an 
incomplete Nettree is O(n/|Σ|). MAPB uses a queue and the 
max size of the queue is O(|Σ|^x), where x is the position of 
max lenj. So the space complexity of MAPB is O(|Σ|^(x-1)*n). 
MAPD uses a stack and the max size of the stack is O(d*|Σ|). 
So the space complexity of MAPD is O(d*n). We can see that 
the space complexity of MGCS is O((d+|Σ|)*n). Table 2 gives a 
comparison of the time and space complexities among MGCS, 
MAPB, and MAPD.  

Table 2. Comparison of the time and space complexities 

Algorithm Time complexity Space complexity 

MGCS O( ∑ =

d

j jlen
1

*(j+|Σ|)*n*W) O((d+|Σ|)*n) 

MAPB O( ∑ =

d

j jlen
1

*W*n/|Σ|) O(|Σ|^(x-1)*n) 

MAPD O( ∑ =

d

j jlen
1

*W*n/|Σ|) O(d*n) 
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5. Top-K mining 
Both MAPB and MAPD are mining algorithms based on the 
pattern matching approach to discover all possible frequent 
patterns. This kind of pattern mining approach can also be 
employed to find special frequent patterns effectively. For 
example, when we discover thousands of frequent patterns or 
more, it is difficult to use all these patterns. The most valuable 
patterns are Top-K frequent patterns with various lengths and 
the longest frequent patterns, where K is a specified parameter, 
and this is called the Top-K mining problem.  

Like Apriori, algorithm MPP-best [20] acts iteratively, 
generating length-(m+1) candidate patterns using length-m 
frequent patterns and verifying their supports, till there is no 
candidate pattern. So it is difficult to employ this kind of 
approach to construct an algorithm to solve this problem.  

An easy method is to propose an algorithm which finds all 
frequent patterns and sorts these patterns and then outputs the 
Top-K frequent patterns to satisfy users’ needs. Another similar 
method is to introduce an algorithm that checks all possible 
candidate patterns and selects the Top-K frequent patterns. But 
these methods take a long time to solve the Top-K mining 
problem in long sequences using MAPD because many useless 
frequent patterns are found or useless possible candidate 
patterns are checked. To discover these patterns effectively, a 
heuristic algorithm named MAPBOK is proposed. The 
principle of MAPBOK is as follows.  

If sub-pattern P is a Top-K length-m frequent pattern, its 
super-pattern Q is a Top-K length-(m+1) frequent pattern in 
high probability. Firstly, we mine the Top-(e*K) length-m 
frequent patterns and output the Top-K frequent patterns, where 
e is not less than 1. Then the Top-(e*K) frequent patterns are 
used to mine the length-(m+1) frequent super-patterns. We 
select the Top-(e*K) frequent super-patterns and iterate this 
process till no new frequent patterns can be found. Apparently, 
this method constructs the frequent pattern tree based on BFS. 
The algorithm of MAPBOK is not given, since the change is 
straightforward from MAPB.  

It is easy to see that the time complexity of MAPBOK is 
O(e*K*d*W*n/|Σ|) since MAPBOK runs Algorithm 1 O(e*K*d) 
times. The space complexity of MAPBOK is O(e*K* n/|Σ|) 
since the max size of the queue is O(e*K). 

6. Performance evaluation 
From Table 1 in section 2, we know that this study focuses on 
the same pattern mining problem as literatures [20] and [25]. 
Besides, the most related issue is literature [24] in which the 
problem is redefined and the Apriori property is used. Here we 
call the algorithm in [24] AMIN. Therefore we present 
experimental results by comparing MPP-best, MGCS, AMIN, 
MAPB, and MAPD. In order to show that our algorithms are 
superior to the state-of-the-art algorithms, we evaluate their 
performance based on the running time and memory 
requirements. For the Top-K mining problem for each length, 
we pay more attention to the mining accuracy of longer 
frequent patterns. Weighted accuracy can be calculated 
according to the following equation. 

Accuracy = )*/()*(
33 ∑∑ ==

d

i i
d

i i biai    (4) 

where ai, bi, and d are the numbers of correct Top-K frequent 
patterns, Top-K length-i frequent patterns, and the length of the 
longest frequent patterns, respectively. Generally, bi is K. But 
when c is less than K, bi becomes c, where c is the number of 
length-i frequent patterns. 

6.1. Experimental environment and data 
The data used in this paper are DNA sequences provided by the 
National Center for Biotechnology Information website. Homo 
Sapiens AX829174, AL158070 and AB038490 are chosen as 
our test data and can be downloaded from http://www.ncbi. 
nlm.nih.gov/nuccore/AX829174, http://www.ncbi.nlm.nih.gov/ 
nuccore/AL158070.11 and http://www.ncbi.nlm.nih.gov/ 
nuccore/ AB038490, respectively. The source codes of 
MPP-best, MGCS, MAPB, MAPD, and MAPBOK can be 
obtained from http://wuc.scse.hebut.edu.cn/msppwg/index.html. 
All experiments were run on a laptop with Pentium(R) 
Dual-Core T4500@ 2.30GHz CPU and 2.0 GB of RAM, 
Windows 7. Java Development Kit (JDK) 1.6.0 is used to 
develop all algorithms. In this study, the greatest length of 
frequent patterns is considered to be 13, the minimum and 
maximum gap constraints are 9 and 12, respectively and the 
threshold ρ is 3*10^-5 because all these parameters were used 
in [20, 24, 25]. What is more, considering that the default stack 
memory of JVM is too small, we assign 1.5GB memory space 
for every algorithm which is the maximal memory space of the 
Java virtual machine on the laptop. Table 3 shows all the 
sequences used in this paper. 

Table 3. Bio-data sequences 

Sequence From Length 

S1 Homo Sapiens AX829174 1000 
S2 Homo Sapiens AX829174 2000 
S3 Homo Sapiens AX829174 4000 
S4 Homo Sapiens AX829174 8000 
S5 Homo Sapiens AX829174 10011 
S6 Homo Sapiens AL158070 20000 
S7 Homo Sapiens AL158070 40000 
S8 Homo Sapiens AL158070 80000 
S9 Homo Sapiens AL158070 167005 
S10 Homo Sapiens AB038490 15000  
S11 Homo Sapiens AB038490 30000 
S12 Homo Sapiens AB038490 60000  
S13 Homo Sapiens AB038490 131892 

With the above presented test environment and data, Table 
4 and Table 5 show the mining results and the comparison of 
max size of MAPB and MAPD, respectively. 

Table 4.  Mining results 

Sequence The length of the longest frequent patterns, the number of frequent 
patterns for various lengths and total frequent patterns 

S1 13, {4,16,64,256,1024,4096,13374,5678,1514,623, 242, 55, 12}, 
26958 

S2 12, {4,16,64,256,1024,4096,15205,3436,350,85,8,3}, 24547 
S3 10, {4,16,64,256,1024,4096,15965,1937,59,3}, 23424 
S4 10, {4,16,64,256,1024,4096,14970,4283,241,1}, 24955 
S5 10, {4,16,64,256,1024,4096,14422,4811,299,1}, 24993 
S6 10, {4,16,64,256,1024,4096,12619,7068,614,8}, 25769 
S7 10, {4,16,64,256,1024,4096,12388,6960,749,11}, 25568 
S8 10, {4,16,64,256,1024,4096,12947,6303,666,11},25387 
S9 10, {4,16,64,256,1024,4096,13438,5767,604,1}, 25270 
S10 10, {4,16,64,256,1024,4096,12507,7197,563,2}, 25729 
S11 11, {4,16,64,256,1024,4096,11126,7634,1164,54,1}, 25439 
S12 10, {4,16,64,256,1024,4096,12799,6404,699,11}, 25373 
S13 10, {4,16,64,256,1024,4096,12913,6558,672,11},25614 

 



Table 5. Comparison of max size 

Sequence Max size of MAPB Max size of MAPD 

S1 14092 24 
S2 15402 25 
S3 16017 25 
S4 15119 26 
S5 14582 26 
S6 12878 27 
S7 12754 26 
S8 / 27 
S9 / 26 
S10 12768 28 
S11 11666 26 
S12 12949 28 
S13 / 28 

Note: “Empty” means overflow error. 

6.2. Running time evaluation 
Here we compare the running time on several real DNA 
fragments of different lengths (shown in Figures 7~9). It is 
worth noting that the running time of MPP-best refers to the 
time data on the left and the other algorithms refer to the right 
because the MPP-best needs to take much time to finish the 
mining task. We can analyze the running results from the 
following aspects: 
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Figure 7. Comparison of the running time on Homo Sapiens 
AX829174 
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Figure 8. Comparison of the running time on Sapiens 
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Figure 9. Comparison of the running time on Homo Sapiens 
AB038490 

Note: “Empty” means overflow error. 

(1) From Figures 7~9, we can see that MPP-best not only 
is the slowest, but also cannot be used to find frequent patterns 
in long sequences. Only MPP-best uses the left axis to show its 
running time and other algorithms use the right axis to show 
theirs running time. The value of the left axis is far greater than 
that of the right axis. So we can easily notice that MPP-best is 
the slowest. For example, MPP-best costs nearly 10 hours to 
find the frequent patterns in sequence with length 40000 
(shown in Figure 8), while MAPD costs no more than 1 minute. 
Furthermore, we observe that the running time of MPP-best 
grows faster than the length of a sequence. For example, the 
data table in Figure 7 shows that the running time of MPP-best 
grows about 29 times when the length of a sequence grows 
about 10 times from S1 to S5. Moreover, according to the 
running time in the tables of Figures 7~9, we can see that the 
running time of MGCS, AMIN MAPB, and MAPD is in linear 
growth with the length of a sequence. For example, when the 
length of a sequence grows about 10 times from S1 to S5, theirs 
running time grows about 10 times. However, if we mine 
frequent patterns in long sequences using MPP-best, we will 
also face the risk of out of memory when the length of a 
sequence is longer than 60000. The reason is that MPP-best 
employs a PIL (Partial Index List) structure which consumes 
lots of memory to calculate the number of supports. 

(2) It is clear that MGCS and AMIN run faster than 
MPP-best according to Figures 7~9. In [25], MCPaS is about 
40 times faster than MPP-best in S1 but MGCS is about 6.84 
times faster than MPP-best in our experiment. The reason is 
that MCPaS employs not only GCS but also an effective 
pruning strategy. If both MPP-best and MCPaS employ the 
same pruning strategy, MCPaS cannot be about 40 times faster 
than MPP-best. AMIN is a little faster than MGCS according to 
the figures. The reason is that AMIN redefines the issue and 
can use Apriori property which is a more effective pruning 
strategy than Apriori-like property. AMIN is a kind of 
approximate algorithm and [24] detailed the difference between 
the approximate solutions and the accurate solutions. Moreover, 
both MGCS and AMIN can be used to mine in long sequences. 
The reason is that MGCS and AMIN use pattern matching 
approaches to calculate the number of supports for each 
candidate pattern. And this kind of approach consumes less 
memory than MPP-best. 

(3) Both MAPB and MAPD run faster than MPP-best and 
MGCS although they employ the same pruning strategy. 
MAPD runs about 45 and 128 times faster than MPP-best in S1 
and S5, respectively. And MAPD runs about 5 times faster than 
MGCS in all sequences. So does MAPB. Hence these two 



algorithms are better than their peers because they avoid an 
amount of duplicated calculations. 

(4) The running time of MAPB and MAPD should be 
consistent but actually MAPD runs faster than MAPB because 
MAPB consumes too much memory, which can influence the 
mining efficiency. The main reason is that the size of the 
maximum width of the frequent pattern tree is far greater than 
its maximum depth according to Table 5. So the max size of the 
queue is far greater than that of the stack. Therefore MAPB 
consumes much more memory than MAPD to solve the 
problem. Hence, MAPD is faster than MAPB and more suitable 
for the long-sequence mining problem. 

(5) We can observe that MAPD can be used to mine 
frequent pattern in long sequences, while MAPB can not. For 
example, when the length of a sequence reaches 80000, MAPD 
can smoothly finish the mining task while MAPB leads to 
memory-overflow error. Hence it can be concluded that MAPB 
consumes more memory space than MAPD and it is more 
desirable to employ DFS to construct the frequent pattern tree. 

(6) From Table 4, we can calculate ∑ =
d
j jlen1

*(j+|Σ|) and 

∑ =

d
j jlen1

, where d and Lenj are the maximum length of 

frequent patterns and the number of the length-j frequent 
patterns, respectively. For example, ∑ =

d
j jlen

1
* (j+|Σ|) and 

∑ =

d
j jlen1

 in S1 are 274198 and 26958, respectively. The time 

complexities of MGCS and MAPD are O( ∑ =

d
j jlen1

*(j+|Σ|)* 

W*n) and O( ∑ =

d

j jlen
1

* W*n/|Σ|), respectively. The running 

times of MGCS and MAPD in S1 are 6864ms and 1031ms, 
respectively, combined with the above analysis, MAPD should 
be about 274198/26958 *4≈40 times faster than MGCS. But 
MAPD is actually about 6864/1031≈6.65 times faster than 
MGCS. This is due to the fact that MGCS is easier to realize. 
Thus it also verifies the correctness of the time complexity 
analysis of MGCS and MAPD. 

(7) From Tables 4 and 5, we can observe that the max size 
of the queue is slightly greater than the max number of frequent 
patterns for various lengths, because MAPB employs BFS to 
construct the frequent pattern tree. The max size of the stack is 
less than d*|Σ|, because MAPD employs DFS to construct the 
frequent pattern tree, where d means the max length of frequent 
patterns. For example, the number of length-7 frequent patterns 
is 15205 and the max size of queue is 15402 in S2 and the max 
size of stack is 24 which is less than 13*4=52 in S1. 

Both MGCS and AMIN which consume less memory can 
be used to find frequent patterns in long sequences because the 
two algorithms calculate the number of supports for each 
pattern without using the previous results. MAPB can not be 
used to discover frequent patterns in long sequences, but it can 
avoid an amount of duplicated calculations using the previous 
results. MAPD not only can avoid an amount of duplicated 
calculations, but also consumes less memory. So MAPD is the 
fastest algorithm and can be used in long sequences. Therefore 
MAPD is superior to the state-of-the-art algorithms. Based on 
MAPB we propose a heuristic algorithm named MAPBOK. We 
will show the performance of MAPBOK in the next subsection. 

6.3. Top-K mining evaluation 
In order to illustrate how e, K and the length of a sequence 
affect the running time of MAPBOK, the results of various 
sequences mined with different e, K and the lengths of the 
sequences are shown in Figures 10~18. 
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Figure 10. The running time for Top-10 Mining on AX829174 
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Figure 11. The running time for Top-10 Mining on AL158070 
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Figure 12. The running time for Top-10 Mining on AB038490 

The running time for Top-30 Mining on AX829174
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Figure 13. The running time for Top-30 Mining on AX829174 
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Figure 14. The running time for Top-30 Mining on AL158070 
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Figure 15. The running time for Top-30 Mining on AB038490 

The running time for Top-50 Mining on AX829174
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Figure 16. The running time for Top-50 Mining on AX829174 
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Figure 17. The running time for Top-50 Mining on AL158070 
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Figure 18. The running time for Top-50 Mining on AB038490 

From the above figures, we can clearly observe that the 
longer the sequence is, the greater e and K are, and the longer 
the running time is.  

(1) It is found that the running time approximately grows 
in a linear way with the length of a sequence. For example, the 
running time grows about 10 times while the length of a 
sequence grows from 1000 to 10011 no matter what e is in 
Figure 10.  

(2) Obviously, the greater e is, the running time is longer 
for every sequence. Taking the length-131892 sequence on 
AB038490 in Figure 15 for example, the running times are 
about 9000, 12000, 15000, and 20000 ms when e are 1, 1.5, 2, 
and 3, respectively. However, we find that when e increases 
from 1 to 3, the running time is less than three times. This is no 

surprise because the number of candidate patterns is invariable 
when the length of frequent patterns is shorter or longer. For 
example, the number of length-2 candidate patterns is 16 no 
matter what e and K are. So the running time grows less than 
three times when e changes from 1 to 3.  

(3) Of course K also has an important effect on the 
running time. The running time will be longer as K is greater 
because the number of candidate patterns is also increasing. We 
can clearly see that with regard to the same sequence and e in 
Figures 10, 13 and 16, the running time for the Top-10 mining 
in Figure10 is the shortest, the Top-30 mining in Figure13 takes 
second place and the Top-50 mining in Figure 16 needs the 
longest time. The other figures also show the same 
phenomenon. Likewise, we can observe that the running time is 
less than 5 times when K increases from 10 to 50. The reason is 
extremely similar to e in (2) and we will not elaborate it again 
here. 

Therefore, these phenomena are consistent with the time 
complexity of MAPBOK O(e*K*d*W*n/|Σ|) mentioned above 
and validate the correctness of the analysis of time complexity 
of MAPBOK. 

Figures 19~27 show how e, K and the length of a sequence 
affect the accuracy of MAPBOK.  
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Figure 19. The accuracy for Top-10 Mining on AX829174 
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Figure 20. The accuracy for Top-10 Mining on AL158070 
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Figure 21. The accuracy for Top-10 Mining on AB038490 



The accuracy for Top-30 Mining on AX829174
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Figure 22. The accuracy for Top-30 Mining on AX829174 
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Figure 23. The accuracy for Top-30 Mining on AL158070 

The accuracy for Top-30 Mining on AB038490

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

15000 30000 60000 131892
Length

A
cc

ur
ac

y

e=1 e=1.5 e=2  e=3

 
Figure 24. The accuracy for Top-30 Mining on AB038490 

The accuracy for Top-50 Mining on AX829174
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Figure 25. The accuracy for Top-50 Mining on AX829174 
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Figure 26. The accuracy for Top-50 Mining on AL158070 
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Figure 27. The accuracy for Top-50 Mining on AB038490 

(4) According to Figures 19, 22 and 25, we find that the 
accuracy of MAPBOK is low in short sequences no matter 
what e and K are. The accuracy can sometimes be less than 0.5 
when both e and K are very small. But meanwhile MAPD can 
get the Top-K patterns precisely in a short time. For example, it 
takes about 10 seconds to solve the Top-K problem in S5 with 
length 10011. For longer sequences, we can observe that the 
lowest accuracy for MAPBOK is more than 0.94 and, 
compared with MAPD, the running time is much less. When e 
and K are larger, the performance is more prominent. For 
example, the average accuracy from S6 to S13 of MAPBOK is 
0.995 and the average running time is about 23 times faster 
than that of MAPD in the case of K=30 and e=1.5. So in terms 
of the Top-K mining problem it can be concluded that 
MAPBOK is more suitable for long sequences and MAPD 
suitable for shorter sequences. The main reason for this 
situation is that frequent patterns may change easily when 
sequences are short and it is not easy to change frequent 
patterns when sequences are long. 

(5) From the accuracy results of every sequence, it can be 
clearly observed that e is an important factor to improve 
accuracy. Accuracy will be higher and can even reach 100% 
when e is bigger. We use average accuracy to reflect the effect. 
Taking the Top-30 mining from S6 to S13, for example, when 
e=1 the average accuracy of MAPBOK is 0.977 and when e=2 
the average accuracy reaches 0.997. This can self-evidently be 
attributed to more generated candidate patterns. Although with 
e being greater the running time is also growing (here the 
average running time grows about 0.67 times) because more 
patterns need to be checked, it is still much less than that of 
MAPD. Hence, it is preferable to suitably increase e in order to 
improve accuracy. According to Figures 20, 21, 23, 24, 26, and 
27, when the length of a sequence is equal to or greater than 
15000, e=1.5 or e=2 can achieve a satisfying accuracy. 

(6) As we know, the larger e and K are, the number of 
candidate patterns is bigger. So K has the same effect on 
accuracy as e. Accuracy will be higher when K is bigger 
according to Figures 20, 21, 23, 24, 26, and 27. 

7. Conclusions 
In this paper, we propose two new effective pattern mining 
algorithms, MAPB and MAPD, to find frequent patterns with 
periodic wildcard gaps. A pattern matching approach is used to 
calculate the number of supports of a pattern in the given 
sequence and determine whether the pattern is frequent or not. 
MAPB and MAPD store frequent patterns and their incomplete 
Nettrees in a queue and a stack, respectively. Experimental 
results validate that both MAPB and MAPD are superior to the 
state-of-the-art algorithms and MAPD achieves better 
performance than MAPB. So MAPD can be used to discover 
all frequent patterns in long sequences. However, it takes a 



long time to solve the Top-K frequent patterns for each length 
in long sequences using MAPD. We furthermore propose a 
heuristic algorithm, named MAPBOK based on MAPB, which 
can accelerate the mining speed and achieve high accuracy. 
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