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Abstract

The immense explosion of geographically referenced data
calls for efficient discovery of spatial knowledge. One crit-
ical requirement for spatial data mining is the capability
to analyze datasets at different levels of granularity. One
of the special challenges for spatial data mining is that
information is usually not uniformly distributed in spatial
datasets. Consequently, the discovery of regional knowl-
edge is of fundamental importance for spatial data mining.
Unfortunately, most of the current data mining techniques
are ill-prepared for discovering regional knowledge. For
example, when using traditional association rule mining,
regional patterns frequently fail to be discovered due to in-
sufficient global confidence and/or support. This raises the
questions on how to measure the interestingness of a set
of regions and how to search effectively and efficiently for
interesting regions. This paper centers on discovering re-
gional association rules in spatial datasets. In particular,
we introduce a novel framework to mine regional associ-
ation rules relying on a given class structure. A reward-
based regional discovery methodology is introduced, and
a divisive, grid-based supervised clustering algorithm is
presented that identifies interesting subregions in spatial
datasets. Then, an integrated approach is discussed to sys-
tematically mine regional rules. The proposed framework
is evaluated in a real-world case study that identifies spa-
tial risk patterns from arsenic in Texas water supply.

1. Introduction

Advanced data collecting tools in digital mapping, re-
mote sensing, and global diffusion of Geographic Informa-
tion Systems (GIS) are generating increasingly large spa-
tial datasets. NASA’s Earth Observing System (EOS) [28]
has offered long-term global observation of the land sur-
face, biosphere, solid Earth, atmosphere, and ocean in the
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rate of a terabyte of data per day since 1999. Further-
more, more powerful and reliable location-enabled mobile
devices are generating large spatial datasets. These spatial
datasets contain nuggets of valuable information that call
for efficient discovery of spatial knowledge. The goal of
spatial data mining is to automate the extraction of inter-
esting, useful but implicit spatial patterns [8, 13, 15, 16,
19, 25, 29, 31, 32, 33, 36].

Although data mining has been recognized as a key
means of finding patterns in large datasets, traditional data
mining methods alone are not sufficient for spatial data
mining. One of the special challenges for spatial data min-
ing is that information is usually not uniformly distributed
in spatial datasets. Consequently, the discovery of regional
knowledge is of fundamental importance for spatial data
mining. It has been pointed out in literature [12, 23, 30] that
“whole map statistics are seldom useful”, that “most rela-
tionships in spatial data sets are geographically regional,
rather than global” and that, “there is no average place
on the Earth’s surface” – a county is not a representative
of a state, and a state is not a representative of a country.
Therefore, it is not surprising that domain experts are most
interested in discovering hidden patterns at a regional scale
rather than a global scale [12, 21, 22].

Unfortunately, most of the current data mining tech-
niques are ill-prepared for discovering regional knowledge.
For example, when using traditional association rule min-
ing, regional patterns frequently fail to be discovered due
to insufficient global confidence and/or support. Further-
more, for a given dataset there is a non-finite number of
subregions. This raises the questions on how to measure
the interestingness of a set of regions and how to identify
regions using a given measure of interestingness. One fre-
quently chosen approach is to select regions to be mined
based on a priori given structure, such as a grid structure
based on longitude and latitude or political boundaries; for
example, using counties as subregions of a state. Unfortu-
nately, the surface boundary of the so constructed regions
frequently does not match the surface boundary of the in-
teresting patterns, making them unlikely to be discovered.
For example, let us assume that there are high arsenic con-



Table 1. A two-way contingency table between the
well depth and arsenic concentration.

Well Depth Arsenic Concentration Total
dangerous safe

(0, 215.5] 1000 1000 2000
(215.5,∞) 1200 800 2000

2200 1800 4000

Table 2. A three-way contingency table between geo-
graphic zone A and zone B.

Well Arsenic Concentration Total
Depth dangerous safe

ZoneA (0, 215.5] 400 100 500
(215.5,∞) 1050 450 1500

ZoneB (0, 215.5] 600 900 1500
(215.5,∞) 150 350 500

2200 1800 4000

centrations along a river that crosses multiple counties in
Texas. In this case, mining regional rules at county level
is unlikely to detect this pattern, due to Simpson’s paradox
(see Section 1.1).

In this paper, we propose a novel framework to mine
regional association rules based on a given class structure.
A reward-based regional discovery methodology is intro-
duced, and a new divisive, grid-based supervised clustering
algorithm is presented that identifies interesting subregions
in spatial datasets. Then, an integrated approach is pre-
sented to systematically mine regional rules. The proposed
framework is evaluated in a real-world case study that iden-
tifies spatial risk patterns from arsenic in Texas water sup-
ply.

This paper is organized as follows. Section 1.1 discusses
Simpson’s paradox. Section 1.2 reviews related work. Sec-
tion 2 introduces our region discovery framework and Sec-
tion 3 describes region discovery algorithm and association
rule mining algorithm. Section 4 presents the results of the
case study and Section 5 concludes the paper.

1.1. Simpson’s Paradox

A well known issue in spatial datasets is that global pat-
terns can be very different from regional patterns. This
phenomenon is known as Simpson’s paradox [7], or spatial
heterogeneity [30]. We illustrate the nature of this paradox
using table 1 and 2.

Consider the relationship between well depth and ar-
senic concentration as shown in Table 1. The following
rule suggests that a well up to 215.5-feet deep is associated
with dangerous arsenic levels.

sample_rule : is_a(X,well)∧depth(X,0−215.5)

→ arsenic_level(danderous).

However, whether the rule holds or not depend on where
the well locates. Let’s assume that the minimum confidence
threshold is 70%. We now calculate the confidence of the
sample_rule globally (zone A and Zone B in table 1) and
locally (Zone A and Zone B separately in table 2). In ta-
ble 1, the rule is not strong enough to be identified globally
because its confidence value 50% is less than the 70% min-
imum confidence threshold:

confidence(sample_rule) = 1000/2000= 50%.

While in Zone A (Table 2) the rule holds because its confi-
dence value 80% is above the 70% minimum confidence:

confidence(sample_rule) = 400/500= 80%.

This rule does not hold in zone B (Table 2):

confidence(sample_rule) = 600/1500= 40%.

Hence a well up to 215.5-feet deep ispositively associ-
atedwith dangerous arsenic levels in zone A but isnega-
tively associatedin the combined dataset. The reversal in
the direction of association is known as Simpson’s paradox.

The Simpson’s paradox occurs when some underlying
variables (in our example, zones) that have a large effect
on the ratios of stratified data (in our example, Zone A and
Zone B are two strata). Proper stratification proves to be
an effective way to avoid generating spurious patterns re-
sulting from Simpson’s paradox [20]. In this paper, we
aggregate spatial objects using a given measure of interest-
ingness to identify regions. Then on those regions we mine
regional association rules, which might not be discovered
in a global search.

1.2. Related Work

The areas most relevant to our work are: spatial asso-
ciation rule mining, co-location rule discovery, supervised
and semi-supervised clustering.

Association rule mining has been introduced in [2]
to mine interesting relationships hidden in market basket
transactions. Spatial association rule mining [16] extends
association rule mining to spatial datasets. A spatial asso-
ciation rule takes the form of

P1∧P2∧ ...∧Pm→ Q1∧Q2∧ ...∧Qn (sup%, con%).

It denotes association relationships among a set of pred-
icatesPi (i = 1, ...,m) and Q j ( j = 1, ...,n), where there



exists at least one spatial predicate. Spatial predicates may
represent topological relationships between spatial objects
(e.g., intersects, contains), or indicate a spatial orientation
(e.g., north, left). The support of the rule (sup%), mea-
sures the percentage of transactions containing both the an-
tecedent and consequent of the rule. The confidence of the
rule (con%) indicates thatcon% of transactions that satisfy
the antecedent of the rule will also satisfy the consequent
of the rule. A ruleP1∧P2∧ ...∧Pm → Q1 ∧Q2∧ ...∧Qn

is strong if sup% andcon% satisfy minimum support and
minimum confidence thresholds.

A common strategy used in spatial association rule min-
ing is to decompose the problem into three subtasks:

1. Item representation and transaction definition: define
“items” and “transactions” from spatial datasets.

2. Frequent itemset generation: find all the itemsets that
satisfy the minimum support threshold.

3. Rule generation: construct rules from the frequent
itemsets that satisfy the minimum confidence thresh-
old.

Apriori-style [2] association mining algorithms require that
objects are described using nominal attributes. Therefore
continuous attributes have to be transformed into appropri-
ate formats. In addition, transaction definition is implicit
in spatial space. If spatial association rule discovery is re-
stricted to a reference feature (such as cities or wells), then
transactions can be defined using the instances of this ref-
erence feature, as in [16]. Otherwise, transactions must be
generated by mining algorithms, as in spatial co-location
mining by [32]. This paper adopts the transaction model
in [16]. While co-location rule discovery identifies subsets
of spatial features frequently located together [32]. It fo-
cuses on finding frequent, global patterns that characterize
the complete dataset, whereas our approach centers on dis-
covering regional patterns.

Supervised clustering [8, 9] focuses on partitioning clas-
sified examples, maximizing cluster purity while keeping
the number of clusters low. Semi-supervised clustering em-
ploys a small amount of labeled data to aid unsupervised
learning [3]. This paper applies supervised clustering to
a new problem: region discovery in spatial datasets con-
taining classified examples, then association rule mining is
performed in the obtained regions.

2. Problem Formulation and Integrated
Framework for Regional Association Rule
Mining

There are two phases in the proposed integrated frame-
work for regional association rule mining (Figure 1):

Figure 1. The Integrated Framework for Regional As-
sociation Rule Mining.

1. Phase I: Discover and identify interesting regions.

2. Phase II: Spatial association rule mining for each iden-
tified region.

In the first phase, a supervised clustering algorithm using
multi-resolution grids divides the whole dataset into a num-
ber of non-overlapping spatial subregions. In this phase,
there are two challenges: how to measure the interesting-
ness of a set of regions and how to identify regions using
a given measure of interestingness. In the second phase,
the regions are considered one at a time and all frequent
itemsets for that region are generated. Regional associa-
tion rules are then constructed from these frequent item-
sets. The resulting rules are examined. In the case that the
results are unsatisfactory for a particular region this feed-
back will be used to fine tune parameters of the regional
discovery algorithm and association rule mining algorithm.

2.1. Problem Formulation

Let D be a spatial dataset, andS= {s1,s2, ...,sl} be a set
of spatial attributes,A = {a1,a2, ...,am} be a set of non-
spatial attributes, andCL = {cl1,cl2, ...,cln} be a set of
class labels. Let

I = S∪A∪CL

= {s1,s2, ...,sl ,a1,a2, ...,am,cl1,cl2, ...,cln}

be the set of all items inD. Continuous attributes are trans-
formed into nominal attributes. LetT = {t1,t2, ...,tN} be
the set of all the transactions.T can be represented as a
relational table, which containsN tuples conforming to the
schemaI (I containsl + m+ n number of items). Thus an
item i ∈ I is a binary variable whose value is 1 if the item is



present inti (i = 1, ...,N) and 0 otherwise. Consequently,
the set of transactionsT is classified based on the given
class structureCL.

Our framework leads to a class-guided generation of as-
sociation rules that sheds more light on the patterns related
to the given class structure. We define such rules assuper-
vised association rules. The formal definition is

Definition 1 A supervised association ruler is of the
form P→Q, whereP⊆ I , Q⊆ I , and(P∪Q)∩ CL 6=
Ø.

The rule r holds in theD with confidenceconand support
supwhere

sup(P→ Q) =
σ(P∪Q)

N
,

con(P→ Q) =
σ(P∪Q)

σ(P)
.

The support count is defined asσ(α) = |{ti |α ⊆ ti , ti ∈T}|,
(i = 1, ...,N), where| . | denotes the number of elements in
a set. A supervised association rule isstrong if it satisfies
user-specified minimum support (min_support) and mini-
mum confidence (min_con f idence) thresholds.

Given these definition and nomenclature, the problem of
regional association rule mining can be defined as:

Find: interesting regions and supervised association rules
from each discovered region.

Given: a set of items I , a classified transaction
set T, a fitness function for the measure of
interestingness (see section 2.2), minimum cell
size thresholdmin_cell_size for region discover-
ing algorithm (see section 3.1), minimum sup-
port thresholdmin_supportand confidence threshold
min_con f idence.

2.2. Measuring the Interestingness of a Set of Re-
gions

The first challenge in the region discovery is how the
interestingness is measured. In this section, we give formal
definition of a region and its interestingness measurement.

A region is a surface that contains a set of spatial ob-
jects.EXT(R), the extension ofR, denotes the objects be-
longing to a regionR. A region should be contiguous, that
is, for each pair of objects belonging to the same region,
there always must be a path within this region that con-
nects them. Consider a global regionR, a datasetD, where
D = EXT(R), and an underlying class structureCL. We
find subregionsR1, ...,Rm such that:

1. EXT(Ri) ⊂ EXT(R).

2. The subregions are disjoint:EXT(Ri)∩EXT(Rj) =
Ø, i 6= j.

3. The spatial objectsEXT(Ri) in regionRi maximize a
given measure of interestingness. For example, one
measure could be the purity of region – most or all
objects inRi belong to the same class, which is equiv-
alent toEXT(Ri) having a very low entropy with re-
spect to the underlying class structureCL.

4. The generated regions are not required to be ex-
haustive with respect toR, that is, EXT(R1)∪ ...∪
EXT(Rm) ⊆ EXT(R).

Our region discovery algorithm employs a reward-based
evaluation scheme that evaluates the quality of the gener-
ated regions. The fitness function that evaluates the quality
of the generated regionsRX = {EXT(R1), ...,EXT(Rm)}
is defined as the sum of the rewards obtained from each
regionRi (i = 1..m) (Equation 1).

q(RX) =
m

∑
i=1

(reward(Ri)×|Ri|
β ), whereβ > 1. (1)

This evaluation scheme encourages combining small re-
gions into larger ones if the rewards of the combined re-
gions do not decrease. Consequently,q(RX) uses|Ri |

β , the
region size|Ri | with parameterβ > 1, to increase the value
of the fitness nonlinearly and favor a region with more ob-
jects.

2.3. Reward Function for Regional Association
Rule Mining

Different reward functions that correspond to various
domain interest can easily be supported in this framework.
For example, a reward function can be designed to find re-
gions that favor the discovery of co-location patterns de-
scribed in [32]. Or we can use a reward function to facil-
itate class association rule mining [18, 37] to build more
accurate regional classifiers.

In this paper, we adopt a single measure of interesting-
ness to findhotspotsandcoldspotsthat were developed and
proved to be effective in our previous work [8]. The mea-
sure is based on a class set of class labelsCL. It rewards
regions in which the probability distribution ofCL signif-
icantly deviates from its prior probability relying on a re-
ward functionτ. A region is ahotspotif its probability
distribution ofCL is significantly higher than the expected
probability. A region is acoldspotif its probability distri-
bution ofCL is significantly lower than the expected prob-
ability.

Let N denotes number of objects in a datasetD, xi theith
cluster, andX = {x1,x2, ...,xk} a clustering solution con-
sisting of clustersx1 to xk. Each cluster corresponds to a



Figure 2. The reward function τ when η = 1

subregionxi = EXT(Ri), i = 1..k. The fitness functionq(X)
(Equation 2) is defined as

q(X) =

k

∑
i=1

τ(P(xi ,CL), prior(CL),γ1,γ2,R+,R_,η)× (
|xi|

N
)β (2)

The reward functionτ (equation 3) is calculated based on
P(xi ,CL) andprior(CL), with the following parameters:η ,
γ1, γ2, R+, R_, whereη > 0, γ1 ≤ 1≤γ2, 0≤ R+, R− ≤ 1.
P(xi ,CL) is the probability of objects in clusterxi belonging
to the class of interestCL, andprior(CL) is the probability
of objects in datasetsD belonging to theCL. R+ and R−are
the maximum reward for hotspot and coldspot respectively.

τ(P(xi ,CL), prior(CL),γ1,γ2,R+,R−,η) = (3)






















[

prior(CL)×γ1−P(xi ,CL)
prior(CL)×γ1

×R−

]η
i f P(xi ,CL) < priori(CL)× γ1

[

P(xi ,CL)−prior(CL)×γ2
1−prior(CL)×γ2

×R+

]η
i f P(xi ,CL) > priori(CL)× γ2

0 otherwise

The parameterη determines how quickly the reward
grows to the maximum reward (eitherR+ or R−). If η is set
to 1, the reward function changes linearly, as shown in Fig-
ure 2. In general, the larger value forη , the higher rewards
for purer clusters.prior(CL)× γ1 and prior(CL)× γ2 de-
termines the thresholds based on which a reward is given
to a cluster.

Example 1 explains how to calculate the fitness of a
clustering schemaX of a sample dataset in Figure 3.

Example 1. Let us assume a clustering schemaX
is evaluated with respect to a class of interest
“dangerous” (high-level arsenic concentrations) with
prior(dangerous) = 0.2 and a dataset that contains
1000 examples. Suppose that the dataset is subdi-
vided into 4 clustersX = {x11,x12,x13,x14} at level

1, and|x11| = 50, |x12| = 200, |x13| = 400, |x14| =
350. Assume that there are 20, 100, 80, and 0 ob-
jects labeled with “dangerous” class in the 4 clus-
ters respectively. P(x11,dangerous) = 20

50 = 0.4,
P(x12,dangerous) = 100

200 = 0.5, P(x13,dangerous) =
80
400 = 0.2, P(x14,dangerous) = 0

350 = 0. The param-
eters used in the fitness function are as follows:γ1 =
0.5, γ2 = 1.5, R+ = 1, R− = 0. Henceprior(CL)×
γ1 = 0.2×0.5= 0.1, prior(CL)×γ2 = 0.2×1.5= 0.3.
With this setting, a cluster does not receive any reward
if its probability of class “dangerous” are in the range
of [0, 0.1] (due toR− = 0) and[0.1, 0.3] (due to the
values ofprior(CL)× γ1 andprior(CL)× γ2 ). There-
fore, no reward is given to clusterx13 andx14. The
reward for the remaining clusters are

τ(x11) = (
0.4−0.3
1−0.3

)1 =
1
7
,

τ(x12) = (
0.5−0.3
1−0.3

)1 =
2
7
.

The fitness value of the clustering schemaX is

q(X) = 1
7 × ( 50

1000)
1.1 + 2

7 × ( 200
1000)

1.1 +

0× ( 400
1000)

1.1 +0× ( 350
1000)

1.1

= 0.012

3. Algorithms

3.1. Region Discovery Algorithm:
Supervised Clustering Using Multi-
Resolution Grids (SCMRG)

In this section, we first give details of our region dis-
covery algorithm based on the reward and fitness function
defined in section 2. Then we explain our regional rule
generation algorithm.

We have developed an algorithm called Supervised
Clustering using Multi-Resolution Grids (SCMRG) [35] to
identify promising regions. The SCMRG algorithm is a
hierarchical grid-based method that utilizes a divisive, top-
down search: each cell at a higher level is partitioned fur-
ther into a number of smaller cells in the lower level, and
this process continues if the sum of the rewards of the lower
level cells is greater than the obtained reward for the cell at
the higher level. The returned cells usually have different
sizes, because they were obtained at different level of reso-
lution. A queue data structure is used to store all the cells
that need be processed. The algorithm (see Algorithm 1)
starts at a user defined level of resolution, and considers
the following three cases when processing a cellc.



Algorithm 1 The Algorithm of Supervised Clustering us-
ing Multi-Resolution Grids (SCMRG).

SCMRG (min_cell_size)
1.Determine a level of resolutionl to start with.
2.Assign spatial objects to grid cells.
3.for each cellc at current levell do
4. enqueue(c, cellQueue).
5.end for
6.while NOT empty(cellQueue) do
7. c= dequeue(cellQueue).
8. r = reward (c). {Calculate reward for the cell.}
9. for eachcchild ∈succ(c) do
10. rchildren = rchildren+reward (cchild).
11. end for {Calculate reward for its children.}
12. for eachcgrandchild∈succ(succ(c)) do
13. rgrandchildren= rgrandchildren+reward (cgrandchild).
14. end for {Calculate reward for its grandchildren.}
15. if r > 0 {The cell receives a reward.}
16. if r > rchildren AND r > rgrandchildren

17. label the cell as a cluster.
18. else{The cell should be divided further.}
19. if ( the size of each cchild ∈succ(c)
>min_cell_size)
20. enqueue(succ(c), cellQueue).
21. end if
22. end if
23. else ifr = 0{The cell does not receive a reward.)
24. if NOT(rchildren = 0 AND rgrandchildren= 0)
25. if ( the size of each cchild ∈succ(c)
>min_cell_size)
26. enqueue(succ(c), cellQueue).
27. end if
28. end if {The cell should be divided further}
29. end if
30.end while
31.Collect all the cluster-labeled cells from different levels.
32.Obtain regions by merging neighbor clusters if it im-
proves the fitness.
33.Return the obtained regions.

Figure 3. Running the SCMRG algorithm on a sample
dataset.

1. Case 1. If the cellc receives a reward, and its reward
is greater than the sum of the rewards of its children
(succ(c)) and greater than the sum of rewards of its
grandchildren, this cell is returned as a cluster by the
algorithm (step 15-17).

2. Case 2. If the cellc does not receive a reward and its
children and grandchildren do not receive a reward,
neither the cell nor any of its decedents will be labeled
as a cluster (step 23-29).

3. Case 3. Otherwise, put all the children of the cellc
(succ(c)) into a queue for further processing (step 18-
21, step 24-28).

We traverse through the hierarchical structure and exam
those cells in the queue from the higher level. The algo-
rithm uses a user-defined cell size as a depth bound. Cells
that are smaller than this cell size will not be split any fur-
ther (step 19, step 25). Finally, we collect all the cells that
have been identified in case 1 from different levels, and we
merge neighbor clusters if it improves the fitness as defined
in equation 2. The obtained regions are returned as the re-
sult of executing SCMRG (step 31-33).

This hierarchical grid-based approach captures cluster-
ing information associated with spatial cells without re-
course to the individual objects as we do not drill down
a cell if it does not look so promising (case 2). The advan-
tage is that the computational complexity is linear with the
number of grid cells processed, which is usually much less
than the number of objects. Thus the algorithm is capa-
ble of processing large datasets efficiently. The employed
framework has some similarity with the framework intro-
duced in the STING algorithm [36]. The difference is that



our algorithm focuses on finding interesting cells (that re-
ceive high reward) instead of cells that contain answers to
a given query. And it only computes cell statistics when
needed and not in advance as STING does.

The example in Figure 3 explains the procedure of this
algorithm using a sample dataset. The first decomposition
results in 4 cellsc11,c12,c13,c14 at level 1. As illustrated
in Example 1, onlyc11 andc12 receive rewards. Assume
the reward ofc11 is greater than the sum of the rewards
of its children and greater than the sum of rewards of its
grandchildren,c11 is then labeled as a cluster according to
case 1. The cell,c14, does not receive any rewards. As-
sume neither do its children nor grandchildren receive any
rewards. According to case 2,c14 is not labeled as a cluster,
and its successors are not saved into the queue. Although
the cell, c13, receives no reward, assume its children re-
ceive rewards. According to case 3, all the children ofc13

are saved into a queue to be further processed. The cells
at level 1 are then divided into level 2 and 3 and the same
procedure is applied to all the cells in the queue. Each cell
is labeled accordingly. The intermediate results are shown
at level 2 and 3 in Figure 3. Neighbor clusters are then
merged if it improves the fitness. In this example, there are
two regions identified.

3.2. Generation of Regional Rules

Once regions are identified, we construct frequent item-
sets for each region. Our Supervised_Apriori_Gen algo-
rithm (see Algorithm 2) extends the Apriori algorithm [2]
by utilizing a given class structure.

The Apriori algorithm first makes a single pass over the
data set to determine the support of each single item, which
generates all frequent 1-itemsets,F1. Next, the algorithm it-
eratively generates candidate k-itemsets using the frequent
(k-1)-itemsets found in the previous iteration. Candidate
itemsets are pruned if it is not frequent. The algorithm
terminates when there are no new frequent itemsets gen-
erated, e.g.,Fk=Ø. The given class structure is incorpo-
rated in our Supervised_Apriori_Gen algorithm by enforc-
ing that each candidate k-itemset must include at least one
class label; otherwise it is pruned even it is frequent. The
Supervised-Apriori-Gen uses theFk−1×Fk−1 method [34]
to merge a pair of frequent (k-2)-itemset . Basically, let
A= {a1,a2, ...,ak−1} andB= {b1,b2, ...,bk−1} be a pair of
frequent (k-1)-itemset. A and B are merged if they satisfy
the following conditions:

ai = bi ( f or i = 1,2, ...,k−2) and ak−1 6= bk−1

Supervised-Apriori-Gen algorithm initially starts with
candidate 2-itemset construction, which is the base of the
K-itemset generation (k > 2). To ensure each 2-itemset

Algorithm 2 Candidate Generation and Pruning:Super-
vised_Apriori_Gen
Supervised_Apriori_Gen(Fk−1)
1.if k = 2 {Deal with candidate 1- and 2-itemsets}
2. for each frequent 1-itemsetf ∈ F1 do
3. insertf into C1. {Generate candidate 1-itemsets}
4. end for
5. (C1_class_label,C1_other) = split(C1,CL).
{Split C1 , group class labels intoC1_class_label, and the
other frequent 1-itemsets intoC1_other}.
6. for each candidate itemset c1 ∈ C1_label

do {Generate candidate 2-itemsets with class-label
items and non-class-label items}
7. for each candidate itemsetc2∈C1_other do
8. c = form c1 andc2.
9. insert c into C2. {Generate candidate 2-
itemsets}
10. end for
11. end for
12. for each candidate itemsetc1∈C1_label do
13. Cpost = subset_split(C1_label,c1). {Identify all
the class labels in the arrayC1_label that is located afterc1}
14. for each candidate itemsetc2∈Cpost) do
15. c = form c1 andc2.
16. insertc into C2.

17. end for
18. end for
19.else
20. for eachi1 in Fk−1
21. for eachi2 in Fk−1

22. if (first k−2 items ofi1, i2 same)∧(last item of
i1, i2 differs)
23. c =form (firstk−1 items ofi1) and (last item
of i2).
24. insertc into Ck

25. end if
26. end for
27. end for
28.end if
29.returnCk



Figure 4. Map of Texas showing arsenic concentration
level. Legend: green (or light grey) star – safe wells;
red (or dark grey) dot – dangerous wells.

must include at least one class label, the algorithm first con-
structs candidate 1-itemsets from frequent 1-itemset (step
2-4). Second, to generate candidate 2-itemsets with class
labels, the algorithm separates class-label items from other
items withsplit function (step 5). Then the algorithm enu-
merates class-label items with the rest items (step 6-11),
as well as class-label items with themselves (step 12-18).
Thus step 6-11 generate candidate 2-itemsets formed be-
tween class labels and other non-class-label items; step 12-
18 generate candidate 2-itemsets formed between class la-
bels. The 2-itemsets are then used for K-itemsets genera-
tion (K > 2) (step 19-26).

After frequent itemsets are generated, we use the same
approach proposed by the Apriori algorithm to generate
strong supervised rules usingmin_con f idencethreshold.

4. A Real-World Case Study: Arsenic Spatial
Risk Pattern Discovery in Texas

In this section we describe the experiment procedures
of applying the proposed framework on a real world case
study that identifies arsenic spatial risk patterns in Texas
water supply. Then we present and discuss the experimen-
tal results and evaluate the performance of the proposed
framework.

The experiments are conducted in four steps:

1. Data collection and data preprocessing, including
data cleaning, transforming continuous attributes into
nominal attributes, and constructing transactions us-
ing water well as the reference feature.

2. Identifying arseniccoldspotsand hotspots. In this
paper, a region whose arsenic distribution is signifi-
cantly higher (high reward value with respect to “dan-
gerous”) is considered as an arsenic hotspot; a region
whole arsenic distribution is significantly lower (high
reward value with respect to “safe”) is considered as
an arsenic coldspot.

3. Mining supervised association rules from each identi-
fied region and for the complete dataset.

4. Analyzing the obtained rules and rule sets, adjust the
parameter settings, and re-run the experiments in step
2 and 3 according if results are unsatisfactory.

4.1. Datasets: Data Collection and Data Prepro-
cessing

The datasets used in this study are extracted from the
Texas Ground Water Database (GWDB) maintained by
the Texas Water Development Board, the state agency in
charge of statewide water planning [4]. The Texas Wa-
ter Board has monitored and analyzed the concentrations
of this super toxic element over the last 25 years. Ar-
senic in very high concentrations is poisonous. Low-level,
long term exposure to arsenic can lead to increased risk of
cancer [10]. Arsenic is derived from both anthropogenic
sources – such as drainage from mines and mine tailings,
pesticides, and biocides, and from natural sources – such
as hydrothermal leaching of arsenic containing minerals
or rocks. The World Health Organization has reported ar-
senic in drinking water in U.S., Thailand, Mexico, India,
Hungary, Ghana, Chile, China, Bangladesh, and Argentina
[24].

Because data collection and maintenance procedures
and standards have been changed over the years in the
GWDB, datasets have to be cleaned to deal with prob-
lems such as missing values, inconsistent data, and dupli-
cate entries. The obtained arsenic spatial dataset includes
spatial attributes (S), non-spatial attributes (A), and class
labels (CL) for each water well. Some of the spatial at-
tributes are directly extracted from the database, such as
river basin, zone, latitude and longitude. Implicit spatial
attributes, such as distance between wells and rivers, are
estimated using the 9-intersection model [6]. Non-spatial
attributes are selected with the assistance of domain experts
[14, 17, 26]; they include well depth, concentration of flu-
oride, nitrate, and other chemical metal elements, such as
vanadium, iron, molybdenum and selenium etc. We clas-
sify water wells into two classes: “safe” and “dangerous”.
Based on the standard for drinking water by Environment
Protection Agency [1], a well is considered “dangerous”
if its arsenic concentration level is above 10µg/l . To en-
sure quality of the association rule generated in the study,



Figure 5. Interesting regions are identified usingβ =
1.01, η = 1, γ1 = 0.5, γ2 = 1.5, R+ = 1, R− = 1. Aver-
age region purity = 0.85.

we only select lab test results that used honored sampling
procedures, which result in 11,922 records selected from
the GWDB after the process of data cleaning. Figure 4 il-
lustrates arsenic concentration in Texas, where safe wells
are in green (or light grey), dangerous wells in red (or dark
grey).

In preparation of the association rule mining, continu-
ous attributes excluding latitude and longitude are first con-
verted into nominal attributes using the supervised method
Recursive Minimal Entropy Partitioning [11]. The super-
vised entropy based method uses class labels “dangerous”
and “safe” to place the splits in a way that maximizes the
purity of the intervals. The method usually results un-
equal bin size and has been proved to produce better re-
sults in data mining tasks [5]. For example, the value of ni-
trate concentration has been discretized into five intervals
of (0,0.085], (0.085,0.455], (0.455,16.1], (16.1,28.085],
(28.085,∞) (measurement unitmg/l ).

4.2. Experimental Results Evaluation

From our study, we have re-discovered several in-
teresting risk regions with high arsenic concentrations
(hotspots), which have been studied by geoscientists be-
fore. We have also identified regions with low arsenic con-
centrations (coldspots). The association rules that we con-
structed from those identified regions will help the geosci-
entists to identify the cause of high arsenic concentration
in different regions, and the common situations for those

Figure 6. Interesting regions are identified using β =
1.035, η = 1, γ1 = 0.5, γ2 = 1.5, R+ = 1, R− = 1. Av-
erage region purity = 0.83.

regions with low arsenic concentrations. We are present-
ing our results with validation from the published results in
geoscience for both regional discovery and association rule
mining.

In the region discovery, the SCMRG algorithm is ap-
plied to a dataset that consists of longitude and latitude
of wells along with arsenic class labels (“dangerous” or
“safe”). Figure 5 depicts the result of such a run that iden-
tifies four regions. Specifically, Region 1 and 3 have high
density of dangerous wells, and Region 2 and 4 have high
density of safe wells. Hotspot Region 1 overlaps with the
arsenic risk zone reported in National Water-Quality As-
sessment Program [27], and hotspot Region 3 is confirmed
as an arsenic risk zone by Parker’s work published in the
Natural Arsenic in Groundwater [26].

If we are interested in finding larger regions with likely
lower purity, using a larger value ofβ results in bigger size
of regions. Figure 6 shows enlarged regions whenβ is in-
creased from 1.01 to 1.035. In our experiments, we ad-
justed the granularity of regions by the quality of rules dis-
covered in step 3. We observed thatβ = 1.01, η = 1 give
us best results in the rules constructed in the supervised as-
sociation rule mining.

The Supervised_Apriori_Gen algorithm is used to gen-
erate frequent itemsets for all the regions identified. We use
min_support= 10% andmin_con f idence= 70% thresh-
old for the experiments. We present the first few rules for
the regions investigated, all meaningful and important ac-
cording to arsenic study literature.



Mining regional rules in arsenic hotspots discovers at-
tributes that are associated with high arsenic concentra-
tions, and in coldspots discovers attributes related with low
arsenic concentrations. For example, in Region 3 of Figure
5, we discover:

is_a(X,Well)∧nitrate(X,0−0.085)

→ aresnic_level(X, dangerous) (100%). (1)

The rule states with 100% confidence that wells in Re-
gion 3 with nitrate concentration lower than 0.085mg/l
have dangerous arsenic concentration level. The strong
association between nitrate and high arsenic concentration
level is verified by Hudak’s work [14] in environmental ge-
ology study.

In region 1 of figure 5, we also discovered:

is_a(X,Well)∧

vanadium(X,20.05−37.95)∧selenium(74.55−∞)

→ aresnic_level(X, dangerous) (100%). (2)

The rule states with 100% confidence that wells in
Region 1 with vanadium concentration between 20.05
and 37.95µg/l and selenium concentration larger than
74.55µg/l have dangerous arsenic concentration level. Our
discovery is also confirmed by Lee et al. in [17].

Our experiment results also show some novel rules that
have not been analyzed in the literature of arsenic analysis;
for example, in Region 1 the following rule is discovered:

is_a(X,Well)∧depth(X,0−215.5)∧ iron(19.65−20.05)

→ aresnic_level(X, dangerous) (100%). (3)

The rule indicates that a certain range of well depth and
iron concentration level are associated high arsenic concen-
trations. We hope that the results from our study will help
the domain experts in selecting interesting hypothesis for
further scientific exploration, without the need to have to
analyze complex casual relationships initially.

Furthermore, we are interested to know whether the
rules are different in different regions. We compared
the sets of rules generated for Region 1 and Region 3
(hotspots), Region 2 and Region 4 (coldspots). The spa-
tial risk patterns associated with arsenic are very different
in each region. For example, comparing the rule 1 identi-
fied in Region 3 with the rule 4 extracted from the Region
1:

is_a(X,Well)∧nitrate(X,28.085−∞)∧

∧ f luoride(X,4.605−∞)

→ aresnic_level(X, dangerous) (100%). (4)

Instead of being related with relatively low concentra-
tion of nitrate (< 0.085), the rule says that with 100% confi-
dence, wells in Region 3, with nitrate concentration higher
than 28.085mg/l , and fluoride concentration higher than
4.605mg/l , have dangerous arsenic concentration level.

Rules in coldspots Region 2 and 4 shed lights on what
may prevent high arsenic concentrations. For example, we
find the following rule, discovered both in Region 2 and 4,
states what is associated with low arsenic concentrations.

is_a(X,Well)∧nitrate(X,0.455−16.1)∧

f luoride(X,0.095−0.315)∧vanadium(X,3.25−5.945)

→ aresnic_level(X, sa f e) (100%) (5)

As comparison, we also mine supervised association
rules in the whole dataset. After some exploratory exper-
iments, we found that by reducing themin_support from
10% to 1%, we are able to identify more interesting rules
globally. However, in this case more than 100,000 rules
are generated. Compared with the 300 rules on average
per region in regional rule mining, it is cumbersome to go
through all those rules to find any meaningful ones. The
need to use low support values for complete datasets has
also been observed by [18]. However, all the regional rules
(rule 1 to 5) that we discussed previously are not generated
because they do not have enough confidence or support
globally. Statewide rule mining finds very general rules,
such as:

is_a(X,Well)∧water_use(X, ”by humam beings”)∧

arsenic_level(X,sa f e)

→ inside(X,Basin19) (86%) (6)

It says that wells used by human beings, with safe
arsenic concentration level are very likely (confidence is
86%) located in river basin 19.

In summary, from these experiments we identified
meaningful regions at different granularity and regional
rules based on our proposed framework and algorithms. We
also confirmed what has been observed by researchers in
spatial data mining and geoscience, that regional rules are
not the representative of global rules, and vise versa.

5. Conclusions

One critical requirement for spatial data mining is the
capability to analyze datasets at different levels of granu-
larity, in addition to analyze data globally. Furthermore,
it is desirable to have the capability to move between dif-
ferent granularities, particularly if the obtained results are



unsatisfactory. We also provided evidence that discover-
ing regional patterns is very important in spatial data min-
ing. Unfortunately, the currently employed association rule
mining techniques do not offer such capability. We see our
work as a first step toward providing such capabilities.

This paper centers on discovering regional association
rules in spatial datasets. In particular, we introduce a novel
framework to mine regional association rules relying on a
given class structure: transaction are assumed to belong to
a finite set of classes. A reward-based region discovery
method has been proposed that allows identifying interest-
ing subregions in spatial datasets for which regional associ-
ation rules are then generated. In addition, a novel, divisive,
grid-based supervised clustering algorithm named SCMRG
has been discussed that searches for interesting regions in
large spatial datasets, maximizing a reward-based fitness
function that measures the interestingness of a given set of
regions. Then, an integrated approach is presented to sys-
tematically mine regional rules.

We evaluated the proposed framework on a real-world
case study to identify spatial risk patterns of arsenic in
Texas water supply. We identified arsenic hotspots and
coldspots and created regional rules from the obtained re-
gions, rediscovering several relationships that are already
reported in the scientific literature. Moreover, our approach
identified several new relationships between arsenic and
other factors that provide scientists with novel hypothesis
that deserve further exploration in future research.

Our future work will center on applying our techniques
to larger arsenic datasets that also include population, geo-
logical, and agricultural data. We plan to construct a gen-
eral framework for interpreting and evaluating risks in en-
vironmental data, such as discovery co-location patterns
and ground level ozone forecasting. Finally, we plan to ex-
tend our framework to support region discovery for spatio-
temporal datasets.
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