Several Remarkson Mining Frequent Trajectoriesin
Graphs

Henry Z. Ld', Dan A. Simovict, and Wei Ding

Univ. of Massachusetts Boston, Dept. of Computer Scienostd®, Massachusetts
{henryzl o, dsi m di ng}@s. unb. edu

Abstract. We apply techniques that originate in the analysis of malkesket

data sets to the study of frequent trajectories in graptejediories are defined
as simple paths through a directed graph, and we put fortle slafinitions and
observations about the calculation of supports of pathkifndontext. A simple

algorithm for calculating path supports is introduced andlygzed, but we ex-
plore an algorithm which takes advantage of traditionajdent item set mining
techniques, as well as constraints placed on supports byrépd structure, for
optimizing the calculation of relevant supports. To thid ghe notion of the path
tree is introduced, as well as an algorithm for producindhquath trees.

1 Introduction

Determining frequent item sets in market basket data sets isisupervised data min-
ing activity that has received a great deal of attention mr@gg with the seminal pa-
per [2] and continuing with several fundamental refererji6e8, 5] A monograph ded-
icated to this task is [1].

Finding frequent item sets is a necessary step in compusisgcation rules. An
association rule stipulates that with a certain probahilitstomers who buy an item set
K will buy an item setH. Such rules provide actionable information for marketeers
who will place items fromK U H in physical proximity in order to stimulate sales.

The purpose of this paper is to develop a study of frequejgdi@ries in graphs
inspired by the ideas used in the analysis of market basketsd#s. The study of tra-
jectory data has been explored intensively in the litee{8 8, 4] motivated by the
large amount of spatio-temporal data allowed by locatiaruasition technologies. Our
model is simpler than the model used in the previous refegnia that, it does not
include explicitly the temporal aspect. In exchange, oyrapch extends ideas that
originate in market-basket analysis and allows us to buiithke and efficient algo-
rithms that will allow, at a later stage, the integrationtué temporal aspect.

We present some preliminary results and formulate a numbepen problems
that we intend to approach in our future research. In thergksection we set forth
definitions and preliminary information relevant to our wof heorems and observa-
tions about the implications of the graph for calculatinghpsupports are discussed in
the third section. Section 4 proposes a simple algorithncédeulating path supports.
Section 5 introduces the notion of path trees, which prowidight into possible trajec-
tories in a graph, and may be used in future work to reducertt@iat of computation

required for path support. The paper concludes with a dssen®f further avenues of
research.

2 Trajectoriesin Directed Graphs

Unless stated otherwise, vectorsith are row vectors, except for vectors of the form
e; which are column vectors; the componentepére(with the exception of thet"
component that equals for1 < <.

LetG = (V, E) be afinite directed graph without loops having the set ofieest
V and the set of edgels C V' x V. We assume thalV’'| = n and|E| = m. If ¢, =
(vi,v;) € E, we refer tov; as thesourceof e, and tov; as thetargetof ey,. This defined
the mappingsource : E — V andtarget : E — V given bysource(e) = v; and
target(ex) = v; for1 < k < |E|.

Theset of outgoing edges of a vertexis out(v;) = {e € E | source(e) = v;},
while the set ofincoming edges af; isinc(v;) = {e € E | target(e) = v;}. Theout-
degree of a vertex; is the numbed, (v;) = |out(v;)|; in-degree ofv; is the number
d_(’l}i) = |inc(vi)|.

If Dis asetofvertices ig = (V, E), denote byG the subgraph of determined
by the setD, Gp = (D, (D x D) N E. The previous notations are extended faby
defining theset of outgoing edges of &

out(D) = {e € E | source(e) € D, target(e) ¢ D},
while the set ofncoming edges ab is
inc(D) = {e € E | target(e) € D, source ¢ D}.

A trajectoryin the graphy is a sequence of edgés, . . ., e,) such thatarget(e;) =
source(e;4+1) for 1 < i < p — 1 and no vertex occurs twice in the sequence

(source(e1), ..., source(ep), target(e,)).

The directed graply is represented by its incidence matéig € {—1,0,1}"*™ de-
fined as
—1 if source(e) = vp,
(Co)p =4 1 if target(ex) = vp,
0 otherwise

If the graph is clear from context, the subscdpwiill be omitted.

Note that each column corresponds to an egigend contains exactly two non-zero
numbers that correspond to the source and the targegt &ach row corresponds to a
node of the graph and contains-a for each edge that exits the node and dar each
edge that enters the node.

A trajectory is represented by a sequenhee (¢y,...,t,) € {0,1}™, wherem =
|E|, given by

{1 if e occurs in the trajectory
k= .
0 otherwise

forl <k <m.

Example 1.Consider the directed graph given in Figure 1 which has seedites and
14 edges. The incidence matfixe R"* is:

Fig. 1. Directed Graph

—1

|
-

-
-

=
-
mooooo
coroooO
-

=

coorl oo
cocooro
cocoolowr
coocoor
coloocor
olroocoo
-
~ocolooco
oclorooo
-
orocoolo
oloocoro
-
ccorolo
~loocoocoo
~

|
—

|
—

Theorem 1. LetG = (V, E) be a directed finite graph witfi’| = n and |E| = m. If
t € {0,1}™ represents a trajectory in the graghthat departs from the vertex and
ends in vertex; then

Ct = —e +e,.
A trajectory table for a directed gragh= (V, E) is a table whose attributes are the

edges of a directed graph and whose rows are trajectoriesngtance, the following
matrix 7" is a table of trajectories in the graph

o

o or Pk o
o

oo oor o
o

o oo or ol
o

)
=
o
o
o

oo oooof
R ORoP oW
oo ooook

IS
o oo oow
o oo oo

By Theorem 1, the matri€'T” gives the extremities of the paths specified above

-10-1-10 0
0 00 0 0 O
0 000 0O
CT’'=(0 1 1 0 1 1
0 000 0O
1 -10 0 0 O
0 00 1-1-1

The first, third and fourth columns refer to paths that staut;i and end invg, v4 and
vy, respectively.

3 Support for Edge Sets

If D is a set of vertices i and no trajectory begins or endsiih then

Z supp(e) = Z supp(e).

ecinc(D) ecout(D)

Let E; be the set of edges that occur on a trajectamya directed grapty = (V, E).
A set of edged(of a directed grapty = (V, E) occurs on atrajectotty= (eq, ..., ep)
if K C F.

TheT-supportof K is

suppy(K) = [{tin T | K C E}|.

It is immediate that the support functisopp; : P(E) — N is anti-monotonic, that
is, E1 C Es impliessuppy(E2) < suppy(E,) for By, Es C E.

Unlike, the similar problem involving market basket, thesésts certain interest-
ing connections between the supports of edge sets motibgtétie underlying graph
structure.

Theorem 2. LetG = (V, E) be a directed tree having the roo and the set of leaves
{u1,...,ue}. The support of any path that joing to a leafu,, equalsmin{supp(e) |
e occurs on the path joiningy to u,}.

Note that any directed graph has a cover that consists aftditérees because the
edges of the graph yield such a cover.

4 A Simple Algorithm for Support Computation

Path supports are recorded by the obgagbpor t s that consists of a hash mapsuch
thath(p) = supp(yp) for any pathp, and a methodipdat e which sets the support of
the paths.

Let = be a set of pairs of the forrfyp, s), whereg is a path ands € N. The call
supports. updat e(=) sets the supports of the paths that occur in the first com-
ponents of the pairs of to the values specified by the second components of these
pairs, respectively. When this method is callecsappor t s. updat e(p, s) we as-
sume that= = {(p, s)}. The functiorr ecur si ve-traver sal takes as arguments
a set of pathg’", a vertexv, a pathp that ends irw, a minimal level of suppor and
performs the computation shown in Algorithm 1.

Data: T, v, p, 0
Result: Thesupport s mapping
initialize supports;
foreach edgee € out(v) do
p=(pe);
s = supp(p) ;
supports. updat e(p, s);
if s > 0 then
Z =recursive-traversal (T,target(e), p, 0);
supports. updat e(=);
end

p=p—{e}

end
return supports;

Algorithm 1: The recursive functionecur si ve-tr aver sal computes the sup-
ports of allf-frequent paths that extend a given path

The functiorr ecur si ve-traver sal isusedinthe functiohr aver se which
starts with a set of path§, a vertexv and a minimal suppor® and computes the
supports of thé-frequent paths that emerge framThe pseudocode of this function is
shown in Algorithm 2.

For 1000 trajectories and a minimal supportds the algorithm applied to trajec-
tories that originate im; generates the following results:

Path Support
) 502

(’Ul, ’U3), (Ug, ’U4), (’U4, U7), (’1}7, ’UG) 354

(v1,v3), (v3,v4), (Vg,07) 498

(v1,v3)

(v1,03)

v1,v3), (v3,v4) 498
498

The algorithms in this paper were implemented in Python &d/ran on a computer
with an Inteli7 x 980 @ 3.33 GHz processor running Ubuntu 11.10. An experiment was
run on the traverse algorithm on the graph in Figure 1, wijettories generated as ran-
domly terminated walks starting at vertek. Results are shown for 100, 1,000, 10,000,
100,000, and 1,000,000 trajectories. The support thrdsbothese experiments(s2.

The dependency of the average time is shown in Figure 2.

Data: Initial vertexv and minimal support threshottd
Result: Thesupport s mapping
initialize supports;
T =0
C = incidence_matrizx;
foreach pathp € T'do

if (Ct), == —1then

| T"=T"U{p};

end
end
Z =recursive-traversal (77,v,0,0);
supports. updat e(=);
returnsupports;

Algorithm 2: The functiort r aver se computes the supports of @lifrequent paths
from an initial vertexv.

Table 1. Average running time of r aver se vs. number of trajectories for minimum support
0.2

Size of 100
data set

Time (ms

1,000 10,000 100,000 1,000,000

9.64595.331972.2519697.32¢106538.96

15

10F

Running Time

.
35 4 4.5 5 55 6 6.5
log|T|

Fig. 2. Dependency of the Average Running Time on the Size of the {fSkbgectories

Table 2. Average running time (ms)/number of maximal frequent pathsr aver se vs. 0 for
|T'| trajectories

Data
size

Minimal Support

0.01 0.05 01 02 O

4

1000
10000
10000

102/6 102/6 98/4 95/3 87
1026/6 1035/6 990/4 960/2 874
10747/6 10853/6 10318/4 9981/3 897

2
5/2
5/2

Theorem 3. LetG = (V, E) be a directed tree having the roo$ and the set of leaves
{u1,...,ue}. The support of any path that joing to a leafu,, equalsmin{supp(e) |
e occurs on the path joiningy to u,}.

5 ThePath Treeof a Graph

Market basket data studies seek arbitrary frequent item Betontrast, we are inter-
ested here in supports of sequences of edges that form pathes traffic graph. Thus,
we need to develop an adequate counterpartto Rymon trees¢hased in formulating
the standard Apriori algorithm [7].

Let P,, to be the set of all simple paths which originate from venrtexWe can
visualizeP,, graphically using a tree rootedat The children of each vertex in this
tree are vertices which are direct successors @f the graph and are not ancestors of
v; in the tree.

The path treefor paths that start from; in the directed graph given in Figure 1 is

shown in Figure 3.
v1
7N
U3 v

2
o % yl
V4 V4 Ve
€9 €9 €10 €6 h €14
U7 V7 V4 Vs v7
€7 €7 €8 h ‘68
Ve Ve U7 V4
e/ \661 €6
V2 Us Vs

Fig. 3. Path tree for the graph in Figure 1

Note that in the path tree we could have multiple occurrencean edge. For ex-
ample, in the tree shown in Figure 3, the edgeccurs twice, on the pathse;eger
and€4€1369€7.

Theorem 4. Let,,(e;) = {p € P, | e; is the last edge ip}. That is,v,, (e;) is
the set of all paths which begin at vertgxand end with edge;. Then, for trajectories
beginning at;, supp(e;) = Zpem(ej) supp(p).

Note that when v,,(e;) |= 1, thensupp(e;) = supp(p) for p € v,,(e;). We
can use this fact to extrapolate supports for paths whichirndique edges without
actually calculating support for such a path.

The following algorithm decreases the number of computatiequiring passes
through all trajectories, as is required during the comgirteof support. It does so by
using the case in the previous theorem whep (e;) |= 1.

Note that using this method requires pre-computation otesigpports, which can
be done in one pass.

Using the theorem requires the construction of a path tretedoat some vertex
v;. However, the path tree can become intractably large. Wdiginour attention to
the relevant parts of the path tree by halting tree growtloteeédges which are not
f-frequent are added.

The following algorithm computes the set of maximal patlis .

Data: T',v, 0

Result: M,

initialize supports;

T =0

C = incidence_matrix;
foreach pathp € T'do

if (Ct), == —1 then
| T'=T"U{p};
end
end
5= e ti

§={(ei,si) | si € s},
supports. updat e(¢);
M’U - @y
foreach edgee € out(v) do
if supp(e) > 6 then
| M, = M,Upath-traverse(supports,e,¥6);
end

end

return M.,;
Algorithm 3: The functionnax- pat h computes the set of all maximédfrequent

paths)M, that originate from vertex.

Data: supports, p,0
Result: set of paths\/
M =0
foreach edgee € out(target(lastedge(gp)) do
if supports(e) > ¢ andtarget(e) & p then
| M =MUpath-traverse(supports,(p,e),0);
end
end
if M = () then
| return {p};
else
| return M,
end
Algorithm 4: The recursive functiorpat h-t raver se traverses alld-frequent
paths starting withp, and returns a set of pattig which can not be extended with
f-frequent, non-repeated edges.

For 10,000 trajectories and a minimal supportaf the max- pat h function re-
turns the following table containing the maximal paths #statt fromuv; :

Maximal Path
(v1,v2), (v2,v4), (va,v7), (v7,v6), (v6, U5)
('U17U2)7 (U2,U6), (U61v5)
(1)1, '03)7 (’03, 1)4), (’04, 1)7), (1)7, vﬁ)v (vﬁv UQ)
(), (), ()

V1, 03),(V3,V4), (U4, U7 a(v77'06)7('06’v5)

The dependency of the average running time versus the silae data set for a minimal
support level of 0.2 is shown in Table 3.

Table 3. Average running time ofrax- pat h vs. number of trajectories for minimum support
0.2

Size of 10 1,000 10,00 100,00 1,000,00q)
data set
Time (ms)[0.1733781.0999929.958768100.506061996.609592

The dependency of the average running time and the numbeaxifmal paths on
the size of the data set and the minimal support is presenfeakile 4.

6 Conclusion and Further Work

There are many issues left to investigate. Support may beedefor a variety of types
of sets of edges and connections between supports for gasite of edges out to be
analyzed and used to simplify algorithms for computing st

Table 4. Average running time (ms)/number of maximal pathsrak- pat h vs. 6 for |T'| tra-
jectories

Data Minimal Supportd
size 0.01 0.05 0.1 0.2 04
1000 1.14/6 1.14/6 1.11/4.1 1.11/3 1.06/2

10000 10.10/6 10.03/6 10.03/4 10.25/3 10.57/2
100000 | 102.38/6 104.12/6 107.64/4 102.07/3 102.01/2
10000001002.63/6 1002.18/6 1002.06/4 1002.22/3 1002,33/2

Association rule need to be explored in this context. Cotioes between the con-
fidence of rules of the fornp — e1,...,0 — ey, Whereey, ..., e, are edges that
continue the patlp can be used to simplify the computation of confidence of such
rules.

A measure of “attractiveness” can be introduced for pathjthia two verticesv;
andvs. The tradeoff between the length of the path and the suppthegath (which
shows the number of drivers that take the path) can be useléfiming such a measure.

References

1. J.-M. Adamo.Data Mining for Association Rules and Sequential Patter®pringer-Verlag,
New York, 2001.

2. Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. iklinassociation rules between
sets of items in large databases. In Peter Buneman and Safiiia, editorsProceedings
of the 1993 International Conference on Management of Dadges 207-216, Washington,
D.C., 1993. ACM, New York.

3. Fosca Giannotti. Mobility, data mining and privacy: Migihuman movement patterns from
trajectory data. IrExtraction et gestion des connaissances (EGC'2011), Aeesau 29
janvier 2011, Brest, Francevolume RNTI-E-20 ofRevue des Nouvelles Technologies de
I'Information, pages 5-6. Hermarii‘aditions, 2011.

4. Fosca Giannotti, Mirco Nanni, Dino Pedreschi, Fabio Hin€hiara Renso, Salvatore
Rinzivillo, and Roberto Trasarti. Unveiling the complgxiaf human mobility by querying
and mining massive trajectory datdLDB Journa) 20(5):695-719, 2011.

5. J. Han, J. Pei, and Y. Yin. Mining frequent patterns withcandidate generation. In Wei-
dong Chen, Jeffrey F. Naughton, and Philip A. BernsteintoesliProceedings of the ACM-
SIGMOD International Conference on Management of Datad3alTX pages 1-12. ACM,
New York, 2000.

6. H. Mannila and H. Toivonen. Levelwise search and bordetlemries in knowledge discov-
ery. Technical Report C-1997-8, University of Helsinki9¥9

7. D. Simovici and C. DjerabaMathematical Tools for Data Mining Springer-Verlag, New
York, 2008.

8. Roberto Trasarti, Fabio Pinelli, Mirco Nanni, and FosdanBotti. Mining mobility user
profiles for car pooling. IProceedings of the 17th ACM SIGKDD International Confeeenc
on Knowledge Discovery and Data Mining, San Diego, CA, US&yuat 21-24, 2011pages
1190-1198. ACM, 2011.

9. M. J. Zaki and C.J. Hsiao. Efficient algorithms for minirigsed itemsets and their lattice
structure.lEEE Transactions on Knowledge and Data Engineeritig462—-478, 2005.

