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Abstract. We apply techniques that originate in the analysis of marketbasket
data sets to the study of frequent trajectories in graphs. Trajectories are defined
as simple paths through a directed graph, and we put forth some definitions and
observations about the calculation of supports of paths in this context. A simple
algorithm for calculating path supports is introduced and analyzed, but we ex-
plore an algorithm which takes advantage of traditional frequent item set mining
techniques, as well as constraints placed on supports by thegraph structure, for
optimizing the calculation of relevant supports. To this end, the notion of the path
tree is introduced, as well as an algorithm for producing such path trees.

1 Introduction

Determining frequent item sets in market basket data sets isan unsupervised data min-
ing activity that has received a great deal of attention beginning with the seminal pa-
per [2] and continuing with several fundamental references[6, 9, 5] A monograph ded-
icated to this task is [1].

Finding frequent item sets is a necessary step in computing association rules. An
association rule stipulates that with a certain probability customers who buy an item set
K will buy an item setH . Such rules provide actionable information for marketeers
who will place items fromK ∪ H in physical proximity in order to stimulate sales.

The purpose of this paper is to develop a study of frequent trajectories in graphs
inspired by the ideas used in the analysis of market basket data sets. The study of tra-
jectory data has been explored intensively in the literature [3, 8, 4] motivated by the
large amount of spatio-temporal data allowed by location acquisition technologies. Our
model is simpler than the model used in the previous references, in that, it does not
include explicitly the temporal aspect. In exchange, our approach extends ideas that
originate in market-basket analysis and allows us to build simple and efficient algo-
rithms that will allow, at a later stage, the integration of the temporal aspect.

We present some preliminary results and formulate a number of open problems
that we intend to approach in our future research. In the second section we set forth
definitions and preliminary information relevant to our work. Theorems and observa-
tions about the implications of the graph for calculating path supports are discussed in
the third section. Section 4 proposes a simple algorithm forcalculating path supports.
Section 5 introduces the notion of path trees, which provideinsight into possible trajec-
tories in a graph, and may be used in future work to reduce the amount of computation



required for path support. The paper concludes with a discussion of further avenues of
research.

2 Trajectories in Directed Graphs

Unless stated otherwise, vectors inR
l are row vectors, except for vectors of the form

ei which are column vectors; the components ofei are0 with the exception of theith

component that equals1, for 1 ≤ i ≤ l.
Let G = (V, E) be a finite directed graph without loops having the set of vertices

V and the set of edgesE ⊆ V × V . We assume that|V | = n and|E| = m. If ek =
(vi, vj) ∈ E, we refer tovi as thesourceof ek and tovj as thetargetof ek. This defined
the mappingssource : E −→ V andtarget : E −→ V given bysource(ek) = vi and
target(ek) = vj for 1 ≤ k ≤ |E|.

Theset of outgoing edges of a vertexvi is out(vi) = {e ∈ E | source(e) = vi},
while the set ofincoming edges ofvi is inc(vi) = {e ∈ E | target(e) = vi}. Theout-
degree of a vertexvi is the numberd+(vi) = |out(vi)|; in-degree ofvi is the number
d−(vi) = |inc(vi)|.

If D is a set of vertices inG = (V, E), denote byGD the subgraph ofG determined
by the setD, GD = (D, (D × D) ∩ E. The previous notations are extended forD by
defining theset of outgoing edges of Das

out(D) = {e ∈ E | source(e) ∈ D, target(e) 6∈ D},

while the set ofincoming edges ofD is

inc(D) = {e ∈ E | target(e) ∈ D, source 6∈ D}.

A trajectoryin the graphG is a sequence of edges(e1, . . . , ep) such thattarget(ei) =
source(ei+1) for 1 ≤ i ≤ p − 1 and no vertex occurs twice in the sequence

(source(e1), . . . , source(ep), target(ep)).

The directed graphG is represented by its incidence matrixCG ∈ {−1, 0, 1}n×m de-
fined as

(CG)pk =











−1 if source(ek) = vp,

1 if target(ek) = vp,

0 otherwise.

If the graph is clear from context, the subscriptG will be omitted.
Note that each column corresponds to an edgeek and contains exactly two non-zero

numbers that correspond to the source and the target ofek. Each row corresponds to a
node of the graph and contains a−1 for each edge that exits the node and an1 for each
edge that enters the node.

A trajectory is represented by a sequencet = (t1, . . . , tm) ∈ {0, 1}m, wherem =
|E|, given by

tk =

{

1 if ek occurs in the trajectory,

0 otherwise.

for 1 ≤ k ≤ m.



Example 1.Consider the directed graph given in Figure 1 which has sevenvertices and
14 edges. The incidence matrixC ∈ R

7×14 is:
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Fig. 1. Directed Graph

C =







0 −1 1 −1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 −1 1 −1 0

−1 1 −1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 −1 1 0 0 1 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 1 0 0 −1 1 −1 0 −1

0 0 0 0 0 0 −1 −1 1 0 0 0 0 1






.

Theorem 1. LetG = (V, E) be a directed finite graph with|V | = n and |E| = m. If
t ∈ {0, 1}m represents a trajectory in the graphG that departs from the vertexvi and
ends in vertexvj then

Ct′ = −ei + ej .

A trajectory table for a directed graphG = (V, E) is a table whose attributes are the
edges of a directed graph and whose rows are trajectories. For instance, the following
matrixT is a table of trajectories in the graphG:

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

t1 1 1 0 0 0 0 1 0 1 0 0 0 0 0
t2 0 0 0 1 1 1 0 1 1 0 0 0 1 0
t3 0 0 0 1 0 0 0 1 1 1 1 0 0 0
t4 0 0 0 1 0 0 0 0 1 0 0 0 1 0
t5 0 0 0 0 0 0 1 0 0 1 0 0 0 0
t6 0 0 0 0 0 0 1 0 0 0 0 1 1 0



By Theorem 1, the matrixCT ′ gives the extremities of the paths specified above

CT ′ =





















−1 0 −1 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 1 1
0 0 0 0 0 0
1 −1 0 0 0 0
0 0 0 1 −1 −1





















The first, third and fourth columns refer to paths that start in v1 and end inv6, v4 and
v7, respectively.

3 Support for Edge Sets

If D is a set of vertices inG and no trajectory begins or ends inD, then

∑

e∈inc(D)

supp(e) =
∑

e∈out(D)

supp(e).

LetEt be the set of edges that occur on a trajectoryt in a directed graphG = (V, E).
A set of edgesK of a directed graphG = (V, E) occurs on a trajectoryt = (e1, . . . , ep)
if K ⊆ Et.

TheT -supportof K is

suppT (K) = |{t in T | K ⊆ Et}|.

It is immediate that the support functionsuppT : P(E) −→ N is anti-monotonic, that
is, E1 ⊆ E2 impliessuppT (E2) ≤ suppT (E1) for E1, E2 ⊆ E.

Unlike, the similar problem involving market basket, thereexists certain interest-
ing connections between the supports of edge sets motivatedby the underlying graph
structure.

Theorem 2. LetG = (V, E) be a directed tree having the rootv0 and the set of leaves
{u1, . . . , u`}. The support of any path that joinsv0 to a leafup equalsmin{supp(e) |
e occurs on the path joiningv0 to up}.

Note that any directed graph has a cover that consists of directed trees because the
edges of the graph yield such a cover.

4 A Simple Algorithm for Support Computation

Path supports are recorded by the objectsupports that consists of a hash maph such
thath(℘) = supp(℘) for any path℘, and a methodupdate which sets the support of
the paths.



Let Ξ be a set of pairs of the form(℘, s), where℘ is a path ands ∈ N. The call
supports.update(Ξ) sets the supports of the paths that occur in the first com-
ponents of the pairs ofΞ to the values specified by the second components of these
pairs, respectively. When this method is called assupports.update(℘, s) we as-
sume thatΞ = {(℘, s)}. The functionrecursive-traversal takes as arguments
a set of pathsT , a vertexv, a path℘ that ends inv, a minimal level of supportθ and
performs the computation shown in Algorithm 1.

Data: T, v, ℘, θ

Result: Thesupports mapping
initialize supports;
foreach edgee ∈ out(v) do

℘ = (℘, e) ;
s = supp(℘) ;
supports.update(℘, s);
if s > θ then

Ξ = recursive-traversal(T, target(e), ℘, θ);
supports.update(Ξ);

end
℘ = ℘ − {e};

end
return supports;

Algorithm 1: The recursive functionrecursive-traversal computes the sup-
ports of allθ-frequent paths that extend a given path℘

The functionrecursive-traversal is used in the functiontraversewhich
starts with a set of pathsT , a vertexv and a minimal supportθ and computes the
supports of theθ-frequent paths that emerge fromv. The pseudocode of this function is
shown in Algorithm 2.

For 1000 trajectories and a minimal support of0.3 the algorithm applied to trajec-
tories that originate inv1 generates the following results:

Path Support
(v1, v2) 502
(v1, v3), (v3, v4), (v4, v7), (v7, v6) 354
(v1, v3), (v3, v4), (v4, v7) 498
(v1, v3), (v3, v4) 498
(v1, v3) 498

The algorithms in this paper were implemented in Python 2.7 and run on a computer
with an Inteli7×980 @ 3.33 GHz processor running Ubuntu 11.10. An experiment was
run on the traverse algorithm on the graph in Figure 1, with trajectories generated as ran-
domly terminated walks starting at vertexv1. Results are shown for 100, 1,000, 10,000,
100,000, and 1,000,000 trajectories. The support threshold for these experiments is0.2.

The dependency of the average time is shown in Figure 2.



Data: Initial vertexv and minimal support thresholdθ
Result: Thesupports mapping
initialize supports;
T ′ = ∅;
C = incidence matrix;
foreach pathp ∈ T do

if (Ct)v == −1 then
T ′ = T ′ ∪ {p} ;

end
end
Ξ = recursive-traversal(T ′, v, ∅, θ);
supports.update(Ξ);
return supports;

Algorithm 2: The functiontraverse computes the supports of allθ-frequent paths
from an initial vertexv.

Table 1. Average running time oftraverse vs. number of trajectories for minimum support
0.2

Size of 100 1,000 10,000 100,000 1,000,000
data set
Time (ms) 9.64595.331972.2519697.326106538.961
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Fig. 2. Dependency of the Average Running Time on the Size of the Set of Trajectories

Table 2. Average running time (ms)/number of maximal frequent pathsof traverse vs. θ for
|T | trajectories

Data Minimal Supportθ
size 0.01 0.05 0.1 0.2 0.4
1000 102/6 102/6 98/4 95/3 87/2
10000 1026/6 1035/6 990/4 960/2 875/2
10000010747/6 10853/6 10318/4 9981/3 8975/2



Theorem 3. LetG = (V, E) be a directed tree having the rootv0 and the set of leaves
{u1, . . . , u`}. The support of any path that joinsv0 to a leafup equalsmin{supp(e) |
e occurs on the path joiningv0 to up}.

5 The Path Tree of a Graph

Market basket data studies seek arbitrary frequent item sets. In contrast, we are inter-
ested here in supports of sequences of edges that form paths in the traffic graph. Thus,
we need to develop an adequate counterpart to Rymon trees that are used in formulating
the standard Apriori algorithm [7].

Let Pvi
to be the set of all simple paths which originate from vertexvi. We can

visualizePvi
graphically using a tree rooted atvi. The children of each vertexvi in this

tree are vertices which are direct successors ofvi in the graph and are not ancestors of
vi in the tree.

Thepath treefor paths that start fromv1 in the directed graph given in Figure 1 is
shown in Figure 3.
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Fig. 3. Path tree for the graph in Figure 1

Note that in the path tree we could have multiple occurrenceson an edge. For ex-
ample, in the tree shown in Figure 3, the edgee7 occurs twice, on the pathse2e1e9e7

ande4e13e9e7.



Theorem 4. Let γvi
(ej) = {℘ ∈ Pvi

| ej is the last edge in℘}. That is,γvi
(ej) is

the set of all paths which begin at vertexvi and end with edgeej . Then, for trajectories
beginning atvi, supp(ej) =

∑

℘∈γvi
(ej) supp(℘).

Note that when| γvi
(ej) |= 1, thensupp(ej) = supp(℘) for ℘ ∈ γvi

(ej). We
can use this fact to extrapolate supports for paths which endin unique edges without
actually calculating support for such a path.

The following algorithm decreases the number of computations requiring passes
through all trajectories, as is required during the computation of support. It does so by
using the case in the previous theorem when| γvi

(ej) |= 1.

Note that using this method requires pre-computation of edge supports, which can
be done in one pass.

Using the theorem requires the construction of a path tree rooted at some vertex
vi. However, the path tree can become intractably large. We canlimit our attention to
the relevant parts of the path tree by halting tree growth before edges which are not
θ-frequent are added.

The following algorithm computes the set of maximal pathsMxi
.

Data: T, v, θ

Result: Mv

initialize supports;
T ′ = ∅;
C = incidence matrix;
foreach pathp ∈ T do

if (Ct)v == −1 then
T ′ = T ′ ∪ {p} ;

end
end
s =

∑

t∈T ′ t;
ξ = {(ei, si) | si ∈ s};
supports.update(ξ);
Mv = ∅;
foreach edgee ∈ out(v) do

if supp(e) > θ then
Mv = Mv ∪ path-traverse(supports, e, θ);

end
end
return Mv ;

Algorithm 3: The functionmax-path computes the set of all maximalθ-frequent
pathsMv that originate from vertexv.



Data: supports, ℘, θ

Result: set of pathsM
M = ∅;
foreach edgee ∈ out(target(lastedge(℘)) do

if supports(e) > θ and target(e) 6∈ ℘ then
M = M ∪ path-traverse(supports, (℘, e), θ);

end
end
if M = ∅ then

return {℘};
else

return M ;
end

Algorithm 4: The recursive functionpath-traverse traverses allθ-frequent
paths starting with℘, and returns a set of pathsM which can not be extended with
θ-frequent, non-repeated edges.

For 10,000 trajectories and a minimal support of0.1 themax-path function re-
turns the following table containing the maximal paths thatstart fromv1:

Maximal Path
(v1, v2), (v2, v4), (v4, v7), (v7, v6), (v6, v5)
(v1, v2), (v2, v6), (v6, v5)
(v1, v3), (v3, v4), (v4, v7), (v7, v6), (v6, v2)
(v1, v3), (v3, v4), (v4, v7), (v7, v6), (v6, v5)

The dependency of the average running time versus the size ofthe data set for a minimal
support level of 0.2 is shown in Table 3.

Table 3. Average running time ofmax-path vs. number of trajectories for minimum support
0.2

Size of 100 1,000 10,000 100,000 1,000,000
data set
Time (ms) 0.1733781.0999929.958768100.506067996.609592

The dependency of the average running time and the number of maximal paths on
the size of the data set and the minimal support is presented in Table 4.

6 Conclusion and Further Work

There are many issues left to investigate. Support may be defined for a variety of types
of sets of edges and connections between supports for various sets of edges out to be
analyzed and used to simplify algorithms for computing supports.



Table 4. Average running time (ms)/number of maximal paths ofmax-path vs. θ for |T | tra-
jectories

Data Minimal Supportθ
size 0.01 0.05 0.1 0.2 0.4
1000 1.14/6 1.14/6 1.11/4.1 1.11/3 1.06/2
10000 10.10/6 10.03/6 10.03/4 10.25/3 10.57/2
100000 102.38/6 104.12/6 107.64/4 102.07/3 102.01/2
10000001002.63/6 1002.18/6 1002.06/4 1002.22/3 1002.33/2

Association rule need to be explored in this context. Connections between the con-
fidence of rules of the form℘ → e1, . . . , ℘ → eh, wheree1, . . . , eh are edges that
continue the path℘ can be used to simplify the computation of confidence of such
rules.

A measure of “attractiveness” can be introduced for path that join two verticesv1

andv2. The tradeoff between the length of the path and the support of the path (which
shows the number of drivers that take the path) can be used fordefining such a measure.
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