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Abstract 
In this paper, we formulate a new research problem of concept learning and summarization for one-class data streams. The 

main objective is to (1) allow users to label instance groups, instead of single instances, as positive samples for learning, 

and (2) summarize concepts labeled by users over the whole stream. The employment of the batch-labeling raises serious 

issues for stream-oriented concept learning and summarization, because a labeled instance group may contain non-positive 

samples and users may change their labeling interests at any time, so the positive samples labeled by users, over the whole 

stream, may contain multiple concepts.  

To resolve these issues, we propose a One-Class Learning and Summarization (OCLS) system with two major 

components. In the first component, we propose a Vague One-Class Learning (VOCL) module for concept learning from 

data streams by using an ensemble of classifiers with instance and classifier level weighting strategies. In the second 

component, we propose a One-Class Concept Summarization (OCCS) module which uses clustering techniques and a 

Markov model to summarize concepts labeled by users, with only one scanning of the stream data. Experimental results on 

synthetic and real-world data streams demonstrate that the proposed VOCL module significantly outperforms its peers for 

learning concepts from vaguely labeled stream data. The OCCS module is also able to rebuild a high-level summarization 

for concepts marked by users over the stream.  

1. Introduction 

One-Class learning, as illustrated in Figure 1, represents a large body of applications [1-14] where only one class of 

samples
§
 (i.e., positive samples) are labeled for training, and the final goal is to predict whether a new instance falls into the 

same category as the positive examples or not. The niche of the one-class learning stems from the fact that all supervised 

learning methods require the labeling of the training samples, where finding labeling information for the training data is a 

time-consuming and cost-intensive process. For many domain applications, such as anomaly detection [1], document 

classification [2], automatic image annotation [3], authorship verification [4] in scientific writing, transcription factor 

binding site recognition [52], or other Bioinformatics problems [11], the system can easily collect one class of samples 

whereas finding (and labeling) instances from other classes are either expensive or time consuming. On the other hand, 

since the main goal of the learning is to properly identify or recognize samples of interest from a large number of 

collections, e.g., identifying anomaly [1] or recognizing documents fitting into one particular author’s writing style [4], it 

would be a big advantage if the learning does not require any contrast samples other than the positive instances. 

The key challenge of the one-class learning, in comparison to its other peers such as binary- or multi-class 

classification, lies on the fact that only one class of samples is labeled so general discriminative measures, such as the Gini 

index [15] or Information Gain [16], are no longer valid for deriving decision logics or modules for predictions. Common 

solutions are to transform the learning into some well defined optimization problems [6-7], or to treat the learning as a 

binary classification task if some unlabeled samples are also available [8-10], as illustrated in Figure 1(b). For either case, 

the quality of the labeled samples plays an important role [17-18], and falsely labeled positive samples will deteriorate 

learner accuracies significantly, as shown in Figure 2.  

 

Figure 1: A conceptual view of the one-class learning problem for target (apple) recognition. (a) denotes the situation 

where only positive samples are provided for training, whereas (b) has both positive and unlabeled samples. The final goal 

of the one-class learning is to find the decision boundaries (the dashed lines) and predict whether a test picture contains an 

apple or not. 

                                                 
§
 In this paper, instance and sample are equivalent terms; and leaner and classifier are equivalent terms. 

 

(b) One-class learning w. positive and unlabeled samples 

 

 

 

    

 

  

  

  
 

(a) One-class learning with positive samples only 
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Figure 2: One-class classification accuracy vs. quality of positive samples. The x-axis is the percentage of genuine positive instances in 

the labeled sample set, and the y-axis is the accuracy of trained one-class SVM, on 10 datasets from the UCI repository [36]. Results are 

based on 10 times 10-fold cross validation with each class treated as the positive class one at a time. 

With the advent of advanced networking, data collection, storage, and transmission technologies, recent years have 

witnessed an increasing number of stream-oriented applications [19, 48-51], such as sensor networks [20] or massive audio 

data streams [48], where data volumes continuously grow and the concepts underneath the data may also evolve or drift 

rapidly. Under such circumstances, the commonly agreed challenges [21-33] are twofold: (1) continuously growing data 

volumes; and (2) dynamically drifting [26-27] (or evolving) data concepts. Many solutions exist to handle data streams for 

classification, clustering [51], and association mining [49], with focus on tackling the above two challenges. From the 

supervised learning perspective, existing algorithms largely rely on two types of solutions, incremental learning and 

ensemble learning [21-22], for stream data mining [23-25, 27-33].  

Although existing research has significantly advanced the techniques for supervised learning in data stream 

environments, the main focus, so far, has been limited to tackle the data volumes and the concept drifting challenges [47]. 

By doing so, a labeling process is assumed to accurately label stream data. In a one-class learning scenario, this is 

equivalent to the setting that an agent (or a user) exists to examine the data and precisely label positive samples (i.e. 

samples of interest to users). For one-class data streams, this becomes a major deficiency or technical barrier. First of all, 

the continuous nature of the stream data requires users to provide a fast response for labeling. Secondly, due to possible 

changing of user interests, even carefully labeled positive samples may contain inconsistency or even conflict with each 

other. Consequently, traditional instance-based labeling is neither effective nor practical for stream-oriented applications. 

Alternatively, we can allow users to merge samples into groups and label sample groups instead for learning. We call this 

problem vague learning, because such a batch-labeling process is essentially vague and inaccurate in the sense that a 

labeled group may contain samples not of interest to users and it is not clear which particular instances are genuinely 

positive. 

In addition to the above vague learning challenge, a unique feature for one-class data stream, in comparison with other 

binary- or multi-class streams [21-33], is that users only label samples interesting to them as positive without paying any 

attention to the consistency of the concepts behind the labeled positive samples. As the data stream and its labeling process 

evolve, users’ labeling interests may gradually change so the labeled positive samples may contain multiple concepts 

although they are all labeled as positive. No mechanism, however, is currently available to summarize users’ labeling 

interests. In Figure 3, we illustrate a typical example for sensor network based application, where a user is continuously 

supervising the sensor stream to monitor some important events (such as raining or change of pressures).  To achieve the 

goal, a user can selectively label some regions, such as region A, B, or C, to indicate that the system is interested in the 

events associated to the selected region. So data generated from selected regions are regarded as positive samples, and the 

one-class learning algorithms can be used to monitor or predict regions which share similar patterns as the marked region. 

Under such a data stream environment, a user labeled region may contain data inconsistent with the underlying event due to 

reasons such as special environments or malfunctions of a sensor (i.e., vague learning problem). In addition, the user may 

also frequently switch the region of interest to monitor different type of events. So after monitoring/labeling the data stream 

for a certain amount of time, it might be needed to reproduce a summarization for user labeled concepts (as shown in the 

red-dashed rectangle box). More generally, we might need to dynamically summarize user concepts at any particular time, 

without referring back to the historical stream data. So once the labeling process is done over the whole stream, we are able 

to summarize the user’s interests and restore the concept transferring relationships during the whole labeling process.  



 

Figure 3: A typical example of a one-class learning based sensor data stream application. Each symbol “A”, “B”, “C” 

denotes a region of interesting event (i.e., concept, such as raining, high pressure etc.) sensed by sensors. While sensor data 

stream flowing continuously, users can select a group of sensors as region of interest (positive class) and monitor similar 

events (concepts) in the whole data stream. The concepts underneath the user’s labeling process thus form a sequence of 

hidden concepts (the red-dashed rectangle box) which are unknown unless reconstructed or restored explicitly. 

 

In summary, if we consider stream data mining and one-class learning as a whole, the major research challenges are 

fourfold: 

1. Vague/imprecise positive samples: Different from traditional one-class learning where positive samples are precisely 

labeled, in vague one-class learning, a labeled sample set has mixes of instances which may or may not be of interest to 

users. Effective mechanisms must be developed to differentiate positive samples in order to identify users’ genuine 

interests. 

2. Changing or inconsistent user interests: During the labeling process, users may frequently change their interests. A 

learning framework must be able to handle such changes, provide rapid responses, and accurately predict users’ current 

interests. 

3. Increasing data volumes: Aggregating all examples to build prediction models, like other one-class learning methods 

do [2-7], is practically infeasible for data streams. One has to devise a stream-oriented one-class learning framework 

instead. 

4. Scarcity of concept summarization: Due to the evolving or shifting of the user interests, the positive samples labeled 

by users may contain multiple concepts. A stream-oriented concept summarization approach is needed to summarize 

users’ interests over the stream.  

In this paper, we report our recent progress in addressing the above issues, by using a One-Class Learning and 

Summarization (OCLS) framework. More specifically, to handle the vague/imprecise positive sample challenge (challenge 

1), we assign a weight value to each individual instance to estimate its relevance to users’ interests. To handle the changing 

of user interests (challenge 2), we employ a pair-wise agreement based approach to adjust classifier weights to ensure that 

the learning can quickly adapt to the users’ current interests. By stacking the instance and the classifier level weights 

together, we build a Vague One-Class Learning (VOCL) module, which naturally solves the data volume challenge 

(challenge 3). To summarize user concepts (challenge 4), we extract features for each set of samples labeled by users and 

use a cluster structure map and a concept transfer map to summarize users’ interests over the stream.  

The remainder of the paper is structured as follows. Section 2 defines the problem, and discusses simple solutions. 

Section 3 discusses the overall framework of the proposed one-class learning and concept summarization system. Section 4 

discusses the vague one-class learning module. Section 5 proposes a solution for concept summarization. Section 6 

analyzes the system time complexity. Experimental results are reported in Section 7. We review related work in Section 8 

and conclude in Section 9.  
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2. Problem Definition and Simple Solutions  

2.1 Problem Definition 

Formally, we assume that a data stream constitutes of samples arriving on a chunk-by-chunk basis, with Si denoting the i
th

 

data chunk (which is often referred to as any chunk or the most recent chunk in the paper) and Si-1 denoting the chunk 

arriving one time step earlier than Si. Once instances in Si are collected, users can label a group of instances in Si as positive 

samples (denoted by PSi) and the objective of vague one-class learning is to build a prediction model from historical data 

chunks …Si-3, Si-2, Si-1, and PSi,  to accurately predict instances in a future chunk Si+1. We call this problem vague one-class 

learning, because we assume samples in PSi are vaguely or weakly labeled. In our problem setting, we do not intend to find 

best instance subsets for labeling (i.e., which portion of instances in Si should be labeled), nor are we interested in 

identifying falsely labeled positive samples. The purpose of the one-class concept summarization, on the other hand, is to 

summarize concepts labeled by users in a number of consecutive chunks ……Si-3, Si-2, Si-1, and Si, where the summary 

should capture the number of concepts and their transfer relationships over the stream. 

For both vague one-class learning and concept summarization, we assume that only instances in the most recent chunk 

(Si) are accessible, and once the algorithm moves from chunk Si-1 to chunk Si, all instances in chunk Si-1 and its predecessors 

(…Si-3, Si-2), become inaccessible, except learners or models built from them. The reason we enforce this assumption is 

because aggregating historical data requires extra storage, and most stream data mining algorithms are required to induce 

knowledge in one-scanning of the stream data without referring back to the historical data. 

2.2 Simple Solutions 

Intuitively, the following three methods can be applied to solve the vague one-class learning problem, and no simple 

solution is available for one-class concept summarization. 

Local One-Class Learning (LOCL): LOCL treats data in the current chunk Si as a static dataset with the training set 

constituting of labeled samples in Si (i.e., PSi). A one-class classifier is trained from PSi and is used later on to predict 

samples in Si+1.  

Ensemble One-Class Learning (EOCL): EOCL employs an ensemble learning paradigm to combine multiple local one-

class classifiers to form a committee for prediction. More specifically, for each data chunk Si a one-class leaner (Li) is 

trained from PSi (just like LOCL does), and a number of k learners Li-k-1,…, Li-1, and Li trained from PSi-k-1,…,PSi-1, and PSi 

respectively, are collected to form an ensemble E to predict instances in Si+1.  

Filtering One-Class Learning (FOCL): FOCL is motivated by a recent one-class stream data mining effort [8] with an 

additional data filtering module [17, 37]. For each data chunk Si and its predecessor chunk Si-1, we first apply cross 

validation to the labeled portion in Si (i.e., PSi) with incorrectly classified positive samples directly excluded from PSi. In 

addition, the cross-validation classifiers trained from PSi are also used to classify unlabeled samples in Si (i.e., USi) and all 

instances in Si-1, with samples, on which the majority classifiers agree to be positive, included into PSi. Finally, a classifier 

trained from PSi is used to predict instances in Si+1. Notice that FOCL has the privilege of accessing instances in both Si and 

Si-1, which violates the problem setting defined in Section 2.1 (only instances in Si are accessible). The purpose of having 

the relaxation for FOCL is to allow the existing method [8] to be implemented and compared with the solutions we intend 

to deliver in this paper. 

3. VLCS: Vague One-Class Learning and Concept Summarization  

In order to address the vague one-class learning and concept summarization challenges, we propose a VLCS system with 

two major modules, as shown in Figure 4. Given a data stream with samples arriving in a chunk-by-chunk manner, VLCS 

achieves vague one-class learning by using the VOCL module, and the concept summarization is achieved through the 

OCCS module.  

The process of the vague one-class learning (VOCL) module mainly consists of three layers: stream data, instance 

weighting, and classifier weighting. At the stream data layer, data are processed in a chunk-by-chunk manner with each 

chunk Si containing two subsets PSi and USi, where PSi contains vaguely labeled positive samples (denoted by clusters with 

blue dots and circles in Figure 4) and USi contains unlabeled samples in Si. Once instances in Si are ready for processing, an 

instance weighting process is triggered to calculate instance weight values. Instances with their weight values greater than 0 

are collected as positive samples (denoted by different sizes of dots or circles in Figure 4). After that, a one-class classifier 



is trained from weighted instances, and a number of k classifiers form an ensemble E to predict instances in Si+1. To ensure 

that predictions can be quickly adjusted to follow users’ preferences or interests, a weighting procedure is applied to 

dynamically tune classifier weight values for predictions. 
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Figure 4: VLCS: Vague one-class learning and concept summarization framework. Two modules included in the framework are VOCL 

for concept learning and OCCS for concept summarization. Each data chunk Si constitutes of vaguely labeled instances (PSi) and 

unlabeled instance (USi). A blue dot denotes a genuine positive instance, whereas a blue circle denotes a false positive sample. The size 

of the circle (or dots) denotes the weight of the instance. For VOCL, the goal is to accurately predict samples in a new chunk Si+1, and for 

OCCS, the goal is to summarize concepts over the data stream as a cluster map (shown at the bottom-left of the picture) and a concept 

transfer map (shown at the bottom-right) 

 

One-class concept summarization (OCCS) module directly works on the weighted samples generated from the VOCL 

module, and its final goal is to restore concepts and their relationships, from the chunks labeled by users, as a concept 

cluster map and a concept transfer map. For each data chunk Si, a set feature extraction process is employed to extract 

features from weighted samples generated from the VOCL module. By doing so, each data chunk Si is represented as a 

virtual instance and the whole data streams can be represented as a virtual set with each sample in the set denoting one data 

chunk. By using generic clustering techniques, we can merge virtual instances as groups, which are regarded as the concept 

cluster map, and a Markov model is employed to estimate the transfer relationship between concepts over the stream.  

Following the overall framework shown in Figure 4, the technical issues remaining are twofold, (1) for VOCL module, we 

need to properly determine instance weights, employ instance weight values to train one-class classifiers, and assign proper 

weight values to each classifier to form an ensemble classifier E for prediction, and (2) for OCCS module, we need to 

transform weighted samples in Si as a single virtual instance, and discover cluster structure and their transfer relationships 

from the virtual instance set. 



4. VOCL: Vague One-Class Learning 

An essential change of the vague one-class learning for data streams is that positive samples are vaguely labeled and may 

contain non-positive samples. In addition, during the labeling process, users may frequently change their interests so 

concepts labeled in two consecutive data chunks may be different and need to be differentiated. To solve the problem, we 

propose to employ a double weighting approach, at both instance and classifier levels, to build an ensemble framework for 

learning. At instance level, both local and global filtering are considered for instance weight adjustment. At classifier level, 

a weight value is assigned to each classifier of the ensemble to ensure that learning can quickly adapt to users’ interests. In 

the following sections, we first introduce the overall framework of VOCL, followed by the detailed explanation to each 

individual component, including instance weight calculation (Section 4.2), classifier weight calculation (Section 4.3), and 

one-class learning with sample weights (Section 4.4).  

  

VOCL (S, N, k) 

Input: Data stream S 

N: chunk size 

k: # of classifiers forming the ensemble 

Output: Vague one-class prediction model built from S 

1. While{ new instances arrive} 

2. { 

3. Si  Collecting instances from S to form a data chunk with N instances 

4. PSi   Labeling one or multiple instance groups in Si as positive 

5. 
L

xw   Local weight calculation (Si)        // Sec. 4.2.1 

6. 
G

xw   Global weight calculation (Li-k+1, Li-k+2,…, Li, Si)  // Sec. 4.2.2  

7. wx  Unified weight values           //  Eq. (3) 

8. Li  Training a weighted one-class classifier (Si, wx)      // Sec. 4.4 

9. gl  Classifier weighting (Li-k+1, Li-k+2,…, Li)       // Sec. 4.3 

10. E  Forming weighted classifier ensemble using Li-k+1, Li-k+2,…, Li 

11. Calculate E’s prediction accuracy on Si+1  

12. For l from 1 to k-1 

13.      Li-k+l  Li-k+l+1 

14. EndFor 
15. i++; 

16. } 

17. Return E and its accuracy  

Figure 5: VOCL main procedure 

4.1 VOCL Overall Framework 

Figure 5 lists the detailed procedures of the VOCL module. Given a data stream S, VOCL takes two parameters N (chunk 

size) and k (the number of classifiers forming the ensemble) as input. A new data chunk Si is formed after the collection of 

N instances. Users can apply any technique (such as k-means clustering) to merge instances in Si into groups and label one 

or multiple groups as positive, with instances in the labeled groups forming a positive sample set of Si (i.e., PSi). After that, 

the instance weighting procedures are triggered, as shown on Steps 5 to 9 in Figure 5. A new classifier Li is trained from a 

weighted sample set of Si, and this classifier along with the most recent k-1 classifiers (Li-k+1, Li-k+2,…, Li-1) form an 

ensemble E. The weight of each ensemble member is calculated based on its pair-wise agreement with Li on unlabeled 

samples in Si. From Steps 12 to 14, VOCL updates ensemble E and discards the oldest ensemble member (i.e., Li-k+1) to 

ensure that the system only maintains the most recent k classifiers. After that, VOCL waits to collect new samples and 

repeats the while loop if necessary. 



4.2 Instance Weighting 

The instance weighting procedure is to determine proper weight values for instances in chunk Si, such that the ones mostly 

relevant to the users’ current interests will receive large weight values, and vice versa. Such a weighting process consists of 

local weighting and global weighting two parts.  

4.1.1 Local Weighting 

The local weighting process, as its name suggests, is to determine instance weight values by using samples in local chunk Si. 

For this purpose, we assume that majority instances in the vaguely labeled sample set (PSi) are able to estimate users’ 

interests to some extent, so a one-class classifier built from PSi can be used to justify whether an instance is of user’s 

interests or not. Based on this assumption, we employ a cross-validation based approach, as shown in Figure 6, to separate 

instances in PSi into f non-overlapping subsets. The aggregation of any f-1 subsets forms a training set to build a generic 

one-class classifier, which is used to classify instances in the excluded subset, say Fj. If a positive instance p in Fj is 

classified as positive, a weight 1.0 is assigned to p, otherwise p’s local weight is set as 0.5. By doing so, the labeled positive 

instances are treated differently depending on whether the instances are consistent with majority positive samples or not. In 

addition, because the cross-validation process in Figure 6 trains a total of f classifiers from PSi, we can use all f classifiers to 

predict unlabeled instances in USi, and calculate their weight values as given in Eq. (1). 
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 Local Weighting (Si) 

 Input: Current data chunk Si 

 Parameters: : the number of folds for cross-validation 

Output: 
L

xw , xSi, local weight values for all instances in Si 

1. 
L

xw   0, for every xSi 

2. Partition labeled instances PSi into  folds: Si=F1F2... F 

3. Fora each fold Fj, j from 1 to  

4. Fi   Si \ Fi 

5. Li   Train a generic one-class classifier from Fi  

6. Forb each instance p in Fi  (i.e., positive samples) 

7. If  Li classifies p as positive 

8.       
L

pw   1.0; 

9. Else 

10.       
L

pw   0.5; 

11.        EndForb 
12.        Forc each instance u in USi  (i.e., unlabeled samples) 

13. If  Li classifies u as positive 

14.       
L

uw   
L

uw +1; 

15.        EndForc 

16. EndFora 

17. 
L

uw   Normalize weight values for unlabeled set USi 

18. Return (
L

xw , xSi) 
 

Figure 6: Local instance weighting procedure 

 

4.1.2 Global Weighting 

The purpose of global weighting is to determine a weight value for both positive and unlabeled instances in Si, by using a 

number of classifiers trained from the chunks preceding to the current chunk Si. More specifically, given data chunk Si and 

k-1 classifiers, Lj-k+1, Lj-k+2, …, Lj-1, trained from PSi-k+1, PSi-k+2, …, PSi-1, the global weight of an instance x in Si is the 

percentage of classifiers predicting x as positive, as given by Eq. (2). 
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To combine local and global weights to form a single measure, we calculate the summation of local and global weight 

values and further divide this value by the difference between two weights, as defined in Eq. (3), where a and b are the 

Laplace smoothing parameters [34], which control the range of the final output (in our experiments, we set a and b both 

equal to 0.5, which gives unified weight values between [1,5]). Obviously, the measure defined by Eq.(3) favors instances 

with large local and global values, and will return a maximum value for instances with maximum local and global weights. 
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4.3 Classifier Weighting 

Assuming a number of k one-class classifiers, Li-k+1, Li-k+2, .., Li, are forming an ensemble E to predict instances in Si+1, an 

important issue is to assign a proper weight value to each individual classifier in E, such that the final predictions can be 

quickly adjusted to the users’ current interests. Traditionally, this problem is solved by setting each classifier’s weight as its 

error rate (or accuracy) on an evaluation set which shares the same distribution as the test set [24-25, 27, 31]. For vaguely 

labeled data streams, this approach has three disadvantages: (1) in one-class learning paradigm, the number of labeled 

positive samples is very limited; (2) finding an evaluation set sharing the same distribution as the test set (i.e., Si+1) is 

essentially difficult, because user interests may change without any indications; and  (3) the most recently labeled set PSi 

cannot be used as an evaluation set because its instances are vaguely labeled, whereas in other stream data environments the 

most recent training set can be used as the evaluation set. To address these issues, we propose to use a pair-wise agreement 

between a classifier Ll and the most recent classifier Li to assign a weight value for Ll, as defined by Eq.(4), where the most 

recent classifier Li will receive the largest weight value 1.  
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4.4 One-Class Learning with Sample Weights 

4.4.1 One-Class SVM 

One-class SVM is a special type of support vector machines, where learning intends to find a hyper-sphere enclosing all 

positive samples [6] or hyper-planes separating positive examples from the origin with the maximum margin [7].  

Given a number of n positive samples, X={x1, x2,…, xn} the objective function of the Schölkopf OC-SVM model [7] is 

to discover the hyper-plane, determined by W
T
X= , that separates the positive samples from the origin with the maximal 

margin. Because many non-linear problems may be linearly separable after proper transformations, kernel transformations 

() are normally employed to transform an input example from one space to another, which gives the hyper-plane denoted 

by W
T
(X)= . This objective is defined by the convex problem given in Eq. (5), where W is orthogonal to the determined 

hyper-plane,  is the fraction of positive samples not separated from the origin by the determined hyper-plane. xi is the i
th
 

positive sample and i is a slack variable which defines the “penalty” if a sample is not separated from the original.  
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In Eq. (1), (xi) defines a kernel function which transforms an input example from one space to another. Numerous 

kernels, such as linear, polynomial, and Gaussian kernels, exist for such purposes. Eq. (6) gives the Gaussian kernel (also 

called Radial Basis Function), one of the most popularly used kernels in SVM.  
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The solutions to Eq. (5) will return weight values W, which determine the hyper-plane. If a new instance xt is classified 

as a positive example if it satisfies W
T
(xt) , otherwise, it is regarded as a non-positive sample.  

4.4.2. Weighted Sampling for One-Class Learning  

Traditional one-class learners, such as one-class SVM, assume that all training samples are equally important, and therefore 

cannot directly accommodate instance weight values for learning. To solve the problem, we consider that the weight value 

of each instance denotes the density of the given instance, so we can use weight values to change training sample 

distributions, such that an instance with a larger weight value will have a better chance in influencing the formulation of the 

decisions, whereas a zero weight instance will not participate in the training at all. This objective can be achieved by 

employing a sampling technique to form a new training set with its distribution biased towards instances with large weight 

values. After that, we can train a one-class classifier from the sampled set for prediction.  

Given a training set S with n positive instances, denoting (xi, wi) an instance xi with weight value wi, a straightforward 

way for weight-based sampling is to employ sampling-with-replacement to sequentially examine each instance xi from S 

and include xi into a new set S with probability given in Eq. (7).  Such a sampling-with-replacement approach, however, 

cannot guarantee that instances are drawn independently from S to form a new set S, so it cannot ensure that the sample set 

S is formed from the same distribution as S.  
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To produce a sample set which exactly suits our needs, the Rejection Sampling [38] from statistics provides a solution 

to ensure that instances are independently sampled from the given distribution. In short, suppose we need to sample from a 

target distribution f(x) to form another distribution following f(x). Assume further that we have a second distribution g(x) 

(e.g., a uniform distribution) from which we have a reasonable method of independent sampling. If there is a constant c | 

cg(x)  f(x) x, then the pseudo-code given in Figure 5 will result in a sample set following distribution f(x) with instances 

independently sampled from the given distribution.  

 Rejection-Sampling (S, m) 

 Input: An n-instance set S with weight values (xi,wi), i[1,n] 

 m: The size of the sampled set 

Output: S, a sampled set following the same distribution as S. 

1. S   

2. p(xi, wi)  Calculate pdf for all instances xi in S    // Eq. (7) 

3. g(x)  Uniform {1,2, ..., n}. Choose g(x) to be a discrete uniform 

distribution with n elements.  

4. c  find constant ensures that cg(x)  f(x) x     // Eq. (8) 

5. While {| S | < m}  

6.        l  generate a sample from the g(x)  Uniform {1,2, ..., n}  

7.          generate another sample  from Uniform[0, 1] 

8.        S  S  {xl} if 
)(

),(

xgc

wxp ll


  

9. Endwhile 

10. Return (S )  

Figure 7: Rejection sampling for generating new sample set w.r.t. the sample weights 



Given a sample set S, we can employ the sampling mechanism in Figure 7 to build a number of sets S1, S2, …, S, 

each of which is of the same size as S. Denoting Ll a one-class learner trained from Sl, the final prediction on an instance xt 

is based on the majority voting of all classifiers, as shown in Eq. (9) where  denotes the number of sets sampled from S.  

The merits of the above sampling based one-class learning approach are threefold: (1) rejection sampling 

independently draws instances to form a new distribution, w.r.t. instances’ weight values. It is inherently superior to other 

sampling mechanisms like sampling with/without replacement, because instances are not independently drawn from the 

latter approach [39]; (2) the final predictions, which are the voting of the classifiers trained from a number of sampled sets, 

are typically more accurate than what a single classifier can offer; and (3) the weighted sampling approach can be applied 

to any one-class learner to take instance weight values into consideration for learning. 
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5. OCCS: One-Class Concept Summarization 

As we explained in Section 1, for one-class data streams, the users simply label all samples as positive without any 

indication on the number of concepts and their relationships. The main objective of the OCCS module is to dynamically 

summarize the concepts labeled by users in the stream. To achieve the goal, we propose to employ clustering based 

techniques to merge data chunks into a number of groups, each of which denotes a concept. Following the clustering 

process, two types of summaries, concept cluster map and concept transfer map, are provided. The concept cluster map 

directly employs the cluster structure to visually demonstrate concept-chunk relationships in the stream. For concept 

transfer map, we build a Markov model to capture concept transfer patterns during the users’ labeling process. In the 

following subsections, we first propose a set feature extraction technique for concept clustering, followed by a process of 

using Markov model to generate a concept transfer map from the stream data. 

5.1 Concept Summarization Using Set Feature Based Clustering 

The set feature based clustering process includes two major steps: (1) extract features from each chunk (i.e., set) and 

represent all chunks as a virtual sample set; and (2) generate cluster structures from the virtual set. To extract feature for 

each chunk, we propose to transform original feature values in each chunk into some histogram format, such that each 

chunk Si can be represented by using histogram based features. More specifically, assume the given of a numerical feature v 

with all feature values falling in the range [vmin, vmax]. The feature histogram for v is constructed by separating all values 

between [vmin, vmax] into a number of B bins. The value in each bin b, b[1, B] denotes the percentage of labeled instance in 

a chunk Si with their value in feature v falling in the range between vmin+(b-1)(vmax-vmin)/B and vmin+b(vmax-vmin)/B. If 

feature v is a categorical feature with the domain v{v1, v2,…, v|v|}, the feature histogram for v is denoted by a total of |v| 

bins, with the value in each bin b, b[1, |v|], denoting the percentage of labeled instances in Si with their value in feature v 

equal to vb. 

 The above set feature extraction process only considers labeled samples in each chunk Si, whereas the labeled samples 

in Si may contain non-positive samples and deteriorate the accuracy for concept clustering. Recall that VOCL learning 

process in Section 4 actually generates a weight value for each sample in chunk Si, with the weight denoting each sample’s 

relevance to the users’ current interests. Consequently, the set feature extraction procedure will also take the sample 

weights into consideration for set feature extraction. Formally, given a set of instances xj in a chunk Si, each of which is 

associated to a weight value wi,j, we take the weight of each instance as its density and calculate the feature histogram for 

bin b of the feature v using Eq. (10), where 
v

jx denotes the value of the feature v of instance xj and Bb denotes the range of 

feature values corresponding to the b
th

 bin of the feature histogram for v.  
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 Take the toy chunk in Figure 8 as an example, where five instances each have two attributes (one numerical and one 

categorical) and one weight value. Assume the minimum and the maximum values of feature v1 are 0 and 10, each 

numerical feature is represented by B=5 bins, and the domain of the categorical attribute v2 is {T, F}, the set features 



extracted from the chunk Si is shown at the bottom of Figure 8. In summary, the set features extracted from the above 

process represent the histogram of each individual feature in the original feature space. Although such a representation 

considers each feature independently and the interactions of the feature values in the original set Si are not longer preserved, 

in many applications such as sensor networks the information collected for each feature (i.e., each sensor) is largely 

independent of each other. As a result, the whole process considers the statistical information of the whole set with respect 

to each individual feature to produce concise representation for each labeled chunk. 

 Following the above set feature extraction process, the whole data stream can be represented by a virtual set with each 

instance in the set denoting one individual chunk. Traditional clustering techniques, such as k-means or spectral clustering 

methods, can be directly applied to discover cluster structure from the data. Because each chunk Si is transformed as a 

single instance with much smaller storage space, the original samples in Si are no longer needed in the succeeding process, 

so only one scanning is needed to generate a cluster map from the stream data. 

Instance 

ID 
v1 v2 

Instance 

weight 

1 2.5 T 3.0 

2 5 T 1.0 

3 3 F 4.0 

4 7 F 2.0 

5 6.2 T 0.0 

 

Virtual 

Instance 

1

1  

[0,2] 

2

1  

(2,4] 

3

1  

(4,6] 

4

1  

(6,8] 

5

1  

(8,10] 

1

2  

T 

2

2  

F 

iS  0 0.7 0.1 0.2 0 0.4 0.6 

 

Chunk Si 

 
Figure 8: A toy data chunk Sx with five instances, each of which has a numerical feature v1, a categorical feature v2, and a weight value. 

The virtual instance and the set features extracted from the toy set are shown at bottom of the picture.  

5.2 Concept Summarization Using Markov Model 

The clustering based concept summarization approach introduced in Section 5.1 provides a cluster map to summarize the 

concepts labeled by users. An inherent disadvantage of such a summarization approach is that the temporal correlation of 

the concepts during the whole labeling process was discarded. In this subsection, we propose to employ Markov model to 

build a state transfer map to capture detailed temporal correlations between concepts.  

During the whole labeling process, assume the genuine concept behind the users is denoted by a random variable C, 

and the labeled samples in each data chunk represent one single concept. When taking the whole data stream chunks as a 

sequence, we can collect a set of random variables C1, C2, C3,…Cn, where n denotes the total number of chunks. Let’s 

assume further that the clustering process in Section 5.1 outputs a total number of k concepts (i.e. clusters), denoted by c1, 

c2, …, cn, which form a countable set c={c1,c2,…,ck} denoting the concept space of the users’ interests. It is clear that the 

concepts labeled in consecutive chunks are rarely independent of each others but rather share some temporal correlations. 

For any chunk Si, the probability for users to choose a particular concept cx, cxc, is given by )( xi cCP  . Given a 

number of n consecutive chunks and labeled concepts,
1

1 xcC  , 
2

2 xcC  , 
3

3 xcC  , …, 
n

xn cC  where xl[1, k] and 

l[1, n], the joint probability of the concepts, given the observed sequence S, are given in Eq. (11) 

),,,()|(
21 21 nxnxx cCcCcCPSCP        (11) 

  Using probability product rule, the above joint probability is equivalent to Eq. (12) where )|( ji CCP  is a shorthand 

of )|(
ji xjxi cCcCP  . 
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 Assume that a user’s labeling process follows the first order Markov chain property [40] (i.e., the labeled concept in the 

current chunk Si depends on the concept of the previous chunk Si-1 only), the Eq.(12) can be simplified as  

)()|(),...,|()|()|( 112211 CPCCPCCPCCPSCP nnnn     (13) 

 According to the Maximum Likelihood principle [41], the cluster structures c={c1,c2,…,ck} should be selected such that 

the log likelihood denoted by Eq. (14) can reach a minimum, 

 )(lg)|(lg)|(lgminarg)|(lg 1211
},...,{;

},...,{; 21
21

minarg CPCCPCCPSCP nnnn
cccck

cccck k
k

 




  (14) 

 To solve Eq. (14), we must explicitly calculate the conditional probability )|()|(
111 

  ii xixiii cCcCPCCP . 

Intuitively, this probability can be roughly estimated by discarding the data chunk ID and directly calculate the concept 

transfer probability as )|(
1ii xx ccP , ccx  , over the whole observed concept sequence S. Such calculation is, however, 

inaccurate, mainly because that )|(
1ii xx ccP  does not take the probability of each chunk Si to have the concept 

ixc into 

consideration, so it may not be able to accurately estimate )|(
11 

  ii xixi cCcCP . To solve the problem, we consider a 

generative graph model as shown in Figure 9, where the conditional probability )|(
11 

  ii xixi cCcCP  is determined 

by three independent factors, including (1) the probability that the concept in chunk Si-1 is 
1ixc , denoted by 

)(
11 

 ixi cCP , (2) the probability that a concept transfers from
1ixc to 

ixc , denoted by )|(
1ii xx ccP , and (3) the 

probability that the concept in chunk Si is 
ixc , denoted by )(

ixi cCP  .  

 Following the graphical model in Figure 9, the calculation of the probability )|( 1ii CCP is explicitly given in Eq. 

(15). To estimate the probability of the chunk Si to have a particular concept 
ixc , i.e., )(

ixi cCP  , we can use the 

likelihood of the chunk Si belonging to the concept 
ixc , which is can be directly derived from the clustering results. 

)()|()()|(
1111 iiii xixxxiii cCPccPcCPCCP 
     (15) 

  The benefit of using Eq. (14) for concept summarization is twofold. (1) the whole process searches the clustering 

space to find the cluster structures such that the likelihood of the concept sequences S generated from the stream can be 

maximized, so the clustering and the summarization are seamlessly integrated to achieve an optimization goal, and (2) the 

concept transfer matrix )|(
1ii xx ccP , xi[1, k], cc

ix  , and the chunk based probability values 

)|(
11 

  ii xixi cCcCP , i[1, n], provide a concept transfer map to summarize the transfer probabilities between 

concepts at both sequence and chunk levels, with the temporal information inherently integrated into the final outcome. 

 
Si-1 Si 

1ixc  
ixc  

)(
11 

 ixi cCP  )(
ixi cCP   

)|(
1ii xx ccP  )|(

11 
  ii xixi cCcCP  

 

Figure 9: The graphical model of the conditional probability transferring between two consecutive chunks Si-1 and Si.  



6. Time Complexity Analysis 

In this section, we decompose the system into two major components: vague one-class learning and one-class concept 

summarization, and study their time complexity in details. For ease of understanding, we denote # as the number of chunks 

in the data stream, where each chunk contains N instances and each instance has m attributes.  

6.1 VOCL Time Complexity 

The vague learning process is triggered as long as new instances form a data chunk for processing. As shown in the main 

procedure in Figure 5, VOCL includes three major steps including instance (local and global) weighting, weighted one-

class classifier training, and classifier weighting. For instance weighting, one needs to use cross-validation to calculate 

each instance’s local weight, and use ensemble E to determine each instance’s global weight value. Assume the 

complexity of training a one-class classifier is O(g(N)), where g(N) is a function with respect to the chunk size N. The 

local weighting involves the training of f local one-class classifiers and predictions on N instances, so the time complexity 

is given in Eq. (16) 

Tlocal=  NON
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f
gfO 
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
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1
(                (16) 

 For global weighting, one needs to use ensemble (which contains k classifiers) to predict all instances in the most 

recent chunk, which is equivalent to the time complexity given in Eq. (17). 

Tglobal=O(k·N)                              (17) 

 Combining Eqs. (16) and (17), the time complexity of the instance weighting process is given in Eq. (18).  
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 For classifier weighting, the weight calculation is a pair-wise classification process across all ensemble members, 

which requires a total complexity of O(k·N). As a result, the total time complexity of VOCL over the data stream with # 

chunks is still bounded by the instance weighting process. 

 NkNgfOTVOCL  #)(#             (19) 

6.2 OCCS Time Complexity 

For concept summarization, the time complexity includes three major parts (1) set feature extraction, (2) concept clustering, 

and (3) concept transfer map construction. The set feature extraction process only requires one scanning of the instances 

(including attribute values) to build virtual samples, so the time complexity for this step is O(m·N) for each chunk. The 

time complexity of the concept clustering is dependent on the complexity of the clustering procedure. In our experiments, 

we used k-means clustering, so the complexity is O(#·l·m), where l denotes the number of iterations in the clustering 

process. For concept transfer map construction, we need to recursively solve Eq. (14), based on the Maximum Likelihood 

principle, to find optimal clustering solutions. Assume the number of clusters (concepts) specified by users is c, the above 

process requires, in the worst scenario, 1+2+…+c=O(c²) clustering process, which results in O(#·l·c²·m) time complexity 

in total. As a result, the time complexity for the concept summarization process is given in Eq.(20)  

TOCCS=O(#·m·N)+O(#·l·m)+O(#·l·c²·m)= O(#·m·N)+O(#·l·c²·m)        (20) 

6.3 System Time Complexity 

Combing Eqs. (19) and (20), the total system time complexity is given in Eq. (21), where the first term is dominated by g(), 

which is the time complexity for training a one-class classifier, and the second term is dominated by either N or lc
2
. 

   ][##)(# 2clNmONkNgfOTOCLS              (21) 

 In practical settings, the values of f, k, m, l, and c are relatively small, in comparison with the chunk size N, we can 

therefore simplify them as a small variable <<N, and the product between l and c
2 

can be simplified as lc
2
  N. As a 

result, the time complexity in Eq. (21) can be simplified as shown in Eq. (22),  

   NONgOTOCLS   #)(#      (22) 



 Depending on the actual time complexity for training a one-class classifier g(·), the total time complexity in Eq.(22) can 

be either dominated by the first term if g(·) is of higher order than linear or dominated by the second term if g(·) is of lower 

order than linear. In practice, most learning algorithms (including one-class learning) are of higher order than linear (e.g., the 

typical time complexity for training a SVM classifier is O(N
2
)), we assert that the time complexity of the whole system is 

bounded by the complexity of the underlying one-class learner. Assume it takes x amount of time for training a one-class 

classifier from a data chunk, the whole system complexity is linear with respect to both the x and the total number of chunks 

in the stream.  

7. Experiments 

7.1 Experimental Settings 

We implement the proposed VOCL and OCCS algorithms using Java platform and WEKA data mining tools [42]. The one-

class classifiers used in the experiments are trained using the one-class SVM provided in the LibSVM [43] package. 

Benchmark Methods & Parameters: For comparison purposes, we implement three benchmark methods, LOCL, EOCL, 

and FOCL, which have been introduced in Section 2.2. The proposed vague one-class learning module is denoted by 

VOCL. For all methods, we use one-class SVM provided in the LibSVM as the generic one-class learner (using default 

parameter settings and Gaussian kernel). To make fair comparisons, both EOCL and VOCL use the same number of 

classifiers (k) to form the ensembles. To save space, we omit the details of the algorithm performance with respect to the 

chunk size (N), ensemble size (k) etc. because the impact of these factors has been addressed more or less in existing stream 

data mining literature [10-14]. Instead, we use chunk size N=1000, ensemble size k=10, local filter folds f=10, and weighted 

sampling ensemble size =10 (as defined by Eq.(9)), for all streams. The purpose of fixing these parameters is to fully 

investigate and compare algorithm performance under different vague learning scenarios.  

Measures: The majority experimental comparisons are based on the prediction accuracies on chunk Si+1, assuming 

chunks …Si-2, Si-1, Si have been observed so far. Because we are mainly interested in algorithms’ performance across the 

whole stream, unless specified otherwise, we normally report the average accuracy (and the standard deviation) of each 

method over all data chunks.  

Positive Class & User Interest Models: Because one-class learning only needs one class of samples (i.e., positive samples) 

for training, whereas our benchmark data streams [44] contain more than one classes. To provide positive samples for one-

class learning, we use the following four user interest models to select one particular class as the positive class, and treat 

samples from the rest of classes as non-positive samples.  

To simulate user interest changes, we employ the following four models: constant, regular shifting, probability shifting, 

and confined probability shifting, where the first three are used for the VOCL concept learning and confined probability 

shifting is used for the OCCS concept summarization. In the constant model, users are interested in one particular class 

over the whole data stream. In the regular shifting model, users regularly shift theirs interest, from one class to another class, 

after a fixed number of chunks. In probability shifting model, users change their interests with the probability given in Eq. 

(23), where Elaps denotes the number of chunks the currently selected positive class has elapsed so far. For majority 

experiments, we use the probability shifting model, because it’s closer to real-world models. The confined probability 

shifting is mainly used to evaluate whether the OCCS concept summarization module can indeed recapture the concept 

transfer relationship from the data, assume that each pair of concepts follow some predefined state transfer probability 

values (please refer to Section 6.4.2 for detailed explanations). 
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Vague Labeling:  To provide vague labels for each data chunk, we employ a random vague labeling and a clustering vague 

labeling approach in our experiments. In random vague labeling, users are allowed to specify the percentage of labeled 

instances () and the percentage of genuine positive samples () in the labeled subset of each chunk. For each chunk Si, 

instances are randomly selected to be included in the positive sample set (PSi) to satisfy the constraints ( and ) provided 

by users. In some circumstances,  and  may not be satisfied simultaneously. For such a case, the labeling will first try to 

build a label set with the required size () and then try to ensure that the genuine positive samples in the labeled set 

satisfying the  constraint. For clustering vague labeling, users first apply simple k-means clustering to each data chunk and 

merges samples into a number of clusters. After that, clusters are sorted based on the purity with respect to the selected 



positive class (i.e., the percentage of genuine positive samples in each cluster) in a descending order. The clusters are 

selected from the top to the bottom of the list, with instances in the selected clusters included the labeled set, until the size 

of the labeled set reaches the  constraint. In clustering vague labeling, users cannot control the percentage of genuine 

positive samples in the labeled set, because a cluster can have any percentage of genuine positive samples. In the 

experiments, the purities of the data chunks are also reported if necessary. 

Data Streams: Four benchmark streams downloaded from the Stream Data Mining Repository [44] are used in our 

experiments.  

Sensor data stream contains information (temperature, humidity, light, and sensor voltage) collected from 56 sensors 

deployed in Intel Berkeley Research Lab, as shown in Figure 10. The whole stream contains consecutive information 

recorded over a 2 months period (1 reading per 1-3 minutes). We select sensors from four regions (the ellipses), and the 

learning task is to correctly identify which region a particular reading is coming from. The processed stream has four 

classes (i.e., four regions) and 1051229 samples, each of which has five dimensions.  

Power contains hourly power supply of an electricity company from two sources: power supply from the main grid and 

power transformed from other grids. The learning task of this stream is to predict which hours (one out of the 12 periods 

from (0,2], (2,4],…, (22,24]) the current power supply belongs to. The whole stream contains 29,928 samples, each of 

which has four dimensions.  

KDD-99 was collected from the KDD CUP challenge in 1999, and the task is to build predictive models capable of 

distinguishing between intrusions and normal connections. The original data (10% sampling) contain 41 features, 494,021 

samples, and over 22 intrusion types. We select three major classes (Normal, Neptune, and Smurf) to form a data stream 

with 485,269 instances.  

HyperP is a synthetic data stream containing gradually evolving (drifting) concepts defined by Eq. (24), where the value aj, 

j=1, 2,.., d, controls the shape of the decision surfaces, and the value f(x) determines the class label of each instance x. The 

concept drifting of the data streams is simulated and controlled through the following parameters [24, 29]: (1) t, controlling 

the magnitude of the concept drifting; (2) p, controlling the number of attributes whose weights are involved in the change; 

and (3) h and g{-1, 1}, controlling the weight adjustment direction for attributes involved in the change. After the 

generation of each instance x, ai is adjusted continuously by gt / M (as long as ai is involved in the concept drifting). 

Meanwhile, after the generation of M instances, there is an h percentage of chances that weight change will inverse its 

direction, i.e., g = -g for all attributes ai involved in the change. In our experiments, the HyperP stream has five classes and 

100,000 instances, each of which contains d=10 dimensions. The concept drifting involves p=5 attributes, and attribute 

weights change with a magnitude of t=0.1 in every M=2000 instances and weight adjustment inverses the direction with 

h=20% of chance.  
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Figure 10: the sensor distribution map deployed in Intel Berkeley Research Lab. Each number denotes a sensor location, and the 

large ellipses denote the sensor regions used in this paper (revised from http://db.csail.mit.edu/labdata/labdata.html). 

 

http://db.csail.mit.edu/labdata/labdata.html


7.2 VOCL Concept Learning Results 

7.2.1 Random-Based Vague Labeling Comparisons 

Random vague labeling allows users to control the size of the positive sample set () and its purity levels (), so we can 

investigate detailed algorithm performances under fully controlled vague labeling scenarios.  

In Figure 11, we compare all four learning algorithms (LOCL, EOCL, FOCL, and VOCL) under three user interest 

models: constant, regular shifting, and probability shifting. The results from the constant user interest model (Figure 9(a)) 

clearly show that four methods are roughly separated into three tiers with VOCL outperforming FOCL, and FOCL further 

outperforming LOCL and EOCL. In fact, such ranking is also valid for all user interest models in Figure 11. Although we 

do expect that LOCL and EOCL to be ineffective for vague one-class learning, the results in Figure 11 actually show that 

one-class ensemble learning (EOCL) is not doing any better than local learning, regardless of whether the user interests are 

constant or shift back and forth. For one-class streams with vaguely labeled samples, simply aggregating classifiers across 

data chunks to form an ensemble without differentiating sample types (genuine positive or false positive) may not bring any 

improvement at all. The results from FOCL further support our hypothesis and show that significant performance gain can 

be achieved by refining vaguely labeled samples in the current and most recent chunks. 

When comparing results across three user interest models, we can observe that although VOCL can outperform FOCL, 

it becomes increasingly difficult for VOCL to achieve large performance gains when user interests change in a random 

manner (i.e. probability shifting). This is because when user interests remain stable, VOCL can leverage information across 

multiple chunks to strengthen the prediction accuracy, whereas FOCL can only utilize information from neighboring 

chunks for learning. On the other hand, as users shift their interests away from the current class, the majority models trained 

from historical data chunks should be discarded. FOCL naturally adapts to such environments by using only two data 

chucks for training, so a shifting interest can be quickly adjusted. For VOCL, it will take at least k-1 chunks before the old 

concepts can be completely discarded. In short, although FOCL employs a filtering mechanism to leverage information 

from neighboring chunks, it suffers from the deficiency/risk of direct instance exclusion (which may eliminate genuine 

positive samples) and inclusion (which may include false-positive samples), and insufficient utilization of global 

knowledge from the historical data. 
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 (c) probability shifting 

Figure 11: Chunk-by-chunk accuracy comparisons with respect to different user interest models (HyperP data stream). Positive 

samples in each chunk are labeled using random vague labeling with =0.2 and =0.5.  
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  (a) HyperP          (b) KDD-99    (c) Power       (d) Sensor 

Figure 12: Average prediction accuracies with respect to different percentages of labeled samples () in each chunk (the x-axis denotes 

 values, and  is fixed to 0.5 for all streams, using probability shifting user interest model). For each  value, the bars from left to right 

correspond to LOCL, EOCL, FOCL, and VOCL. 

 

In Figure 12, we further compare different methods with varying sizes of labeled set (). In short, the results largely 

support our conclusion that when positive samples are (randomly) vaguely labeled, VOCL provides effective solution to 

differentiate vaguely labeled positive samples and leverage information across multiple chunks for learning. 

7.2.2 Clustering-Based Vague Labeling Comparisons 

In this subsection, we compare algorithm performance under scenarios that users can merge instances into clusters for 

labeling. In our experiments, we first use k-means to merge instances in Si into k clusters, and then let users label one or 

multiple clusters as positive until the labeled set reaches size  (please refer to Section 6.1 for detailed procedures). In 

Figure 13, we first report the average accuracies with respect to different k values for k-means clustering (using the 

probability shifting model).  

As the number of clusters (i.e., the k value) grows from 3 to 50, we can observe that the purities of the labeled sample 

sets continuously improve. This is easy to understand because larger cluster numbers imply smaller size clusters, so the 

labeling process may have a better chance to select clusters containing more genuine positive samples. Interestingly, the 

results in Figure 11 show that while the purity of the labeled set continuously improves, no significant improvement is 

actually observed for all methods, except VOCL which only receives a small amount of performance gains. We believe 

that this is mainly because genuine positive samples selected by random vague labeling are usually more representative 

[45], from a supervised learning perspective, than those selected by clustering vague labeling. Indeed, in random vague 

labeling, genuine positive samples are randomly picked which may represent the underlying learning problem in a best 

way. For clustering vague labeling, genuine positive samples are selected by clusters. Because instances within one cluster 

usually represent a specific aspect of a big problem, genuine positive samples selected from this approach intend to be less 

representative. An extreme example is that if we have 100 identical instances in a chunk, the clustering approach will 

merge all 100 instances into one cluster. But selecting all instances in this cluster for training is obviously not a good idea 

(if the number of instances selected for training is limited) because the 100 instances are, in fact, one single instance and 

are not representative for training at all. 

 In Table 1, we report the algorithm performances by specifying different sizes of positive set () with a fixed cluster 

number (k=20) for all chunks. The results confirm that as the size of the labeling set grows, it is mostly helpful for all 

methods to receive performance gain.  

The main observations from this section are threefold: (1) the VOCL learning framework can outperform FOCL and 

other methods for one-class data streams labeled by clustering based batch-labeling; (2) VOCL is much less sensitive than 

other methods w.r.t. the purities and the representativeness of the samples. In other words, VOCL can not only tolerate 

vaguely labeled samples, it can also work effectively on a training set where genuine positive samples are relatively less 

effective to represent the underlying learning concepts; and (3) comparing random vague labeling and clustering vague 

labeling, the former has a better capability of building a labeling set preserving the original learning concepts, whereas the 

latter is more effective in helping users identify positive samples. 
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Figure 13: The average prediction accuracies with respect to different cluster numbers in vague clustering labeling (k-means 

clustering), the x-axis denotes the cluster number (the value in the bracket following each number shows the actual purity of the labeled 

samples), and the y-axis denotes the prediction accuracies of all five methods.  

Table 1: Average prediction accuracies w.r.t. different percentages of labeled samples () in each chunk (using the probability shifting 

model for user interests) 

  Purity LOCL EOCL FOCL VOCL 

H
y

p
er

P
 0.1 0.70 56.2214.20 56.4011.49 67.6710.47 71.959.89 

0.2 0.69 54.2610.24 52.8410.30 66.4911.03 71.929.05 

0.3 0.57 51.7011.58 49.357.15 65.5810.09 71.059.91 

0.4 0.53 50.4511.58 49.039.73 64.7811.32 70.579.35 

K
D

D
-9

9
 0.1 0.97 70.4812.23 69.979.78 74.1212.88 80.358.33 

0.2 0.95 71.6014.49 70.848.64 74.5612.04 81.609.58 

0.3 0.92 68.8513.49 69.9210.12 75.3511.34 80.238.83 

0.4 0.84 65.4714.22 67.449.80 74.4812.55 80.519.24 

P
o

w
er

 0.1 0.78 90.221.96 91.530.98 91.480.93 91.000.71 

0.2 0.41 87.811.39 90.330.86 91.250.97 91.170.83 

0.3 0.29 85.121.52 84.330.72 86.490.89 89.380.92 

0.4 0.21 82.811.78 79.460.81 85.930.92 89.070.67 

S
en

so
r 

0.1 1.00 72.442.27 71.571.87 74.512.03 77.271.24 

0.2 0.97 74.223.02 74.291.45 76.542.77 79.721.76 

0.3 0.78 76.892.55 77.691.92 78.092.59 80.801.59 

0.4 0.47 77.022.87 76.921.68 78.972.62 81.821.68 

7.2.3 Local and Global Weighting Comparisons 

The VOCL design as shown in Figure 5 involves a two-layer weighting mechanism, at both instance and classifier levels. 

The coupling of the two-layer weighting mechanism raises a necessary concern on which part of the weighting (instance 

or classifier level) is responsible for the performance gain/loss of VOCL. To comparatively study instance and classifier 

weighting, as described in Sections 4.2 and 4.3, we design the following experiment to compare VOCL with its two 

modified versions. In our experiment, we first remove the instance weighting module from the VOCL (so all instances in 

each chunk have the same weight values) and keep the rest of the VOCL design as the same as shown in Figure 5. We 

denote this method as VOCL-i (i.e., VOCL minus instance weighting). Similarly, we also remove the classifier weighting 

module from the VOCL (so all classifiers have the equal weight values) and keep the rest of the VOCL design unchanged, 

and denote this method as VOCL-c (i.e., VOCL minus classifier weighting). We apply three methods VOCL-i, VOCL-c, 

and VOCL to the same testbed and report their performances in Figure 14. 

The results in Figure 14 clearly show that instance weighting, overall, play a major role for VOCL. For all three user 

interest models, as shown in Figures 14(a), 14(b), and 14(c), the prediction accuracies will drop significantly as long as 

the instance weighting module is removed from VOCL. On the other hand, classifier weighting, in general, has a very 



limited impact on the system performance unless the user interest changes frequently and rapidly (as shown in Figure 

14(c)). If the user interest maintains stable or switches regularly (Figures 14(a) and (b)), we can observe that the 

deterioration of the prediction accuracy, in each chunk, is between 0.5% to 2% or so, which is far less significant than the 

loss due to the removing of the instance weighting module. Indeed, when samples in each chunk are vaguely labeled, 

instance weighting provides an effective way to differentiate genuine positive samples so the classifier trained from each 

chunk can have a good performance. This observation also suggests that in data stream environment, focusing on 

improving each single data chunk to produce good predictors at chunk level may be more beneficial than simply sticking 

to the high level combination of all predictors, although the latter has a clear advantage of tackling the concept drifting 

challenge in data streams.  
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(a) constant interests     (b) regular shifting (10 chunks/shifting) 
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(c) probability shifting 

Figure 14: The comparisons of the local and global weighting mechanisms with respect to the VOCL which combines both local and 

global weighting. VOCL-i denotes the VOCL framework without instance weighting (Section 4.2) whereas the classifier weighting 

remains the same as VOCL. VOCL-c represents the VOCL framework without classifier weighting (Section 4.3) whereas the instance 

weighting remains the same as VOCL. The comparisons across VOCL-i, VOCL-c, and VOCL clearly show that instance weighting 

plays a major role for VOCL (HyperP data stream, positive samples in each chunk are labeled using random vague labeling with =0.2 

and =0.5) 

7.3 Concept Summarization Results 

The performance of the OCCS module for concept summarization is evaluated based on the algorithm performance with 

respect to the clustering accuracy and concept transfer accuracy estimated from the HyperP and Sensor streams. 

7.3.1 Concept Clustering Accuracy 

Since the main purpose of the concept clustering is to merge chunks with similar concepts into groups, according to the 

samples labeled in each chunk by users, we evaluate the concept clustering performance by assessing the quality of the 

clustering results. More specifically, when labeling a chunk using a vague labeling approach, we assume that we know the 

actual concept users intended to label the chunk (in the experiments, the concept in each chunk is determined by the class 



the users use for labeling). This is to say that for each instance in the virtual set, we know its genuine class label, and the 

assessment is made by evaluating whether the clustering approach is able to merge instances with the same class label into 

a cluster. For this purpose, we apply K-means clustering [46] to the virtual set with the number of clusters set as the 

genuine class number in the stream. For each cluster, we find the concept (i.e., class) which dominants the cluster and 

regard that this cluster represents the class. The clustering accuracy for a cluster is the percentage of samples belonging to 

the dominant class, comparing to the total number of instances in the cluster. The concept clustering accuracy is the 

average clustering accuracy over all clusters. 

In Figure 15, we report the concept clustering accuracy, with respect to different numbers of bins used to discretize 

each feature (under probability concept shifting model). For comparison purposes, we also compare, for each stream, the 

clustering accuracy of using labeled samples in each chunk only (without any weighting), so the benefits of the proposed 

instance weighting approach can be clearly demonstrated. 

As shown in Figure 15, for HyperP stream, the clustering accuracy can reach about 50% when each feature is equally 

separated into 5 bins to build the feature histogram. We note that HyperP has 5 concepts, so this accuracy, although still 

have much room for improving, is much better than a random guess whose accuracy would be 20% only. In addition, the 

proposed sample weighting approach has shown to improve the accuracy by 1-5%, comparing to the approach using 

labeled samples only. For Sensor stream, the results do not show that sampling weighting or bin numbers have any 

significant impact to the clustering accuracy. This is mainly because that the feature values of the Sensor stream are 

relatively sparse, and the proposed discretization approach may need to be carefully tuned for each individual feature to 

build good set features for clustering.  
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Figure 15: Concept clustering accuracy with respect to the number of bins used to discretize each feature (50-times K-means clustering 

average accuracy, using probability concept shifting model with =0.1 and =0.5) 

7.3.2 Markov Model Based Concept Summarization Results 

One major objective of the concept summarization is to build a concept transfer map, using Markov model, to visualize 

the temporal correlations of the concepts in the stream. To evaluate the algorithm performance, we employ a confined 

probability shifting model which is actually a Markov model with known state transfer probabilities. When labeling the 

data, we assume that users employ the given concept transfer model to label each chunk and change their labeling interests. 

The evaluation of the algorithm performance is to determine that to which extent the proposed method can restore the 

original concept transfer model behind users’ labeling, by observing chunks labeled by users. 

 In our experiments, we assume that users are following the concept transfer model in Table 2 to label each chunk. In 

the model given in Table 2, we intentionally separate concepts into two major groups, with {c1, c2} and {c3, c4, c5} each 

belonging to one group. The purpose of employing such a unique generative model is to assess whether the proposed 

approach is able to recapture the high-level relationship among the concepts underneath the data. 

For each data stream labeled by using the generative model (G) given in Table 2, we employ the proposed concept 

summarization approach to rebuild a concept transfer matrix (i.e., a Markov model), denoted by G, from the data. 

Because we don’t actually know the mapping relationship between a concept in G and the concept in G, we randomly 

permutate each pair of rows (i,j) and each pairs of columns (i,j), until we find a permutation G of G which has the 

smallest distance with G. The concepts in G are then regarded as the matching concepts with G, and their state transfer 

values are reported in Tables 3. 

 



Table 2: The state transfer matrix used for concept labeling (using confined probability shifting model). Each table field (i, j) denotes 

the probability of the concept in the row i to be transferred to the concept in the column j (HyperP Stream with random vague labeling) 

 c1 c2 c3 c4 c5 

c1 0.5 0.4 0.1 0 0 

c2 0.4 0.3 0.2 0.1 0 

c3 0 0.1 0.3 0.4 0.2 

c4 0 0.1 0.3 0.2 0.4 

c5 0 0 0.3 0.3 0.4 

Table 3: The state transfer matrix restored from the data labeled by using the generative matrix given in Table 2. Each table field (i, j) 

denotes the probability of the concept in the row i to be transferred to the concept in the column j. The clustering accuracy is 0.554 and 

the distance between this matrix and the generative matrix in Table 2.1 is about 0.023 (HyperP Stream with random vague labeling) 

 c1 c2 c3 c4 c5 

c1 0.214 0.286 0.214 0.143 0.143 

c2 0.333 0.333 0.111 0.111 0.111 

c3 0.132 0.071 0.286 0.321 0.178 

c4 0.115 0.077 0.192 0.346 0.269 

c5 0.048 0.0 0.381 0.286 0.286 

 

The results in Table 3 indicate that the proposed concept summarization approach is able to largely restore the 

concept transfer relationships from the data. When comparing two matrices in Tables 2 and 3, we can find that although 

the actual values are subject to large differences (the normalized Euclidean distance between two matrices is 0.023), the 

overall results clearly show that concepts c1 and c2 form one group, and c3, c4, and c5 form the second group, which 

retain the same relationship as the generative model given in Table 2. 

In summary, the above results assert that the proposed concept summarization approach is able to recapture concept 

transfer relationships from the data and help users summarize concepts labeled by them over the whole stream. 

8. Related Work 

The proposed work is closely related to existing research on one-class learning and stream data mining. 

One-class learning [1-14] refers to a special type of supervised learning task where only one class of labeled samples 

is available for training. Three types of one-class learning methods commonly exist, and the most popular approach is to 

regard the one-class learning as an optimization problem where the objective is to either find a hyper-ball to enclose all 

positive samples [6] or to find a hyper-plane [7] to separate all positive samples from the origin. The second type of one-

class learning approach is to learn an autoassociation neural network [14] which intends to reproduce the input signal such 

that the network can work as a recognition machine to recognize positive signals. For applications containing both labeled 

(positive) and unlabeled samples, a third type of one-class learning solution is to transform the learning as some binary 

classification problems [8-10]. In comparison, although vague one-class learning is closely related to the one-class 

learning, our focus is to consider vaguely labeled samples, where most, if not all, one-class leaning methods are 

inadequate to address the problem. 

Stream data mining [19-33] traditionally concerns the problem of discovering patterns or building prediction models 

from continuous volume stream data. Two major challenges in stream data mining include (1) continuously increasing 

data volumes, and (2) the drifting of the decision concepts. These two challenges are traditionally solved by using either 

an incremental learning [21-22] or an ensemble learning approach [23-24]. For incremental learning, the problem is to 

build a model from a small portion of the stream data, and continuously update the model by using newly arrived samples. 

For ensemble learning, a number of base classifiers are built from different portions of stream data, and the final goal is to 

combine the models to form an ensemble classifier for prediction. Many algorithms exist for using an ensembling based 

method for stream-oriented applications, such as active learning [47], learning with imbalanced sample distributions [31], 

proactive mining [32], and learning with labeled and unlabeled samples [33]. For all methods in this category, the samples 

are assumed to be accurately labeled (except a recent stream data cleansing method [29], whose objective is to cleanse 



noisy samples in stream data), whereas in the proposed research we intend to address vaguely (or weakly) labeled samples 

in data streams.  

The problem of employing one-class learning for data streams was recently addressed by Li et al. [8] in their positive 

unlabeled learning method, which refines positive samples and includes samples from the most recent data chunk (the one 

proceeding to the current chunk) for data stream classification. Our work differs from Li et al’s work on two aspects. First, 

we employ ensemble learning and instance weighting to handle vaguely labeled samples, whereas Li’s method uses cross-

chunk sample inclusion or exclusion to refine the data chunks for learning. Second, Li’s method does not address the 

concept summarization problem whereas our framework does. In a conference version of our recent work [28], we 

addressed the vague one-class learning for data streams, but the problem of concept summarization was not addressed in 

our previous efforts or by any other research endeavors.  

9. Conclusions and Remarks 

In this paper, we formulated a new research problem of vague one-class learning and concept summarization for data 

streams. We argued that in data stream environments, providing fast and accurate labeling information is crucial but 

difficult to realize, mainly because that existing instance-based labeling approaches are expensive and time consuming. 

On the other hand, while all labeled samples in a one-class stream are marked as positive, the change of the user labeling 

interests makes it necessary to recapture and summarize users’ labeling concepts over the whole stream.  

Following the above motivations, we advocated, in this paper, a vague labeling paradigm which allows users to 

merge instances into groups and label positive groups instead. The vague labeling approach, nevertheless, raises three 

special challenges. First, a vaguely labeled training set may contain non-positive instances. Second, users may shift their 

interests at any time and the concepts underneath the data may also change gradually. Last, as data volumes continuously 

grow, it makes traditional one-class learning algorithms incapable of handling stream data. To solve these problems, we 

proposed a One-Class Learning and Summarization (OCLS) system which uses a Vague One-Class Learning (VOCL) and 

a One-Class Concept Summarization (OCCS) model to fulfill the concept learning and summarization goal. Experimental 

results on four data streams confirmed that VOCL significantly outperforms its rival peers to support one-class learning 

for vaguely labeled data streams. The proposed OCCS is also able to rebuild the concepts and recapture their transfer 

relationships over the stream.  

As existing tools for one-class learning are extremely limited, many problems for one-class data stream learning 

remain wide open. In the paper, we have shown that labeling quality plays a fundamental role for one-class learning. 

Proposing new solutions for users to identify important samples for labeling [30, 47] is an important direction which 

should be addressed in the future. In addition, the concept summarization approaches reported in the paper still have much 

room for improvement. Devising efficient and effective methods to help build concept summaries for one-class data 

streams is another direction worth of pursuing. 
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