
Constrained Stochastic Gradient Descent for Large-scale
Least Squares Problem

Yang Mu
University of Massachusetts

Boston
100 Morrissey Boulevard
Boston, MA, US 02125

yangmu@cs.umb.edu

Wei Ding
∗

University of Massachusetts Boston
100 Morrissey Boulevard
Boston, MA, US 02125
ding@cs.umb.edu

Tianyi Zhou
University of Technology Sydney

235 Jones Street
Ultimo, NSW 2007, Australia

tianyi.david.zhou@gmail.com

Dacheng Tao
University of Technology Sydney

235 Jones Street
Ultimo, NSW 2007, Australia

dacheng.tao@uts.edu.au

ABSTRACT
The least squares problem is one of the most important re-
gression problems in statistics, machine learning and data
mining. In this paper, we present the Constrained Stochas-
tic Gradient Descent (CSGD) algorithm to solve the large-
scale least squares problem. CSGD improves the Stochastic
Gradient Descent (SGD) by imposing a provable constraint
that the linear regression line passes through the mean point
of all the data points. It results in the best regret bound
O(log T), and fastest convergence speed among all first or-
der approaches. Empirical studies justify the effectiveness
of CSGD by comparing it with SGD and other state-of-the-
art approaches. An example is also given to show how to
use CSGD to optimize SGD based least squares problems to
achieve a better performance.

Categories and Subject Descriptors
G.1.6 [Optimization]: Least squares methods, Stochastic
programming; I.2.6 [Learning]: Parameter learning

General Terms
Algorithms, Theory

Keywords
Stochastic optimization, Large-scale least squares, online
learning

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDDąŕ13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 20XX ACM 978-1-4503-2174-7/13/08 ...$15.00.

1. INTRODUCTION
The stochastic least squares problem aims to find the co-

efficient w ∈ R
d to minimize the objective function at step

t

w∗
t+1 = argmin

w

1

t

t∑
i=1

1

2

∥∥∥yi −wTxi

∥∥∥2

2
, (1)

where (xi, yi) ∈ X × Y is an input-output pair randomly
drawn from data set (X,Y) endowed in a distribution D
with xi ∈ R

d and yi ∈ R, w∗
t+1 ∈ R

d is a parameter that
minimizes the empirical least squares loss at step t, and

l(w,xt, yt) =
1
2

∥∥yt −wTxt

∥∥2

2
is the empirical risk.

For large-scale problems, the classical optimization meth-
ods, such as interior point method and conjugate gradi-
ent descent, have to scan all data points several times in
order to evaluate the objective function and find the op-
timal w∗. Recently, Stochastic Gradient Descent (SGD)
[7, 29, 9, 3, 20, 13] methods show its promising efficiency
in solving large-scale problems. Some of them have been
widely applied to the least squares problem. The Least
Mean Squares (LMS) algorithm [25] is the standard first
order SGD, which takes a scalar as the learning rate. The
Recursive Least Squares (RLS) approach [25, 15] is an in-
stantiation of the stochastic Newton method by replacing
the scalar learning rate with an approximation of the Hes-
sian matrix inverse. The Averaged Stochastic Gradient De-
scent (ASGD) [21] averages the SGD results to estimate w∗.
ASGD converges more stably than SGD. Its convergence
rate even approaches to that of second order method, when
the estimator is sufficiently close to w∗. This happens after
processing a huge amount of data points.

Since the least squares loss l(wt,X,Y) is usually strongly
convex [5], the first order approaches can converge at the
rate of O(1/T). Given the smallest eigenvalue λ0 of the
Hessian matrix [8, 7, 18], many algorithms can achieve fast
convergence rates and good regret bounds [7, 2, 10, 23, 11].
However, if the Hessian matrix is unknown in advance, SGD
may perform poorly [18].

For high-dimensional large-scale problems, the strong con-
vexity are not always guaranteed, because the smallest eigen-
value of the Hessian matrix might be close to 0. Without

the assumption of the strong convexity, the convergence rate
of the first order approaches reduces to O(1/

√
T) [30] while

retains computation complexity of O(d) in each iteration.
Second order approaches, using the Hessian approximation,
converge at rate O(1/T). Although they are appealing due
to the fast convergence rate and stableness, the expensive
time complexity of O(d2) when dealing with each iteration
limits the use of second order approaches in practical large-
scale problems.

In this paper, we prove that the linear regression line de-
fined by the optimal coefficient w∗ passes through the mean
point (x̄, ȳ) of all the data points drawn from the distribu-
tion D. Given this property, we can significantly improve
SGD for optimizing the large-scale least squares problem by
adding an equality constraint wT

t+1x̄t−ȳt = 0, where (x̄t, ȳt)
is the batch mean of the collected data points till step t dur-
ing the optimization iterations. The batch mean (x̄t, ȳt) is
an unbiased estimation to (x̄, ȳ) by iterations (cf . the Law
of Large Numbers). We term the proposed approach as the
constrained SGD (CSGD). CSGD shrinks the optimal solu-
tion space of the least squares problem from the entire R

d

to a hyper-plane in R
d, thus significantly improves the con-

vergence rate and the regret bound. In particular,

· Without the strong convexity assumption, CSGD con-
verges at the rate of O(log T/T), which is close to that
of a full second order approach, while retaining time
complexity of O(d) in each iteration.

· CSGD achieves the O(log T) regret bound without re-
quiring strong convexity, which is the best regret bound
among existing SGD methods.

Note that when the data points are centralized (mean is
0), the constraint becomes trivial and CSGD reduces to
SGD, which is the worst case for CSGD. In practical on-
line learning, the collected data points, however, are often
not centralized, and thus CSGD is preferred. In this paper,
we only discuss the properties of CSGD when data points
are not centralized.

Notations. We denote the input data point xt = [1 x̃t]
T =

[x
(1)
t , . . . , x

(d)
t]T and wt = [w

(1)
t w̃t]

T = [w
(1)
t , . . . , w

(d)
t]T ,

where x
(1)
t = 1 is the first element of xt and w

(1)
t is the bias

parameter [6]. ‖·‖p is the Lp norm, ‖·‖2p is the squared Lp

norm, | · | is the absolute operation for scalars and l(w) is
abbreviated for l(w,xt, yt).

2. CONSTRAINED STOCHASTIC GRADI-
ENT DESCENT

We present the Constrained Stochastic Gradient Descent
(CSGD) algorithm for the large-scale least squares problem
by incorporating SGD with the fact that the linear regression
line passes through the mean point of all the data points.

2.1 CSGD algorithm
The standard Stochastic Gradient Descent (SGD) algo-

rithm takes the form of

wt+1 = Πτ (wt − ηtgt), (2)

where ηt is an appropriate learning rate, gt is the gradient

of the loss function l(w,xt, yt) = 1
2

∥∥yt −wTxt

∥∥2

2
, Πτ (·) is

the Euclidean projection function that projects w onto the
predefined convex set τ by

Πτ (w) = argmin
v∈τ

‖v −w‖22 . (3)

In least squares, w is defined in the entire R
d, and Πτ (·)

can be taken off. Thus, the search space of SGD is the entire
R

d to obtain the optimal solution.
According to Theorem 2.1 (cf . Section 2.2), we add a

constraint wT x̄t − ȳt = 0 at step t to SGD, where (x̄t, ȳt)
is an unbiased estimation to (x̄, ȳ) after t iterations, and
obtain CSGD

w∗
t+1 = argmin

w

1

t

t∑
i=1

1

2

∥∥∥yi −wTxi

∥∥∥2

2
, s.t. wT x̄t − ȳt = 0.

(4)
The constraint in Eq.(4) determines the hyper-plane τt =

{w|wT x̄t = ȳt} residing in R
d.

By replacing τ with τt in Eq.(2), we have

wt+1 = Πτt(wt − ηtgt). (5)

The projection function Πτt(·) projects a point onto the
hyper-plane τt. By solving Eq.(3), Πτt(·) is uniquely defined
at each step by

Πτt(v) = Ptv + rt, (6)

where Pt is the projection matrix at step t and takes the
form of

Pt = I− x̄tx̄
T
t

‖x̄t‖22
, (7)

where Pt ∈ R
d×d is idempotent and projects a vector onto

the subspace generated by xt, and rt =
ȳt

‖x̄t‖22
x̄t.

By combining Eqs.(5) and (6), the iterative procedure for
CSGD is

wt+1 = Pt(wt − ηtgt) + rt. (8)

We can obtain the time and space complexities of above
procedure both as O(d) after plugging Eq.(7) into (8) and
update wt+1,

wt+1 =

(
I− x̄tx̄

T
t

‖x̄t‖22

)
(wt − ηtgt) + rt (9)

= wt − ηtgt − x̄t

(
x̄T
t (wt − ηtgt)

)
/‖x̄t‖22 + rt.

Algorithm 1 describes how to calculate CSGD for the least
squares problem. This algorithm has the time and space
complexities both of O(d).

Algorithm 1 Constrained Stochastic Gradient Descent
(CSGD)

Initialize w1 = x̄0 = 0 and ȳ0 = 0.
for t = 1, 2, 3, . . . do

Compute the gradient gt ∈ ∂l(wt,xt, yt).
Compute (x̄t, ȳt) with
x̄t =

t−1
t
x̄t−1 +

1
t
xt, and

ȳt =
t−1
t
ȳt−1 +

1
t
yt.

Compute
wt+1 = wt − ηtgt − x̄t

(
x̄T
t (wt − ηtgt)

)
/‖x̄t‖22 + rt.

end for

2.2 Regression line constraint
Algorithm 1 relies on the fact that the optimal solution

lies in a hyper-plane decided by the mean point, which leads
to a significant improvement on the convergence rate and
the regret bound.

Theorem 2.1. (Regression line constraint) The optimal
solution w∗ lies on the hyper-plane, wT x̄− ȳ = 0, which is
defined by the mean point (x̄, ȳ) of data points drawn from
the distribution X × Y endowed in D.

Proof. The loss function is explicitly defined as

l(w∗,X ,Y) =
∑

(xt,yt)∈D

1

2
‖yt − w̃∗T x̃t −w∗(1)‖22, (10)

where w∗(1) is the first element of w∗.
Setting the derivative of the loss function w.r.t. w∗(1) to

zero, we obtain∑
xt∈X

w̃∗T x̃t +w∗(1) −
∑
yt∈Y

yt = 0.

∑
xt∈X

w∗T xt −
∑
yt∈Y

yt = 0.

Thus the optimal solution w∗ satisfies wT x̄− ȳ = 0.

Theorem 2.1 is the core theorem for our method. Bishop

[6] applied the derivitive w.r.t the bias w∗(1) to study the
property of the bias. However, although the theorem itself is
in a simple form, to the best of our knowledge, it has never
been stated and applied in any approach for least squares
optimization.

The mean point (x̄, ȳ) over a distribution D is usually
not given. In a stochastic approach, we can use the batch
mean (x̄t, ȳt) to approximate (x̄, ȳ). The approximation has
an estimation error, however, it will not lower the perfor-
mance. This is because the batch optimal always satisfies
this constraint when optimizing the empirical loss.

Therefore, we give the constrained estimation error bound
for completeness.

Proposition 2.2. (Constrained estimation error bound)
According to the Law of Large Numbers, we assume there is
a step m ≤ T yeilds ‖w∗‖2‖x̄m − x̄‖2 + |ȳm − ȳ| ≤ ε‖w∗‖2.
Then given a tolerable small value ε, the estimation error
bound ‖Πτt(w

∗)−w∗‖2 ≤ ε holds for any step t ≥ m.

Proof. Since ‖Πτt(w
∗) − w∗‖2 is the distance between

w∗ and the hyper-plane τt, we have

‖Πτt(w
∗)−w∗‖22 =

|ȳt −w∗T x̄t|
‖w∗‖2 .

Along with w∗T x̄− ȳ = 0, we have

|ȳt −w∗T x̄t| (11)

=‖ȳt − ȳ − (w∗T x̄t −w∗T x̄)‖2
≤‖w∗‖2‖x̄t − x̄‖2 + |ȳt − ȳ|
≤‖w∗‖2‖x̄m − x̄‖2 + |ȳm − ȳ|
≤ε‖w∗‖2,

where m exists since (x̄t, ȳt) converges to (x̄, ȳ) according to
the Law of Large Numbers.

Therefore,

‖Πτt(w
∗)−w∗‖2 ≤ ε.

Proposition 2.2 states that, if at step m, (x̄m, ȳm) is close
to (x̄, ȳ), then a sufficiently good solution (within an ε-ball
centered at optimal solution w∗) lies on hyper-plane τm. In
addition, the estimation error decays and its value is up-
per bounded by the weighted combination of ‖x̄t − x̄‖2 and
|ȳt − ȳ|. Notice that CSGD optimizes the optimal empirical
solution w∗

t that is always located on hyper-plane τt.
According to Theorem 2.1 and Proposition 2.2, under the

assumption of regression constraint, CSGD explicitly mini-
mizes the empirical loss as good as the second order SGD.
According to Proposition 2.2, ‖Πτt(w

∗) − w∗‖22 converges
at the same rate as ‖x̄t − x̄‖2 and |ȳt − ȳ| whose exponen-
tial convergence rate [4] is supported by the Law of Large
Numbers. Thus, we ignore the difference betweenΠτt(w

∗)
and w∗ in our theoretical analysis for simplicity reasons.

3. A ONE-STEP DIFFERENCE INEQUAL-
ITY

To study the theoretical properties of CSGD, we start
from the one-step difference bound, which is crucial to ana-
lyze the regret and convergence behavior.ݓෝ௧ାଵ

௧ାଵ߬ ௧ݓ ௧ߠ∗ݓ
.

..

Figure 1: An illustrating example after step t. ŵt+1

is the SGD result. wt+1 is the projection for ŵt+1

on to the hyper-plane τt. w∗ is the optimal solution.
tan θt = ‖ŵt+1 −wt+1‖2/‖wt+1 −w∗‖2

After iteration step t, CSGD projects the SGD result ŵt+1

on the hyper-plane τt to get a new result wt+1 with direction
and step size correction. An illustration is given in Figure
1. Note that, w∗ is assumed on τt according to Proposition
2.2.

In addition, the definition of a gradient for any gt ∈
∂l(wt) implies

l(w∗) ≥ l(wt) + gT
t (w

∗ −wt) (12)

⇒ gT
t (w

∗ −wt) ≤ l(w∗)− l(wt).

With Eq.(12) we have the following theorems for step dif-
ference bound.

Firstly, we describe the step difference bound proved by
Nemirovski for SGD.

Theorem 3.1. (Step difference bound of SGD) For any
optimal solution w∗, SGD has the following inequality be-
tween steps t− 1 and t

‖ŵt+1−w∗‖22−‖ŵt−w∗‖22 ≤ η2
t ‖gt‖22−2ηt(l(ŵt)− l(w∗)),

where ηt is the learning rate at step t.

Detail proof is given in [19].
Secondly, we prove the step difference bound of CSGD as

follows.

Theorem 3.2. (Step difference bound of CSGD) For any
optimal solution w∗, the following inequality holds for CSGD
between steps t− 1 and t

‖wt+1 −w∗‖22 − ‖wt −w∗‖22 (13)

≤η2
t ‖gt‖22 − 2ηt(l(wt)− l(w∗))− ‖ḡt+1‖22

‖x̄t‖22
,

where wt = Πτt(ŵ) and ḡt+1 = ∂l(ŵt+1, x̄t, ȳt).

Proof. Since ŵt+1 = wt − ηtgt, between two steps t− 1
and t, ŵt+1 and wt follows Theorem 3.1.

Therefore, we have

‖ŵt+1−w∗‖22−‖wt−w∗‖22 ≤ η2
t ‖gt‖22−2ηt(l(wt)− l(w∗)).

(14)
As Euclidean projectionwt+1 = Πτt(ŵt+1) given in Eq.(3),

which is also shown in Figure 1, has the property,

‖ŵt+1 −w∗‖22 = ‖wt+1 −w∗‖22 + ‖wt+1 − ŵt+1‖22. (15)

Then, substituting ‖ŵt+1 − w∗‖22 given by Eq.(15) into
Eq.(14) yields

‖wt+1 −w∗‖22 − ‖wt −w∗‖22 (16)

≤η2
t ‖gt‖22 − 2ηt(l(wt)− l(w∗))− ‖wt+1 − ŵt+1‖22.

By using the projection function defined in Eq.(6), we
have

‖wt+1 − ŵt+1‖22 (17)

= ‖Ptŵt+1 + rt − ŵt+1‖22

=

∥∥∥∥
(
I− x̄tx̄

T
t

‖x̄t‖22

)
ŵt+1 +

ȳt
‖x̄t‖22

x̄t − ŵt+1

∥∥∥∥
2

2

=

∥∥∥∥∥ x̄t

(
ȳt − x̄T

t ŵt+1

)
‖x̄t‖22

∥∥∥∥∥
2

2

.

Since ḡt+1 = ∂l(ŵt+1, x̄t, ȳt) = −x̄t

(
ȳt − x̄T

t ŵt+1

)
, we

have

‖wt+1 − ŵt+1‖22 =
‖ḡt+1‖22
‖x̄t‖22

.

A direct result of the step difference bound allows the
following theorem which derives the convergence result of
CSGD.

Theorem 3.3. (Loss bound) Assume (1) the norm of any
gradient from ∂l is bounded by G, (2) the norm of w∗ is less

than or equal to D and (3)
∑T

t=1

‖ḡt+1‖22
‖x̄t‖22

≥ G2 then

2
T∑

t=1

η(l(wt)− l(w∗)) ≤ D2 −G2 +G2
T∑

t=1

η2
t .

Proof. Rearranging the bound in Theorem 3.2 and sum
the loss terms over t from 1 through T and then get the sum:

2
T∑

t=1

ηt (l(wt)− l(w∗)) (18)

≤‖w1 −w∗‖22 − ‖wT+1 −w∗‖22

+
T∑

t=1

(
η2
t ‖gt‖22 − ‖ḡt+1‖22

‖x̄t‖22

)

≤D2 −G2 +G2
T∑

t=1

η2
t .

The final step uses the fact that ‖w1 −w∗‖22 ≤ D, where
w1 is initialized to 0, along with ‖gt‖22 ≤ G2 for any t and

the assumption
∑T

t=1

‖ḡt+1‖22
‖x̄t‖22

≥ G2.

A corollary which is the consequence of this theorem is
presented in the following. Although the convergence for
CSGD follows immediately according to the Nemirovski’s 3-
line subgradient descent convergence proof [17], we present
our first corollary underscoring the rate of convergence when
η is fixed, in general is approximately 1/ε2, or equivalently,

1/
√
T .

Corollary 3.4. (Fixed step convergence rate) Assume
Theorem 3.3 hold and for any predetermined T iterations
with η = 1√

T
, then

min
t≤T

l(wt) ≤ 1

T

T∑
t=1

l(wt) ≤ 1

2
√
T
(D2 −G2 +G2) + l(w∗).

Proof. let ηt = η = 1√
T

for any step t, the bound for

convergence rate in Theorem 3.3 becomes,

2
T∑

t=1

(l(wt)− l(w∗)) ≤ 1

η
(D2 −G2) +G2Tη.

The desired bound is achieved after plugging in the spe-
cific value of η and dividing both sides by T .

It is clear that the fixed step convergence rate for CSGD
is upper bounded by SGD, which can be achieved by taking
out the G2.

4. REGRET ANALYSIS
Regret is the difference between the total loss and the opti-

mal loss, which has been analyzed in most online algorithms
for evaluating the correctness and convergence.

4.1 Regret
Let G be the upper bound of ‖gt‖2 for any t from 1, . . . , T ,

we have the following theorem.

Theorem 4.1. (Regret Bound for CSGD) the regret of
CSGD is:

RG(T) ≤ G2

2H
(1 + log T),

where H is a constant. Therefore,
lim supT→∞ RG(T)/T ≤ 0.

Proof. In Theorem 3.2, Eq.(16) shows that:

2ηt(l(wt)− l(w∗)) (19)

≤‖wt −w∗‖22 − ‖wt+1 −w∗‖22
+ η2

t ‖gt‖22 − ‖wt+1 − ŵt+1‖22,
where ‖wt+1−ŵt+1‖2 = ‖wt+1−w∗‖2 tan θt and θt ∈ [0, π

2
),

which is shown in Figure 1.
Therefore, sum Eq.(19) over t from 1 to T , we have

2
T∑

t=1

l(wt)− l(w∗) (20)

≤
T∑

t=2

‖wt −w∗‖22
(

1

ηt
− 1

ηt−1
− tan2 θt−1

ηt−1

)

+
1

η1
‖w1 −w∗‖22 +G2

T∑
t=1

ηt.

By adding a dummy term − 1
η0
(1+tan2 θ0)‖w1−w∗‖22 = 0

on the right side, we have

2

T∑
t=1

l(wt)− l(w∗) (21)

≤
T∑

t=1

‖wt −w∗‖22
(

1

ηt
− 1

ηt−1
− tan2 θt−1

ηt−1

)
+G2

T∑
t=1

ηt.

Note that, tan θt does not decrease w.r.t step t as shown
in Lemma 4.2 and ηt does not increase w.r.t step t.

Since ηt−1 > 0, we assume the lower bound
tan2 θt−1

ηt−1
≥ H

hold 1, then Eq.(21) can be rewritten as

2
T∑

t=1

l(wt)− l(w∗) (22)

≤
T∑

t=1

‖wt −w∗‖22
(

1

ηt
− 1

ηt−1
−H

)
+G2

T∑
t=1

ηt.

Set ηt =
1
Ht

for all t ≥ 1, we have

T∑
t=1

l(wt)− l(w∗) ≤ G2

2H
(1 + log T). (23)

When tan θt becomes small, the improvement from the
constraint will not be significant as shown in Figure 1. Lemma
4.2 shows that tan θt does not decrease as t increases if ŵt+1

and wt+1 are close to w∗. This indicates the improvement
from ŵt+1 to wt+1 is stable under the regression constraint.
And this further proves the stableness of the regret bound.

Lemma 4.2. tan θt = ‖wt+1−ŵt+1‖2/‖wt+1−w∗‖2 does
not decrease w.r.t step t.

Proof. It is known that ŵt+1 and wt+1 converge to w∗.
If wt+1 converges beyond the speed of ŵt+1, tan θt will di-
verge and the Lemma holds for sure.
1This inequality is based on the assumption that H is pos-
itive. Although this assumption could be slightly violated
when tan θt = 0 if wt lies on τt and (xt, yt) = (x̄t, ȳt), this
event rarely happens in real cases. Even if it happens but
for finite times, the legality of our analysis is still provable.
So we simply rule out this rare event in theoretical analysis.

SGD has the convergence rate O(1/
√
T). This is the worst

convergence rate that can be obtained by all the stochas-
tic optimization approaches. Before we prove CSGD has
a faster convergence rate than SGD, we temporarily make
a conservative assumption that CSGD and SGD both con-
verge at the rate of O(t−α), where α is a positive number.

Let ‖ŵt+1−w∗‖ be at−α and ‖wt+1−w∗‖ be bt−α. Along
with Eq.(15), we have

tan θt = ‖wt+1 − ŵt+1‖2/‖wt+1 −w∗‖2

=

√
‖ŵt+1 −w∗‖22 − ‖wt+1 −w∗‖22

‖wt+1 −w∗‖2
=

√
a2 − b2

b

= O(1).

In our approach, the O(log T) regret bound achieved by
CGSD neither requires strong convexity nor regularization,
while Hazan et al. achieve the same O(log T) regret bound
under the assumption of strong convexity [10], and Bartlett
et al. use regularization to obtain the same O(log T) regret

bound for strongly convex functions and O(
√
T) for any ar-

bitrary convex functions. Furthermore, the O(log T) regret
bound of CGSD is better than the general regret bound
O(

√
T) discussed in [30].

The regret bound suggests a decreasing step size, which
yields the convergence rate stated in the following corollary.

Corollary 4.3. (Decreasing step convergence rate) As-
sume Theorem 4.1 hold and ηt =

1
Ht

for any step t, then

min
t≤T

l(wt) ≤ 1

T

T∑
t=1

l(wt) ≤ G2

2TH
(1 + log T) + l(w∗).

This corollary is a direct result of Theorem 4.1. It shows
that the O(log T/T) convergence rate of CSGD is much bet-

ter than O(1/
√
T) obtained by SGD.

4.2 Learning rate strategy
Theorem 4.1 and Corollary 4.3 suggest an optimal learning

rate decreasing at the rate of O(1/t) without assuming the
strong convexity for the objective function. However, the
decay proportional to the inverse of the number of iterations
is not robust to the wrong setting of the proportionality
constant. The typical result for the wrong proportionality
constant will lead to divergence in the first several iterations
or converge to a point far away from the optimal. Motivated
by this problem, we propose a 2-phase learning rate strategy,
which is defined as

ηt =

{
η0/

√
t, t < m

η0
√
m/t, t ≥ m

.

The step m is achieved when desired error tolerance ε is
obtained in Proposition 2.2, m = O(1/ε). The maximum
value for m is the total size of the dataset, since the global
mean would be achieved after one pass of the data.

5. EXPERIMENTS

5.1 Optimization study
In this section, we perform numerical simulation to sys-

tematically analyze the proposed algorithms and conduct
empirical verification of our theoretical results.

Our optimization study includes 5 algorithms, including
the proposed CSGD and NCSGD, and SGD, ASGD, 2SGD,
for comparative study:

1) Stochastic Gradient Descent (SGD) (a.k.a Robbins-
monro algorithm) [12]: SGD, which is also known as
the Least Mean Squares approach to solve the stochas-
tic least squares, is chosen as the baseline algorithm.

2) Averaged Gradient Descent (ASGD) (a.k.a. Polyak-
Ruppert averaging) [21]: ASGD performs the SGD
approach and returns the average point at each itera-
tion. ASGD, as the state-of-the-art approach on first
order stochastic optimization, has achieved good per-
formance [29, 2].

3) Constrained Stochastic Gradient Descent (CSGD): CSGD
uses the 2-phase learning rate strategy in order to
achieve the proposed regret bound.

4) Naive Constrained Stochastic Gradient Descent (NC-
SGD): NCSGD is a naive version of CSGD, which up-
dates with the same learning rate of SGD to illustrate
the optimization error of NCSGD is upper bounded by
SGD at each step.

5) Second Order Stochastic Gradient Descent (2SGD) [7]:
2SGD replaces the learning rate η by the inverse of
the Hessian matrix, which also forms Recursive Least
Squares, a second order stochastic least squares solu-
tion. Compared to the first order approaches, 2SGD
is considered as the best possible approach using a full
Hessian matrix.

The experiments for least squares optimization have been
conducted on two different settings: strongly and non-strongly
convex cases. The difference between strongly convex and
non-strongly convex objectives has been extensively studied
in convex optimization and machine learning on selection of
the learning rate strategy [2, 24]. Even though a decay of
the learning rate at the rate of the inverse of the number
of samples has been theoretically suggested to achieve the
optimal rate of convergence in strongly convex case [10]. In
practice, the least squares approach may decrease too fast
and the iteration will “get stuck” too far away from the op-
timal solution [12]. To solve this problem, a slower decay
has been proposed in [2] for learning rate, ηt = η0t

−α and
α ∈ (1/2, 1). A λ/2‖w‖22 regularization term can also be
added to obtain λ-strongly convex and uniformly Lipschitz
[29, 1]. To ensure convergence, we safely set α = 1/2 [30]
as a robust learning rate for all algorithms in our empirical
study, which guarantees all algorithms can converge in close
vicinity to the optimal solution. In order to study the real
convergence performance of different approaches, we use the
prior knowledge of the spectrum of the Hessian matrix to ob-
tain the best η0. To achieve the regret bound in Theorem
4.1, a 2-phase learning rate is utilized for CSGD and m is
set to be the half of the dataset size n/2.

We generate n input samples with d dimensions i.i.d. from
a uniform distribution between 0 and 1. The optimal coeffi-
cient w∗ is randomly drawn from standard Gaussian distri-
bution. Then the n data samples for our experiments is con-
structed using the n input samples as well as the coefficient
with a zero-mean Gaussian noise with variance 0.2. Two
settings for least squares optimization are designed: 1) a
low-dimension case with strong convexity, where n =10,000,
d =100, 2) a high-dimension case, where n =5,000, d =5,000,
with smallest eigenvalue of the Hessian matrix close to 0,
which yields a non-strongly convex case. In each iteration
round, one sample is randomly drawn from one individual
dataset using a uniformly distribution.

In the strongly convex case, as shown in Figure 2 top row,
CSGD behaves similar to 2SGD and outperforms other first
order approaches. As we know, 2SGD, as a second order ap-
proach, is the best possible solution per iteration for all first
order approaches. However, 2SGD requires O(d2) computa-
tion and space complexity in each iteration. CSGD performs
like 2SGD but only requires O(d) computation and space
complexity, and CSGD has a comparable performance as
2SGD when doing optimization by giving a certain amount
of CPU time, as shown in top right slot of Figure 2.

In the non-strongly convex case, as shown in Figure 2
bottom row, CSGD performs the best among all first or-
der approaches. 2SGD becomes impractical in this high
dimensional case due to its high computation complexity.
CSGD has a slow start at the beginning and this is because
it adopts a larger initial learning rate η0 which yields better
convergence for the second phase. This fact is also consis-
tent with the comparisons using the wrong initial learning
rates discussed in [2]. However, this larger initial learning
rate speeds up the convergence in the second phase. In ad-
dition, the non-strong convexity corresponds to an infinite
ratio of the eigenvalues for the Hessian matrix, which sig-
nificantly slows the performance of SGD. NCSGD has not
been influenced by this case and still performs consistently
better than SGD.

In our empirical study, we have observed: 1) NCSGD con-
sistently performs better than SGD, and the experimental
results verify Corollary4.3; 2) CSGD performs very similarly
to the second order approaches, and this supports the regret
bound discussed in Theorem 4.1; 3)CSGD performs the best
among all the other state-of-the-art first order approaches
; 4) CSGD is the most competent algorithm to deal with
high-dimension data among all the other algorithms in our
experiments.

5.2 Classification extension
In the classification task, least squares loss function plays

an important role and the optimization of least squares is
the cornerstone of all least squares based algorithms, such
as Least Squares Support Vector Machine (LS-SVM) [26],
Regularized Least-Squares classification [22, 6] and etc. In
this case, SGD is utilized by default during the optimization.

It is well acknowledged that the optimization speed for
least squares directly affects the performance of least squares
based algorithms. A faster optimization procedure corre-
sponds to less training iterations and less training time.
Therefore, replacing the SGDwith CSGD for the least squares
optimization in many algorithm, the performance could be
greatly improved. In this subsection, we show an example

10
-2

10
0

10
2

10
4

10
-6

10
-4

10
-2

10
0

10
2

10
4

Time(CPU seconds)

l(w
)-
l(
w
*)

10
2

10
3

10
4

10
5

10
6

10
-6

10
-4

10
-2

10
0

10
2

10
4

Number of Samples

l(w
)-
l(
w
*)

10
-2

10
0

10
2

10
4

10
-6

10
-4

10
-2

10
0

10
2

10
4

Time(CPU seconds)

l(w
)-
l(
w
*)

d=
5,

00
0

d=
10

0

10
2

10
3

10
4

10
5

10
6

10
-6

10
-4

10
-2

10
0

10
2

10
4

Number of Samples

l(w
)-
l(
w
*)

SGD
2SGD
NCSGD
CSGD
ASGD

Figure 2: Comparison of the methods on the low-dimension case (top), and the high-dimension case (bottom).

how to adopt CSGD in the optimization for the existing
classification approaches.

One direct classification approach using least squares loss
is ADAptive LINear Element (Adaline) [16], which is a well-
known method in neural network. Adaline adopts a sim-
ple perceptron-like system that accomplishes classification,
which modifies coefficients to minimize the least squares
error at every iteration. Note that, although it may not
achieve a perfect classification by using a linear classifier,
the direct optimization for least squares is commonly used
as a subroutine in many complex algorithms, such as Mul-
tiple Adaline (Madaline) [16] to achieve the non-linear sep-
arability by using multiple layers of Adalines. Since the
fundamental optimization procedures for these least squares
algorithms are the same, we only show a basic case for Ada-
line to show CSGD can improve the performance.

In Adaline, each neuron separates two classes using a coef-
ficient vector w. The equation of the separating hyper-plane
can be derived from the coefficient vector. Specifically, to
classify input sample xi, let net be the net input of this neu-
ron, where net = wTxt. The output of Adaline ot is 1 when
net > 0 and ot is -1 otherwise.

The crucial part for training the Adaline is to obtain the
best coefficient vector w, which is updated per iteration by
minimizing the squared error. At iteration t, the squared
error is 1

2
(yt − nett)

2, where yt is 1 or −1 representing the
positive class or negative class respectively. Adaline adopts
SGD for optimization whose learning rule is given by

wt+1 = wt − ηgt, (24)

where η is a constant learning rate, and the gradient
gt = −(yt −wT

t xt)xt.

When replacing SGD with CSGD for Adaline, Eq.(24) is
replaced with Eq.(9).

In the multiclass classification case, suppose there are c
classes, Adaline needs c neurons to perform the classification
and each neuron still performs the binary class discrimina-
tion. The CSGD version of Adaline (C-Adaline) is depicted
in Algorithm 2, which is straightforward and easy to imple-
ment. One thing need to be pointed out is that, the class
label yt has to be rebuilt in order to fit c neurons. There-
fore, the class label yt of sample xt for neuron ci is defined
as: y(t,ci) = 1 when yt = i and y(t,ci) = 0 otherwise. The

output ot = k means that the kth neuron ck has the highest
net value among c neurons.

Algorithm 2 CSGD version of Adaline (C-Adaline)

Initialize w0 = x̄0 = 0 and ȳ0 = 0.
for t = 1, 2, 3, . . . do

for i = 1, 2, 3, . . . , c do
Compute the gradient gt ∈ ∂l(wt,xt, y(t,ci)).
Compute (x̄t, ȳ(t,ci)) with
x̄t =

t−1
t
x̄t−1 +

1
t
xt, and

ȳ(t,ci) =
t−1
t
ȳ(t−1,ci) +

1
t
y(t,ci).

wt+1 = wt − ηtgt − x̄t

(
x̄T
t (wt − ηtgt)

)
/‖x̄t‖22 + rt.

end for
end for

To evaluate the improvement of the C-Adaline,we provide
computational experiments of both Adaline and C-Adaline
on the MNIST dataset [14], which is widely used as stochas-
tic optimization classification benchmark on handwritten
digits recognition [9, 28].

10
0

10
2

10
4

10
6

10
8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Samples

E
rr
o
r r

a
te

Adaline
C-Adaline

10
-2

10
0

10
2

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time(CPU seconds)

E
rr
o
r r

a
te

Figure 3: Left: test error rate versus iteration on the MNIST classification. Right: test error rate versus
CPU time on the MNIST classification. C-Adaline is the proposed CSGD version of Adaline

The MNIST dataset consists of 60,000 training samples
and 10,000 test samples with 10 classes. Each digit is pre-
sented by a 28 × 28 gray scale image, for a total of 784
features. All the data is downscaled to [0, 1] via dividing the
maximum pixel intensity by 255. For the setting of the learn-
ing rate, Adaline adopts a constant while C-Adaline sim-
ply takes the updating rule of Naive Constrained Stochastic
Gradient Descent (NCSGD). η for Adaline is set to 2−17, and
the C-Adaline has η0 = 2−4, which are both the optimal re-
sults selected from 2−20, 2−19, · · · , 2−1. Since the optimal
solution is unique, this experiment is to examine how fast
can Adaline and C-Adaline converge to this optimal.

The test set error rate as a functions of number of op-
erations is shown in Figure 3 (Left). It is clear that both
Adaline and C-Adaline converge to the same test error be-
cause, they both optimize the least squares error. C-Adaline
achieves 0.14 test error after processing 214 samples (≈ 104),
while Adaline achieves 0.14 test error after processing 220

samples (≈ 106). This indicates that C-Adaline converges
64 times as fast as Adaline! Considering the size of the train-
ing set is 60,000, C-Adaline uses 1/4 of the total training
samples to achieve the nearly optimal test error rate, while
Adaline needs to visit each training sample more than 16
times to achieve the same test error rate. Figure 3 (Right)
shows the test error rate versus the CPU time. To achieve
the 0.14 test error, Adaline consumes 112.47 seconds, while
C-Adaline only takes 3.38 seconds. Note that, in this ex-
periment, 10 neurons are trained in parallel. It is another
achievement to get the nearly optimal test error using a least
squares classifier in about 3 seconds for a 106 scale dataset.

To better understand the classification results, in Figure 4,
we visualize the data samples on a two dimensional space by
t-SNE [27], which is a nonlinear mapping commonly used for
exploring the inherent structure from high dimensional data.
Since a linear classifier does not perform well on this problem
and both algorithms have the same classification error ulti-
mately, we suppress the samples which are still misclassified
in Figure 4 for clarity’s sake. When both algorithms have
processed 214 training samples, their classification results
on 10,000 test samples are depicted in Figure 4. C-Adaline
misclassified 212 samples while Adaline misclassified 1248
samples, which is about 6 times as C-Adaline.

This experiment compares a SGD based classifier (Ada-
line) and the proposed CSGD improvement version (C-Adaline)
using the MNIST dataset. In summary, C-Adaline consis-

tently has a better test error rate than the original Ada-
line during the optimization. For a given test error rate,
C-Adaline takes much less CPU time than Adaline.

6. CONCLUSION
In this paper, we analyze a new constrained based stochas-

tic gradient descent solution for the large-scale least square
problem. We provide theoretical justifications for the pro-
posed method, called CSGD and NCSGD, which utilize the
averaging hyper-plane as the projected hyper-plane. Specifi-
cally, we described the convergence rates as well as the regret
bounds for the proposed method. CSGD performs like a full
second order approach but with simpler computation than
2SGD. The optimal regret O(log T) is achieved in CSGD
when adopting a corresponding learning rate strategy. The
theoretical superiorities are justified by experimental results.
In addition, it is easy to extend the SGD based least squares
algorithms to CSGD and the CSGD version can yield better
performance. An example of upgrading Adaline from SGD
to CSGD is used to demonstrate the straightforward but
efficient implementation of CSGD

References
[1] A. Agarwal, S. Negahban, and M. Wainwright. Stochas-

tic optimization and sparse statistical recovery: Opti-
mal algorithms for high dimensions. Advances in Neural
Information Processing Systems, 2012.

[2] F. Bach and E. Moulines. Non-asymptotic analysis of
stochastic approximation algorithms for machine learn-
ing. Advances in Neural Information Processing Sys-
tems, pages 451–459, 2011.

[3] P. L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive on-
line gradient descent. Advances in Neural Information
Processing Systems, 2007.

[4] L. E. Baum and M. Katz. Exponential convergence
rates for the law of large numbers. Transaction Amer-
ican Mathematical Society, pages 771–772, 1963.

[5] D. P. Bertsekas. Nonlinear programming. Athena Sci-
entific, 1999.

[6] C. M. Bishop. Pattern recognition and machine learn-
ing. Springer-Verlag New York, 2006.

Figure 4: Two dimensional t-SNE visualization of the classification results for C-Adaline (Left) and Adaline
(Right) on MNIST dataset when 214 samples have been processed.

[7] L. Bottou and O. Bousquet. The tradeoffs of large scale
learning. Advances in Neural Information Processing
Systems, 20:161–168, 2008.

[8] L. Bottou and Y. LeCun. Large scale online learn-
ing. Advances in Neural Information Processing Sys-
tems, 2003.

[9] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive sub-
gradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12:2121–2159, 2011.

[10] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret
algorithms for online convex optimization. Conference
on Learning Theory, 69(2-3):169–192, Dec. 2007.

[11] C. Hu, J. T. Kwok, and W. Pan. Accelerated gradient
methods for stochastic optimization and online learn-
ing. Advances in Neural Information Processing Sys-
tems, pages 781–789, 2009.

[12] H. J. Kushner and G. Yin. Stochastic approximation
and recursive algorithms and applications. Springer-
Verlag, 2003.

[13] J. Langford, L. Li, and T. Zhang. Sparse online learning
via truncated gradient. Journal of Machine Learning
Research, 10:777–801, June 2009.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[15] L. Ljung. Analysis of stochastic gradient algorithms
for linear regression problems. IEEE Transactions on
Information Theory, pages 30(2):151–160, 1984.

[16] K. Mehrotra, C. K. Mohan, and S. Ranka. Elements of
artificial neural networks. MIT press, 1996.

[17] A. Nemirovski. Efficient methods in convex program-
ming. Lecture Notes, 1994.

[18] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro.
Robust stochastic approximation approach to stochas-
tic programming. SIAM Journal on Optimization,
19(4):1574–1609, Jan. 2009.

[19] A. Nemirovski and D. Yudin. Problem complexity and
method efficiency in optimization. John Wiley and Sons
Ltd, 1983.

[20] Y. Nesterov. Introductory lectures on convex optimiza-
tion. A basic course(Applied Optimization), 2004.

[21] B. T. Polyak and A. B. Juditsky. Acceleration of
stochastic approximation by averaging. SIAM Journal
on Control and Optimization, pages 838–855, 1992.

[22] R. Rifkin, G. Yeo, and T. Poggio. Regularized least-
squares classification. Nato Science Series Sub Series
III Computer and Systems Sciences, 190:131–154, 2003.

[23] S. Shalev-Shwartz and S. M. Kakade. Mind the dual-
ity gap: Logarithmic regret algorithms for online opti-
mization. Advances in Neural Information Processing
Systems, pages 1457–1464, 2008.

[24] S. Shalev-Shwartz and N. Srebro. Svm optimization:
inverse dependence on training set size. International
Conference on Machine Learning, 2008.

[25] J. C. Spall. Introduction to stochastic search and opti-
mization. John Wiley and Sons, Inc, 2003.

[26] J. Suykens and J. Vandewalle. Least squares support
vector machine classifiers. Neural processing letters,
1999.

[27] L. Van der Maaten and G. Hinton. Visualizing data
using t-sne. Journal of Machine Learning Research,
9(2579-2605):85, 2008.

[28] L. Xiao. Dual averaging methods for regularized
stochastic learning and online optimization. The Jour-
nal of Machine Learning Research, 11:2543–2596, 2010.

[29] T. Zhang. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. Interna-
tional Conference on Machine Learning, 2004.

[30] M. Zinkevich. Online convex programming and gener-
alized infinitesimal gradient ascent. International Con-
ference on Machine Learning, 2003.

	Introduction
	Constrained stochastic gradient descent
	CSGD algorithm
	Regression line constraint

	A One-step difference inequality
	Regret analysis
	Regret
	Learning rate strategy

	Experiments
	Optimization study
	Classification extension

	Conclusion

