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Abstract

The ultimate goal of distance metric learning is to incogterabundant discrimi-
native information to keep all data samples in the same classe and those from
different classes separated. Local distance metric metbad preserve discrim-
inative information by considering the neighborhood infice. In this paper, we
propose a new local discriminative distance metrics (LDCjorithm to learn
multiple distance metrics from each training sample (alfeaaple) and in the
vicinity of that focal sample (focal vicinity), to optimizecal compactness and
local separatiblity. Those locally learned distance rastare used to build local
classifiers which are aligned in a probabilistic framewoik @nsemble learning.
Theoretical analysis proves the convergence rate bouadjeheralization bound
of the local distance metrics and the final ensemble classifiée extensively
evaluate LDDM using synthetic datasets and large bench@tldatasets.

Keywords: Local learning, distance metrics learning.

1. Introduction

Distance metric learning plays a crucial role in metriatetl pattern recogni-
tion tasks including K-means, K-Nearest Neighbors, andéebased algorithms
such as SVMs [19, 4, 5, 23, 25]. The learning task falls into bategories: un-
supervised and supervised distance metric learning. larsiged distance metric
learning [21], the ultimate goal is to incorporate the alamiddiscriminative in-
formation in distance metric learning to keep all the datasas in the same
class close and those from different classes separateshg£tal. have shown
that a distance metric incorporating discriminative infiation from labeled data
usually outperforms the standard Euclidean distance ssiflaation tasks [24].
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Supervised distance metric learning can be further dividexglobal and lo-
cal distance metric learning. The first step is to learn a @lalistance metric
from training data to satisfy all pairwise constraints sitamieously [26, 20]. The
most representative work is the Xing’s algorithm [20], whiearns a distance
metric on a global scale that minimizes the distance betwatnpairs according
to the equivalence constraints while separating data fraimseach other accord-
ing to the inequivalence constraints. If data classes édmbltimodal distribu-
tions, equivalence or inequivalence constraints fromedsiht data distributions
may conflict with each other. Therefore, it is difficult toisét all the constraints
on a global level. Local distance metric learning is introgli to cope with this
problem by considering the locality of data distributio®[18, 9]. These local al-
gorithms only consider neighboring pairwise constrainis @avoid adopting those
conflicting constraints.

All aforementioned approaches are all trying to learn alsimgetric on all
data samples. The deficiencies of learning a single metcicdie: 1) a single
metric is likely inappropriate for all training samples;&2%ingle local metric may
be easily influenced by noisy samples; 3) a single globalime&innot deal with
the multimodal distribution problem. It is recommendeddarh multiple metrics
to describe different localities of training samples [18, &].

In this paper, we propose a multiple distance metric apgrahe Local Dis-
criminative Distance Metrics (LDDM) algorithm, from a nevergpective. We
learn a set of local discriminative distance metrics fromwhe@aining sample (de-
noted as a focal sample), and in the vicinity of that focal glenjdenoted as the
focal vicinity), to effectively optimize local compactreeand local separatiblity.
Those locally learned distance metrics are used to buildl lo@ssifiers which
are aligned in a probabilistic framework via ensemble lew@ynThe LDDM al-
gorithm makes up the deficiency of the existing multiple atise metric meth-
ods and differs from them in the following aspects: 1) whefeNN [10] uses
the optimization process of LDA, LDDM does not need to catellthe inverse
of a matrix and hence avoids the small sample size probleran@e DANN
and ADAMENN [6], LDDM does not have the adaptive iterativeopess, and
guarantees a closed form solution; 3) once the training inedearned, the test
computation complexity i®)(n) for LDDM, while DANN and ADAMENN have
the same computation complexity in training and test pre¢es., DANN has
computation complexity 0O (nd?), wheren is the dataset size antlis the fea-
ture dimension ); 4) mLMNN [18] requires disjoint clusterstoaining samples to
train multiple distance metrics, while LDDM does not reguitusters for training
samples.



The proposed LDDM method consists of three key components.

1) Focal vicinity extraction. For each training sample, we extract a focal
vicinity to learn a local discriminative distance metric @asure all the simi-
lar/dissimilar samples fall into/exclude from the viciniof each focal sample.
This focal vicinity consists of the focal sample, its samasslneighborhood, and
its dissimilar class neighborhood.

2) Local distance metrics learning The LDDM algorithm divides the train-
ing space into a set of focal vicinities and learns a locahoged distance metric
at each focal vicinity to keep training samples either cltwser distant from a
focal sample.

3) Local classifier ensembleWe utilize classifier ensemble learning to build
upon locally learned distance metrics for the final preditti To overcome the
over-fitting problem, the base classifiers of the ensemldeabgned in a proba-
bilistic framework to form an adjustable model accordingéxh test sample to
significantly reduce the influence of noise samples.

We theoretically analyze the correctness of the proposddNMnethod and
explain why multiple-distance-metrics approaches shpeidorm superiorly to
single-distance-metric approaches while dealing witlsydatasets. We define a
new concept called local-domain-based VC-dimension anekiee convergence
rate bound for a local distance metric, the risk bound of éacdl distance metric,
and the risk bound of the ensemble local classifiers. We siiely evaluate the
LDDM algorithm with experiments on synthetic datasets drereal-world UCI
datasets.

The rest of the paper is organized as follows: related wordissussed in
Section 2. Section 3 explains how to learn local discrinmeadlistance metrics.
The ensemble methods are discussed in detail in Sectionl 4haoretical analysis
is provided in Section 5. Experimental studies are disaiss8ection 6. Section
7 concludes the paper.

2. Related Works

In general, supervised distance metrics can be categonitzeglobal and local
approaches. Local approaches are further classified de-simegric and multiple-
metric approaches. Our proposed LDDM method is in the faofimultiple local
distance metrics. Figure 1 briefly illustrates the categpodf the state-of-the-art
distance metric learning methods and their relationslupgké proposed LDDM
algorithm.



Multiple-Metric DANN[10], ADAMENN(7], mLMNN[18]

Approaches Local distance metric
Single-Metric LFDA[15], LMNN[17], NCA[9], LDM[20]
Approaches Xing[20] } Global distance metric
Multiple metrics Single metric
Learn a distance metric on partial samples Learn a distance metric on all the samples
Local Local Local Local Global
Per Per Per Neighborhoods All pairwise
training sample test sample cluster constraints constraints
DANN[10
LDDM [10] mLMNN[18] LFDA[1]

ADAMENN][7] LMNN[17] Xing[20]

NCA[9]
LDM[20]

Figure 1: The categories of the state-of-the-art distanegicomethods and their relationships to
the proposed LDDM method.

The global approaches try to keep all the samples in the sdass close
together while separate those from different classes. 'Xialgorithm [20] is
the most representative global method which optimizestlegsivalence and in-
equivalence constraints simultaneously using convexropéition. The advantage
of using global approaches is that it may easily capture itelelitions of differ-
ent classes if all samples in the same class obey the saméutish, however,
global approaches may fail to learn the appropriate distanetrics if data ex-
hibits a multimodal distribution.

Local approaches use neighborhood information to deal thgimultimodal
distribution problem. Local Fisher Discriminant Analyg¢ls=DA) [15] assigns
higher weights to the neighborhood pairwise constraintom@ing to locality
information. Large Margin Nearest Neighbor (LMNN) [18] li#zes neighbor-
hood constraints to learn a distance metric with a large mdog inequivalence
constraints. Yanget al. proposed a probability approach [22] to optimize lo-
cal pairwise constraints. Goldberget al. [9] utilize a stochastic variant of
KNN classification to compute the expected leave-one-cagsification error.
All neighborhood-based single local distance metric meéshdiscussed above
may mistakenly consider neighboring noise samples antyeasirlook the entire
structure of the training samples.

If one single distance metric is used to describe the whalaitrg space, the
tradeoff between the learning system and the number of ssmpéay limit the
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learning performance [16]. Many methods adopt multipléagise metrics instead
of a single distance metric. Weinbergaral. [18] proposed the multiple Large
Margin Nearest Neighbor metrics (MLMNN) method to clustairting samples
and then apply different distance metrics to measure eéifiteclusters. Discrim-
inant Adaptive Nearest Neighbor classification (DANN) [p@)forms like Liner
Discriminant Analysis (LDA) in each local distance metrar £ach test sample.
Domeniconiet al. proposed the local ADAptive MEtric Nearest-Neighbor algo
rithm (ADAMENN) [6], which learns a local distance metriafeach test sample
to have neighborhoods elongating along less relevantriedimensions and con-
stricting along most influential ones. Our proposed LDDM Imoek also belongs
to this category. LDDM differs from all above by learning &tdince metric on
each training sample and reducing noise samples’ influeitbeaw ensemble ap-
proach. Another relevant work is that Fromeal. [8] proposed a patched-based
distance on image classification which also trains an SVMsiligr on each train-
ing sample. This method is specifically designed for difiéimage feature types
and differs from all the other distance metric based appresdescribed in Figure
1. Global and local distance metric approaches have beeessfally employed
in Learning Vector Quantization. Schneidsral. successfully learn adaptive dis-
tance metrics between test samples and prototypes in LVQ1H4]J3to achieve
good performance.

The proposed LDDM method introduces the concept of the lte=aining
framework [2] [16] into distance metric learning. LDDM ctea an adjustable
model, using a set of locally learned distance metricseatsbf one single met-
ric, to best estimate the vicinity of each focal sample. LDD&&s neighborhood
information to extract discriminative information andlaltal distance metrics are
aligned probabilistically for the final prediction to makp for the deficiency of
single local distance metric approaches [3].

3. Learning Discriminative Local Metrics

We propose a new local discriminative distance metric nekibwer a focal
vicinity of the training space by maximizing local discrimaitive information for
each training sample.

A generic classification task can be stated as follows: gavset of/-dimensional
training sampleX = [x;,xa, - - - ,X,] and their associated lab&5= [y, y2, - - , ¥,
we need to estimate a model to classify unknown test samples.

The distance metrid is in the form of

da(a,b) = [la—b|l, = v/(a—b)"A(a—Db), (1)
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where A is positive semi-definite, and parameterizes a family ofatices [20].
Technically, it allows pseudometrics, such thata,b) = 0 does not imply

a = b. ReplacingA with WTW in Equation (1) based on the Cholesky de-
composition, we get:

ds(a,b) =y/(a — b)TWWT(a —Db)
=|[[W'(a-b)||. 2)

What we want to learn is the projection matfiX in Equation (2) to make
a focal samplex; close to the training samples sharing the same class label an
far away from the training samples having different label®. better keep the
local discriminative information, we construct a focaliwity instead of using all
of the training data. For the focal samptg the focal vicinityX; containsk;
nearest neighbors in the same class/anaearest neighbors in the different class,
formally, X; = [Xi,xii, X Xy, ,x%], wherek; represents the index for
samples from the same-class of the focal sample.

In a focal vicinity, the distances between the focal samplk reighborhood
samples in the same class should be as small as possible ltéBigausly, the
distances between the focal sample and neighborhood ssm@alifferent class
are expected to be as large as possible. We define the objaatietion to satisfy
such a criterion:

k1 ko
(Z dy, (%, Xi;) = 3 Z dj, (xi, Xz‘q)> ; 3)

arg min
A.
p=1

1

where 5 is a multiplicative factor to balance the influence of egleémae con-
straints and inequivalence constraints with respect tdaba& sample. By defin-
ing the coefficient vector

wi= |1, ,1 =B, ,—p (4)



According to Equation (4) and the constructionXf, equation (3) is reduced to:

( SR (X1 + 1}><w,»>j) )

arg min
A; —
7j=1

3

k1+k2
( D IW(X{1} = X+ 13) ||§(wi)j>

=arg min
W, ,
J=1

=arg min tr (WZTXZL,XZTW,) ,
Ww;
whereX;{j} is the j* column in the focal vicinity matrixX;, A; is decided by
W, based on Equation (2) adg € R(k+ke+l)x(kitke+1) g given by

_ {Zfib(wi)j —w] } (6)

—w; diag(w;)
To make the projection matriXV; learned from the focal vicinityX; linear

and orthogonal, we impos&/!W, = I,, wherel, is ad x d identity matrix.
Equation (5) is then deformed to:

min ¢r (W] X,L;X] W;) st W/ W, =1,. (7)
Solutions of Equation (7) can be obtained with the stand@ehedecomposition:
XL X u = \u. (8)

Let the column vectora;, u,, - - - , uy be the solution of Equation (8), ordered
according to eigenvalueg < A\, < --- < A\y. The optimal projection matri¥V;
is then given by:W, = [u, uy,--- ,u)], whered’ < d. OnceW; is calculated,
the local discriminative distance metrdc; with respect to focal sampte can be
calculated using Equation (2).

4. A Probabilistic Approach for Classifiers Ensemble

Given an unknown test sampig, let o be the class label of focal samptg
the number of possible classes\Ng, the probability ofx; belonging to the class
o, Pr;(o|x;), using the local distance metric; of the:"" focal samplex; is

22:1{?1(’(1«6\’(&))9(%:0)}
Pr;(o]x;) = N 2 k=1 06k EV (x:))
No

if x; € Vig(x;)
otherwise

(9)



whereV g (x;) is the local vicinity of training sample; which contaings nearest
neighbors ofx; with respect to the learned local distance megic 6(-) is an
indicator function that returns 1 when the input argumetrus, and O otherwise.
6(x; € Vk(x;)) = lindicatesk; is amongk nearest neighbors &f with respect
to A;, which is calculated in Equation (8). Otherwise, the foeahplex; has no
influence on the unknown test sample V(x;) defines a circular clique whose
center is the focal sampie. The radius- is the distance between the focal sample
and the test sample; under the learned local distance metA¢. Probability
Pr;(o|x;) is calculated as purity of circular cligué(x;). Please notice that we
propose a new prediction method in Equation (9) insteadetrdditional KNN
rules because of our objective function defined in EquaBdn\W/e expect vicinity
of the focal sample to contain as many similar samples astpes this case, if
a test sample is not in th& nearest neighbors of the focal sample, it is expected
not to be similar to the focal sample. The metric is expeobgoutl the samples
with the same/different label as the focal sampleloser to/away fronx;. Note
that if the test sample; is the closest sample tg in V(x;), the probability is
1 for the test samplg; to be assigned as the same class label as

As illustrated in Figure 2, because the clique of the redex;) contains a
focal sample, four red circles and one blue square, prabafut the test sample
belonging to the red circle classgs

Focal sample

Figure 2: Local distance metric prediction. Red circles bhak squares belong to two classes.
The yellow triangle is an unknown test sample. The red circtbe center is the focal sampte.
Figure illustrates the local distance metric spagdearned from the focal sample and its vicinity.
The solid-line circle isVx (x;) and the dashed-line circle represent&;). The probability for
the yellow triangle belonging to the red circle class is tbenber of red circles iV (x;) divided

by total number of training samples ¥(x;).

We can obtain a set of locally learned classifiers describatifierent data
space, using the local classifier defined in Equation (9) uedeh local distance
metric. This approach makes these local classifiers inadkgrerof each other to
facilitate the alignment operation. Each obtained locslatice metric best mea-
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sures the vicinity of the focal sample and places the sanss slamples close to
the focal sample and the different-class samples far aveay the focal sample.

To make the training model adjustable according to diffetest samples, we add

a weight coefficientp when combining: local predictionPr;(o|x;) for a given

test samplex;. Weight¢ is decided by the distance between the test sample and
focal sample. A final prediction is made by aligningputputs in a probabilistic
framework. The alignment process is formally defined as

Pr(o|x;) = Z ¢iPri(olx;), (10)

wheren is the number of classifiers ateh; (o|x;) is the probability of sample;
belonging to class predicted by the'” local classifier. To simplify this process,
we give all the training samples equal weights by letting= 1. This makes
the ensemble process behave as an equal weight voting. d$eelabel with the
highest probability is the final label of test sample.

An overall summary of our local discriminative distance nuost (LDDM)
method is described in Algorithm 1. In training procedure, meed to calculate
W, by decomposing & + ks + 1) x (k1 + ko + 1) matrix X;L, X! in Equa-
tion (8) for each focal sampbe; which has time complexit@) (n(k; + ks + 1)3).
When testing an unknown sample, it is linear timén) to the training set size,
since all the local distance metrics were already obtainetthe training phase.
The test time complexity only depends on Equation (9) andakgn (10) which
just ensemble the results nftraining samples using pre-calculated local distance
metrics. Note that the projection for all the training saesgto the distance metric
space can be conducted in the training phase. Despite thearaiging cost, we
can parallelize the proposed model to make it scalable fgelacale problems.
Local classifiers could also be learned offline in advance.

5. Theoretical Analysis

We now theoretically prove the stability and efficiency of froposed LDDM
method by analyzing the convergence rate of the local diseative distance
metric and generalization bound of the local metrics angsifi@rs ensemble.

We assume that all the samples and their labels can be raprdd®y an un-
known distributionF'(x,y), defined by pairgx,y) € R? x R'. The pair(x,y)
is denoted ag for short. Modelx — f(x,«) of the outputy is controlled by
a parametetr € A. f(x, a) refers to the local classifier defined in Equation (9)



Algorithm 1 LDDM: a multiple distance metrics approach for classificati
Training procedure

1: for each training sampte; do
2. Get the focal vicinityX; for x;
3:  Build the discriminative matridL; using Equation (6)
4:  solve the projection matri¥V; by Equation (8)
5. end for
Test procedure

1: for each test sampte; do
2:  Calculate the probability fat; belonging to class when using the training
samplex; as the focal sample;}r;(o|x;) by Equation (9)
3:  Ensemble all the predictions by different training samgesording to
Equation (10)
. end for

N

for LDDM. The 0 — 1 loss functionQ(y, f(x, «)) (or Q(z, «) for short) measures
the quality of estimation by (x, «) for outputy € {—1,+1}. The global risk
function is defined as

R(a) = / Q(z, 0)dF(2) (11)

over all functions f(x, o), « € A}, and sampleéz; } , are independently drawn
from the unknown distributiod’(z).
The empirical risk function with respect to the training sd@s{z,}? , is

Remp(cr) = % Z Q(z;, a). (12)

In local algorithms, the local risk functioR(«, x¢) depends on the focal sample
xo and the vicinity ofx,. The nonnegative locality functiof(x, xo, A), which
embodies vicinity information of the focal sample, is defirzes

1 if [[x—xol|, <

. (13)
0 otherwise,

D(x,xq,A) = {

where A is the distance metric obtained by letting be the focal sample and
r is the soft threshold of the locality function, which is defihby the distance
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between the focal sample and the the test sample, andalledtm Figure 2 for
LDDM, where K is number of neighbors to be considered into the vicinitye Th
norm of locality function is defined as

1 D(x0, A = / D(x, xo, A)IF (z). (14)

Based on the definition of the locality function, samples atukls can be rep-
resented by a new distributiafi(z, A) corresponding to local distance metric
The distribution is defined as

D(x,xg, A)
dF(z,A) = | ————=dF(z). 15
fyre o = [ ey (o)
The local distance metric-based unnormalized local riskfion is defined as:
R(a, A,xo) = / Q2. a)D(x, x0, A)dF (), (16)

and the local empirical risk function is based on the sumonativer all focal
samples, which is defined as:

Remp o, A X0 ZQ Z;, XZ7XU7A)' (17)

Next, we give the bound on the convergence rate of a locasifies risk bound
of one local classifier and risk bound of the ensemble of afdetal classifiers.

5.1. Convergence Rate of Local Classifier

In this paper, we define concept of local domain-based VC-dsioa, which
is a VC-dimension of a set of functions under a local viciniBonvergence rate
bound of the global risk function only depends on the numbb&aming samples
and the VC-dimension that measures the complexity and thessipe power of
the set of loss functionf(z, ), € A}.

In the existing distance metric learning methods, all the di@ension and
loss functions are under the same distance metric. Thug ttie&ance metric
methods obey the bound in the following theorem [16].

Theorem 5.1. Let {Q(z, o), « € A} be a set of nonnegative real functions with
VC-dimension h. Then the following bound holds

R(a) = Repnp (v

p{ig S0l m@} (2 w21 g
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where

q@:,h_%me

Theorem 5.1 shows the bound for the test elRor,,(«). The left part is a prob-
ability corresponding to the difference between trainimpeR («) and test error
Remp(ar). The probability approachéswhen the test error and the training error
have an acceptable difference This probability has beeveprto be converged
to 0 when there are enough training samples [16]. For our locrihinative
distance metrics algorithm, the loss functions are difieeecording to the focal
samples since they obey their own local distance metricaimdd from the focal
samples. To obtain the convergence rate of a local classifeeassume that the
loss function with the local distance metric satisfy thédaing mild condition:

VS Qx(z,0)dF (2, 4)
sup
a,A f Q<Z> Oé)dF(ZvA)
It means that the probability thatip,, Q(z, o) exceeds some value will decrease
quickly with the value increasing. Valuedetermines how fast it decreases. We

can get the following theorem for convergence rate of los#tlfunction which is
bounded in the term of local domain-based VC-dimensitn

< T. (29)

Theorem 5.2. Let the vicinity ofr, be under the local distance metrtand the
set of loss function$@(z, o) D(x, %9, A),« € A} have the local domain based
VC-dimensiori*. Then the following bound holds:

p sup R(Oé, A, XO) - Remp(aa A, XO) > TE(Z(G) <12 (2K6) " exp {_62_[(
ach R(ev, A, %) 1D (x0, Al h

where

q@:,h_%ma

Proof Theorem 5.1 implies the following inequality:

B h* 2
P q sup Ria, 4, x0) = Remgle: 4, %0) > eale) p <12 <2f};€) o {_ﬂ} ’
N[ Q2a0) D2 x0, A)F (2) !

(21)
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where K is the size of the focal vicinity defined in Equation (9). Aoding to
Equation (13) and Equation (15), we have

\// Q?*(z, o) D?(x, %9, A)dF(z)

g\/ [ @@.0) Do, ) aF (. 4). (22)

According to Equation (15), (16) and (19), we have

\// Q2(2,0)dF (2, A) < T/Q(z,a)dF(z,A) :T%. (23)

According to Equation (22) and (23), we have

R(Oé, A, Xo)

. 24
1D (x0, A)l )

\// Q*(z,a)D?(z,%x0, A)dF(z) < T

The inequality Equation (20) can be obtained from Equat{@i3 and (24) im-
mediately. This completes the proof.

Theorem 5.1 gives the convergence rate for the approacisesd loa a single
distance metric in Equation 2. Theorem 5.2 gives the comverg rate using the
local domain based VC-dimension for a single distance matrity Equation 3.
In the following theorem, we show the risk bound of a locakslfier according
to Theorem 5.2.

5.2. Bound of Local Classifiers

For local classifiers learned on local distance metricsraeg to Equation 9,
we have the following theorem.

Theorem 5.3. Let the distance metric of the vicinity af) be A. The set of
loss functions{Q(z, o) D(x, %0, A),a € A} have the local domain-based VC-
dimensiom*. The following inequality holds for atl € A with probability1 —#:

1
Rl Ax)) < — .
(@ 4,%0) < 5, )]

4
Rempl(a, A, xo) + v <1 + \/1 + ;Remp(a, A,X0)>
(25)
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where

o (W) {n[2K/ ()] + 1} —
K

Proof In Equation (20), let)/2 denote the right-side.
By solving the equation

2Ke\" K
12 (h—) exp{~ ) = /2 (26)

and replacing the result into Equation (20), we obtain tHeviong inequality
with probability 1 — 7 /2.

4
R(a, A, x0) <Remplar, A, xg) + v (1 + \/1 + ;Remp(oz, A, x0)> , (27)

where

o (") {n[2n/ ()] + 1} —

By defining the normalized empirical risk for the vicinity of

X y X0, )
R(a, A, x /Q ————=dF(z),
0 ) Do A )
we can get Equation (25) by dividing both sides of inequdliyuation (27) by
||D(x0, A)||. This completes the proof.

5.3. Bound of Classifiers Ensemble

We now further explain the generalization bound of the di@ss ensemble
method discussed in Section 4. Since every training sampldevtreated as
a focal sample in turny samples drawn from the unknown distributiéiix, y)
can generate local distance metrics. For each unknown test samptée base
classifierf;(x, A;) € H can be obtained by Equation (9), wheteis the local
distance metric learned by focal samge, y;), which embodies local discrimi-
native information and the size &f is n. According to the alignment procedure
in Equation (10), we define the final classifier after enserable

X) = sign(z fi(x, A)). (28)
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In Equation (28),9(-) gives a wrong prediction on the sampte, y) only if
yg(x) < 0. fi(x, A;) is theit” element off(z, A). The margin function is given
by yg(x). Equation (28) is fundamentally a majority vote on all balsessifiers.
[12] has shown a bound which applies to all majority-votessifier. Inspired by
this, we show the following theorem which states that theegalization error of
the ensembled classifier can be bounded in terms of the numhb@&ining sam-
ples with the margin below a threshafdand in the capacity of base classifier
SpaceH.

Theorem 5.4. Let S be a set ol» samples independently drawn from the distri-
bution F'(x,y) over X x {—1,+1}. Assume that the base-classifier spatés
finite, and letr > 0. Then with probability at least — o over the random choice
of the training setS, every weighted average functigfy) satisfies the following
bound for alld > 0:

ognlo 1/2
Pe(yg(x) < 0) <Ps(yg(x) < )+ 0 (% (2" g o1/ ) .
29)

For detailed proof please refer to Theorem 1 in [12].

6. Experiments

We compare the proposed LDDM against other state-of-thdistance met-
ric learning algorithms, including the representativeglenglobal distance met-
ric approach: Xing’s method (Xing) [20], two latest singteél distance metric
approaches: Local Fisher Discriminate Analysis (LFDA)[&Bd Large Margin
Nearest Neighbor-based distance metric (LMNN)[18], tlaesof-the-art multi-
ple local distance metrics approaches: multiple Large Maxgparest Neighbor
metrics (MLMNN)[17], the Discriminant Adaptive Nearest itylgbor (DANN)
and the five adaptive iteration i-DANN [10], the local ADAy MEtric Nearest-
Neighbor algorithm (ADAMENN) and the five adaptive iteraticADAMENN
[7].

We generate a synthetic multimodal dataset to discuss $itendie projection
problem. In addition, we use a synthetic noisy dataset toudis the problem
of noise tolerance. Furthermore, we evaluate all thoserighgas using eleven
benchmark UCI dataséts

http://archive.ics.uci.edu/ml/
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The experiments are designed as follows: we first run eadnitiigh on train-
ing samples to learn a model which could be a distance meteacet of distance
metrics. For DANN we perform PCA to reduce dimension to attleas ¢ (n is
the number of samples,is the number of classes) to avoid the singularity prob-
lem [1]. Finally, each algorithm predicts test samples g${ilNN classifier. For
the parameter settings, all the methods compared in thisrpee the parameter
settings, as proposed in their original papers[20, 15,781Q, 7] and validated by
cross validation. We report the optimal dimensions for XibGDA and LMNN
in the experimental results.

LDDM sets four adjustable tuning parameters:

* [y the number of neighbors in the same class.
* ko: the number of neighbors in the different class.
* B: multiplicative factor in Equation 3.

* K the number of neighbors to be considered as the vicinitpcdfsample
in Equation 9.

Based on empirical observation, we $et= max{ floor(0.15n),3}, ks =
max{ floor(0.1n),2}, 8 = 0.1 wheren is the total number of training samples.
K € {floor(0.1n), floor(0.2n), floor(0.3n)} and we determine the value féf
by cross-validation.d’ for Equation (8) is determined is determined as follows.
We sort the nonnegative eigenvalues in descending ordeisuim of the first p
eigenvalues that exce&0% of the total sum of all nonnegative eigenvalues are
discarded. The eigenvectors corresponding to the restagatine eigenvalues as
well as all the negative eigenvalues are preserved for thjegron. The number
of selected eigenvectors fornis

6.1. A Multimodal Dataset

Multimodal data distribution is ubiquitous in real-worldta. It happens when
samples from the same class do not always share similaibdisbns. For multi-
modal distribution dataset, the superiority of the locataince metric over global
distance metric is widely admitted [22, 9, 17]. We constraichultimodal data
set to evaluate: 1) whether multiple local distance metgorthms are superior
to single distance metric algorithms; 2) the ability to expl discriminative in-
formation for different algorithms; 3) the visualizationder different projected
distance metric space.
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Table 1: Best recognition ratés] of the multimodal synthetic dataset.

Global metric|| Single local metric Multiple local metrics
Methods Xing LFDA | LMNN || mLMNN | DANN | i-DANN | ADAMENN | i-ADAMENN LDDM
Multimodal | 74.25(50) | 85.25(5)| 89.75(3)|| 81.25 | 67.00 | 53.37 82.25 82.25 90.380.1n)

We generate a synthetic dataset which makes samples obegddesulti-
modal distribution. Positive samples have two differenu§san distributions.
Negative samples also have two different Gaussian disiitis; where one is
between two positive distributions, and the other staysidetof the positive dis-
tribution. The synthetic training data contait¥) positive andt00 negative sam-
ples with50 dimensions. The test data is drawn from the same distribatsothe
training data and has the same size.

The experimental results are shown in Table 1. Clearly, ireggnwe have
the performance atfhe single local distance metris multiple distance metrics
> global distance metricLDDM , which is in the category of multiple distance
metrics methods, has the best performance as an exceptidretfEr understand
this result, we visualize these distance metric approaahdsr their projected
distance metric space using Equation 2.

Figure 3(a) shows the dataset projection in PCA space whigsgis direct
illustration of this case. Red circles and blue stars repitetbe positive samples
and negative samples respectively. The green square ig aa®ple belong-
ing to the negative class (blue stars) but is blind to theniegr systems. The
green square resides on the boundary between those tweslagke PCA pro-
jection space. Because some distance metric algorithms KLDONg, LFDA
and LMNN) can be also regarded as the dimension reductiohadst we visu-
alize them under 2-dimension projection. For other distametric algorithms
(DANN, ADAMENN), we adopt Sammon’s Mapping [11] to projetiet data un-
der 2-dimension space which preserves the Euclidean destatation under their
distance metrics.

Figures 3(b), (c) and (d) depict the visualization of thegrmmetric methods,
XING, LFDA and LMNN. Global distance metric method fails teal with con-
flicting localized pairwise constraints which are locatedlifferent distributions.
Thus, Xing’s method mixes the positive and negative samplé&sgure 3(b) and
performs the worst. LFDA locally adopts the discriminatiméormation which
makes the samples in the same class closer. LMNN optimizdarge margin
which makes the test sample move away from the original baxyndHowever,
this optimization cannot really remove the boundary andevalarge margin be-
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tween two classes, because some samples that may not be bauhéary in
the original space produce a new boundary in the new pra@jesgace. This is
a known problem of the single-metric algorithms. Optimizatmay not achieve
the desired goal for a multimodal dataset.

Figure 4 depicts the visualization of multiple metrics nogth. mMLMNN per-
forms clustering and then learns the LMNN distance metrieach cluster. From
Figure 4(a), we can find that mLMNN is not very different frofINN. mLMNN
may have a great performance gain only when clustering dagsod job. In
a close view of Figure 4(b), DANN locally minimizes the witiliclass distance
and maximizes the between-class distance only on the naigbbd of the test
sample, however discriminative information might not béisient to correctly
classify this test sample. ADAMENN in Figure 4(c) has the immhallmark
which learns only on the vicinity of the test sample but féasnclude sufficient
discriminative information.

Figure 5(a) is a close view of PCA projection in Figure 3(a)eDig red circle
and the big blue star are the two nearest neighbors of the gepeare. This is a
challenging problem because these two nearest neighbgraahée in the same
class as the test sample. For our LDDM method, we learn distaretric on these
neighbors respectively as in Figures 5(b) and (c). Our ps@wonstraints only
take effect on a small area, where they can be optimized muxk efficiently.
We can clearly see that vicinity of the focal samples doeswmintdifferent-class
samples in the close view figures. The test sample is in theityiof the focal
blue star in Figure 5(c) while it is not in the vicinity of thedal red circle in Figure
5(b). We regard that the test sample is in the same class akdample only
when test sample is in vicinity of the focal sample. In suckecave can evaluate
whether the nearest neighbors of test sample in the origpaade is really similar
to test sample under the local discriminative distanceimddecause LDDM has
a totally new way to explore discriminative information amgk an ensemble for
prediction which avoids the deficiency of other multiple rneeinethods, LDDM
achieves a better result compared to other local distantécmeethods.

6.2. A Noise Dataset

To compare the tolerance to noise among these algorithméuiet a syn-
thetic dataset with different noise scales in training d&@0 positive and 200
negative samples are drawn from 50 dimensional Gaussitaibdisons with dif-
ferent mean values. 50 positive and 50 negative test samapbegenerated by
sharing the Gaussian distribution of the same mean valuethattraining sample
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Figure 3: The multimodal data and its two-dimensional prgm visualization. (a) The PCA
projection space. (b) The Xing's projection space. (c) TH&®A projection space. (d) The
LMNN projection space.

Figure 4: visualization of multiple distance metrics algons. (a) The mLMNN projection space
under a distance metric learned from clusters of trainimgpdes. (b) Sammon’s Mapping of the
DANN distance metric learned for the test sample and itseclasw. (c) Sammon’s mapping of
the ADAMENN distance metric learned for the test sample #sdlose view.

(a)

Figure 5: The visualization of LDDM algorithm. (a) A closeew of the neighbors of test sample
in the PCA space, the big red circle and the big blue star arevib nearest neighbors. (b) The
LDDM projection learned from the big red circle. (c) The LDDdrojection learned from the big
blue star.
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but vary a little in variance. Each class contains some rneaseples which dis-
tribute more like the opposite class. In the experimentsyavg the percentage of
noise data fron% to 25%. We expect that a robust algorithm should be able to
deal with the noise data in the training process and find tiiegic distribution of
the training samples. A dataset with% noise-level is visualized in Figure 6(a).

This is a specially built dataset and the noise samples amenall-designed
distribution. The samples in two different classes areviaya Ideally, if K in our
LDDM is greater thar).5n, it is no doubt that LDDM will achieve perfect results.
Because the number of noise samples is smaller@lian the ensemble process
will eliminate noise influence which is similar to apply a kearest-neighbor clas-
sifier with K = 0.5n. However, this is not fair for the comparison. We report our
results with/X' = 0.1n and study the influence of focal vicinity in LDDM.

From the experimental results reported in Table 2, we gégérave this con-
clusion about the performanceultiple distance metrics global distance met-
ric > single local distance metricSingle local distance algorithms use neigh-
borhoods to learn the discriminative information which htidpe highly influ-
enced by the noise and inevitably encounters the overgfigmoblem. The global
method Xing performs better than traditional local methdzcause the global
pairwise constraints are helpful for capturing the ovedadtribution. Multiple
metrics methods perform better than all the single metrithoas. mMLMNN opti-
mizes the local pairwise constraints and also takes theagk#nse for each class
into consideration. DANN and ADAMEN which use different @isce metrics to
model the samples in different areas greatly reduce theeinde of noise. Differ-
ently, LDDM is very robust to noise which learns the discnative information
from focal vicinity and eliminates the noise information @igssifiers ensemble.
Even with25% noise data which also means there 25& mislabeled training
samples, our LDDM method can still reliably find the intrimsglistribution.

To show the influence of focal vicinity to LDDM, we report thelation be-
tween classification accuracy and size of focal vicinity igufe 6(b) usingl0%
noise level data. The focal vicinity consistsigfsame-class nearest neighbors and
k- different-class nearest neighbors. From the figure, we adrtliat wherik, be-
comes larger, classification accuracy will increase sigaifily. If more different
class samples are involved, it will be increasingly easierapture the principal
part of different class samples and ignore noise samplemalfy local classi-
fiers can achieve good classification results, then weigtdetbination of local
classifiers will perform better.

We can also find that if the sizes bf or k, approach 200, the focal vicinity is
equivalent to the whole dataset, which means LDDM is degeadito the global
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Table 2: Best recognition ratés] on the synthetic data with different noise levels.

Global metric|| Single local metric| Multiple local metrics
Dataset Xing LFDA | LMNN | mLMNN | DANN | i-DANN | ADAMENN | i-ADAMENN | LDDM
5% 98(34) 90(18)| 87(10) 99 99 80 90 92 100(0.1n)
10% 92(14) 96(22)| 85(23) 93 98 59 97 99 100(0.1n)
15% 82(2) 85(22)| 75(7) 83 97 64 97 96 100(0.1n)
20% 91(7) 91(27)| 68(15) 77 88 55 95 95 100(0.1n)
25% 79(16) 88(23)| 61(5) 72 87 51 86 84 97(0.1n)

Table 3: Properties of datasets.

balance-scale glass| image| ionosphere soybean| tic-tac-toe| waveform| iris | wine | wdbc | car

samples 625 214 | 2310 351 47 958 5000 | 150| 178 | 569 | 1728
dimensions| 4 9 19 34 35 9 21 4 13 30 6
classes 3 6 7 2 4 2 3 3 3 2 4

distance metric method. Whén approaches 200 arid approaches 0, LDDM is
equivalent to Xing’s method without the negative constraihich is to separate
samples in different class. In this case, all the sampldsanlverge to one dot and
have the worst result. K, andk, approach 200 simultaneously, LDDM achieves
nearly10% error rate as Xing's global method.The performance isikeltstable
when the patch is small enough to encode the discriminatiegmation and big
enough to form a reliable patch.

Accuracy

O
©  positive samples
* negative samples

(a)

Figure 6: The noise synthetic data. (a) The training datd W@% noise samples in a 2-
dimensional PCA space. (b) Classification accuracy vsssiféocal vicinities g, andks) using
10% noise level data.
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Table 4: Recognition ratés() on UCI datasets by distance metrics approaches.

Global metric Single local metric Multiple local metrics
Xing LFDA LMNN mLMNN DANN i-DANN ADAMENN | i-ADAMENN LDDM

balance-scal 10% | 75.48 +4.90 || 85.36 +£2.74 | 86.98 +£1.75 | 81.03 +2.23 | 82.54 +2.40 | 82.56 +2.74 | 69.17+3.06 | 69.50 +2.02 | 85.79 +2.72
80% | 77.10 +3.79 91.61 +£4.8 90.48 +4.78 78.23 £5.00 | 88.06 £2.66 | 79.68 £3.97 | 80.48+6.29 | 80.16+5.22 | 93.39 +3.44
glass 10% | 51.19+£7.44 | 4446 £5.20 | 46.19 £+ 7.62 52.08£5.56 | 46.25 £5.05 | 46.61 £4.92 | 47.86 £7.52 | 46.90 £ 7.07 | 53.15 +4.84
80% | 69.05+9.59 | 66.19+9.64 | 57.14 £9.54 | 67.14 +11.54 | 63.33 £8.99 | 70.00 £5.52 | 80.48 +6.29 | 80.16 +5.22 | 72.38 £7.03

image 10% | 86.14 £ 1.42 85.00+2.73 | 91.86 +2.00 | 86.78 £1.57 | 88.07£1.72 | 89.32+1.05 | 57.77+£3.86 | 44.77+£3.97 | 87.20 £ 1.28
80% | 95.84 +£1.62 | 92.90+5.19 | 97.01 £ 1.01 96.714+1.29 | 96.28+1.04 | 97.45 +1.03 | 22.94+3.90 | 22.29+3.10 | 91.52+1.80
ionosphere 10% | 87.46 £+ 1.89 89.18 £ 0.38 | 88.79 +2.76 89.46 +£0.74 | 89.18 +£0.29 | 89.04 +£0.38 | 89.21 £0.63 | 89.114+0.48 | 90.00 +4.10
80% | 89.14 +4.22 | 89.14+2.63 | 87.43+6.89 | 88.57 +£4.26 | 89.43+2.71 | 86.57 £5.56 | 90.57 +5.56 | 90.29 + 3.07 | 89.14 + 2.63
soybean 40% | 75.50 & 18.63 || 74.50 £ 20.61 | 70.50 £ 25.22 | 91.00 & 12.65 | 96.00 £ 6.58 | 96.50 £5.80 | 79.00 £ 15.06 | 83.00 +8.23 | 97.00 £ 2.58
80% | 85.00 £ 17.48 | 100+ 0.00 | 88.89+13.18 [ 100+0.00 | 100+0.00 | 97.50 £7.91 | 92.50 £+ 12.08 | 100 + 0.00 100 + 0.00

tic-tac-toe 10% | 89.71+1.39 || 96.54 £3.58 | 97.14+2.22 | 86.04 +2.32 | 91.21 +1.99 | 97.28 £0.84 | 75.03£4.52 | 74.95+2.71 | 80.59 + 3.50
80% | 97.47 +£0.89 98.63+1.12 | 97.79+£0.78 | 99.89+0.33 | 98.32 £ 1.02 | 98.32+1.02 | 95.26 £2.59 | 94.74 +£2.58 | 89.89 +£3.94
waveform 10% | 76.60 +0.69 | 81.97+1.02 | 77.41 +0.76 78.19+0.71 | 79.59 £0.44 | 72.66 £0.35 | 69.01+1.30 | 53.58 £ 1.65 | 83.70 £ 0.46
80% | 77.84 +£1.67 81.844232 | T7.70+£2.21 81.324+1.38 | 81.944+1.21 | 76.284+2.35 | 50.10 £5.52 | 54.97+3.07 | 84.41+0.44

iris 10% | 89.17+8.11 || 94.75+2.42 | 91.67 +5.60 | 86.83 +6.81 | 86.83 +7.17 | 86.75+ 7.57 | 87.67 £8.51 | 87.25+8.74 | 89.33 +7.28
80% | 94.00 +5.84 96.00 & 3.44 | 95.33 £5.49 96.00 & 4.66 | 94.67 =5.26 | 96.00 £4.66 | 94.67 £6.13 | 94.67+£5.26 | 96.67 £4.71

wine 10% | 75.44£7.12 | 53.68 £12.39 | 67.87 £+ 13.26 | 90.51 + 6.38 | 89.85 £ 8.02 | 90.37 £ 7.37 | 66.76 £6.38 | 67.50 £6.61 | 88.09 + 5.58
80% | 80.59 +7.87 | 72.35+15.7 | 89.41+£10.3 | 91.76 £6.32 | 91.18 £6.93 | 95.88 £3.97 | 66.47 +6.23 | 86.47 +6.82 | 96.47 + 4.96
wdbe 10% | 88.33 £3.55 88.464+2.44 | 91.34 +£1.89 91.274+2.08 | 90.854+1.28 | 90.29+1.68 | 89.33£2.17 | 89.73+2.49 | 92.52+ 245
80% | 89.82+4.84 | 90.71+3.75 | 91.61 £4.54 | 93.57 £4.39 | 90.71 £3.93 | 93.93£3.97 | 92.50+3.35 | 85.80 +4.25 | 94.11+4.13
car 10% | 77.49 £3.22 81.06 £2.77 | 82.44+3.41 80.69 £ 1.67 | 75.46 +£2.02 | 72.72+1.52 | 73.98+1.11 | 73.63+0.73 | 82.66 + 1.38
80% | 85.99+4.23 | 87.44+3.75 | 96.10+1.43 | 94.01 £1.78 | 84.19 £2.01 | 81.45+£2.81 | 72.79+3.93 | 67.56 +3.73 | 81.45+2.96

6.3. UCI Datasets

We compare the algorithms on eleven benchmark UCI datade¢gprbperties
of datasets are described in Table 3. The average accurdstardard deviation
is calculated by the 10-fold cross validation with 1 fold adidation set. We
report the results by varing the training set size: use 1ffmdraining (10%) and
8 folds for training 80%). This can help us to better understand the performance
for insufficient training data. Soybean dataset is too sntiadirefore, we adopt
40% and80% settings.

The experimental results are reported in Table 4. It is diffito say whether
any algorithm can always perform best on various datasetedan the table, we
generally havenultiple distance metrics single local distance metric- global
distance metricMultiple metrics methods also perform better for the ifisiént
training data because it adopts multiple metrics to exphooee useful informa-
tion, for example, the multiple extension version mLMNN foems better than
the single local metric LMNN in most cases. i-DANN and i-ADAMIN are not
always perform better than their one-step DANN and ADAMENTNIs is mainly
because the converged solution will prune to be proportimthe identity metric
which gives equal weights for different features [7]. Thegwsed LDDM method
performs better in the overall comparison which wi@nout of 22 comparisons.
LDDM is the most stable algorithm in this comparison.
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Table 5: Recognition rate&() on UCI datasets for the state-of-the-art classifiers astadce
metric methods using ensemble framework.

Classifiers Ensemble distance metric
kNN Decision tree | Naive Bayes SVM Xing LFDA LMNN
bal | 10% | 76.33 £3.51 | 70.46+3.80 | 0.77+£0.04 | 84.52+2.36 82.60 £1.99 | 86.31 £2.41 | 86.45+2.17
alance-scal
80% | T4.68 +4.37 | 77.42+3.31 | 0.78 £0.03 | 90.81 +3.95 | 89.52 +4.11 | 89.84 +4.17 | 92.10 +4.26
glass 10% | 54.29+6.25 | 45.77+7.29 | 0.76 £0.06 | 41.37£5.97 || 49.40 +9.86 | 37.86 +6.79 | 47.38 £7.29
80% | 73.33+8.75 | 66.19+8.23 | 0.78 £0.11 | 64.29 +9.59 68.57 £8.16 | 66.67+7.45 | 64.76 £0.11
. 10% | 86.31 £0.01 | 89.03+0.02 | 0.73+£0.02 | 61.04 £5.04 | 78.14+0.02 | 14.28 £0.00 | 87.26 + 0.02
image
80% | 96.1940.02 | 95.28+0.01 | 0.78 +0.02 | 92.99 4+ 1.67 82.64+£0.02 | 14.29£0.02 | 86.10£0.01
. 10% | 88.86 +£1.05 | 87.25+0.02 | 0.73+0.01 | 89.36 +0.41 86.29 £2.92 | 68.25+6.16 | 21.21 £1.11
h
ionosphere
80% | 89.14+4.00 | 88.00+5.84 | 0.83+0.04 | 89.14+2.63 | 89.14 £3.24 | 89.14+2.63 | 81.43 +2.43
soybean 40% | 94.50+9.56 | 65.004+9.72 | 0.714+0.14 | 69.00 4 7.38 51.00+£1.90 | 29.00 £1.13 | 54.50 £ 10.39
80% | 100.00 £ 0.00 | 92.50 + 16.87 | 0.78 +0.08 | 85.00 & 17.48 || 52.50 £2.99 | 30.00 +2.30 | 62.50 & 3.38
fic-tac-t 10% | 89.83 £1.51 | 71.25+2.45 | 0.76 £0.09 | 74.30 £5.67 | 78.92+0.04 | 98.21+£0.00 | 97.37 +0.01
ic-tac-toe
80% | 100.00 £0.00 | 93.58 +2.83 | 0.77 +0.05 | 99.05 4+ 0.92 97.79+£0.02 | 98.32+1.02 | 96.84 £0.02
; 10% | 76.85+0.63 | 71.87+1.17 | 0.77+£0.01 | 85.61 £0.53 | 83.30 £0.53 | 85.84 £0.44 | 83.70 + 0.56
waveform
80% | 7T7.74+1.82 | 75.68 +1.93 | 0.75+0.01 | 87.34 +1.63 84.70 £2.38 | 86.72+2.11 | 84.16 £2.16
. 10% | 93.75 £2.43 | 70.92 +£14.10 | 0.76 £0.05 | 83.75 4+ 12.29 | 72.17 £ 9.58 | 71.58 4+ 13.94 | 64.25 £ 10.70
iris
80% | 96.00 +5.62 | 95.33+4.50 | 0.79+0.03 | 97.33+3.44 | 95.33 +£4.50 | 95.33+6.32 | 95.33 +7.06
ine 10% | 66.18 £4.57 | 72.874+9.98 | 0.71 £0.10 | 39.49 + 10.87 || 65.66 & 10.53 | 38.75+7.30 | 37.28 +8.94
wi
80% | 76.47 +£10.00 | 94.124+4.80 | 0.78 +0.11 | 63.53 +£10.30 || 88.82+9.38 | 97.65+3.04 | 96.47 +4.11
db 10% | 89.93 +£1.63 | 89.33+3.48 | 0.70£0.01 | 63.53+£1.07 | 88.12+1.89 | 84.29 +4.97 | 84.49+5.19
wdbc
80% | 91.43+£3.45 | 92.68 £2.30 | 0.74+0.03 | 90.00 £3.28 | 94.82+3.09 | 96.96 +2.39 | 95.89 +2.24
10% | 78.94+1.54 | 85.24+1.84 | 0.74+0.02 | 77.60 £ 3.00 76.46 +1.48 | 79.54£3.06 | 79.19 +2.28
car
80% | 83.95+3.29 | 95.29+1.36 | 0.78 £0.02 | 91.51 +2.56 | 77.73+£3.23 | 79.36 +3.60 | 78.78 & 3.02

We further conduct the experiments using the state-ofathelassifiers: kNN,
Decision Tree, Naive Bayes and Support Vector Machine (SW¥&)also perform
the other distance metric methods using our proposed ensdodal distance
metrics framework. The results are reported in Table 5. Sseimele classifier
achieves stable results in this comparison. For exampl®l &bhieves the best
results in some tests. The ensemble framework cannot gearemimprove the
other distance metric methods, which is because the pritlyapproach defined
in Equation (9) may not suit for other distance metrics. INQND, the samples in
the same class as the focal sample will be pulled towardsotted §ample, while
this property cannot be obtained by other distance metrethoals.

The corresponding computation time for experiments reglart Tables 4 and
5 is depicted in Tables 6 and 7 respectively. The experimeate performed on
a DELL server with an 8 cores Intel Xeon X5675 3.07GHz prooeasd 100G
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Table 6: Computation time on UCI datasets for the reprefieatdistance metrics approaches.
The numbers in each cell represent training time(s)/tes () respectively.

Global metric Single local metric Multiple local metrics

Xing LFDA LMNN mLMNN DANN i-DANN ADAMENN | i-ADAMENN LDDM
balance-scal 10% | 0.3558/0.0044 | 0.0029/0.0038 | 0.5933/0.0042 | 0.0941/0.0049 | —/0.7233 | —/2.7456 —/7.7971 —/20.7603 0.8862/0.0238
80% | 9.6484/0.0056 0.0105/0.0057 | 1.5798/0.0153 || 0.1935/0.0138 | —/0.2017 | —/0.9278 —/3.1324 —/8.1041 1.7260/0.0057
glass 10% | 0.1729/0.0005 0.0054/0.0018 | 0.9264/0.0006 || 0.3521/0.0022 | —/0.1950 | —/0.5709 —/7.9225 —/23.3047 0.0847/0.0064
80% | 1.6422/0.0010 || 0.0026/0.0009 | 4.6951/0.0010 || 0.7653/0.0053 | —/0.0579 | —/0.2586 —/1.2399 —/3.4112 0.1952/0.0012
N 10% | 3.2450/0.0437 0.0061/0.1306 | 1.5325/0.0455 || 0.9026/0.0351 | —/6.4283 | —/29.7896 | —/330.5465 —/876.0339 4.5026/0.0657
mage 80% | 208.6087/0.1917 || 0.0418/0.0938 | 6.1121/0.0776 || 2.9737/0.1870 | —/1.0535 | —/4.0571 | —/438.7548 | —/1309.1023 | 21.1064/0.0337
ionosphere 10% | 0.3073/0.0026 || 0.0125/0.0023 | 4.9997/0.0023 | 0.3815/0.0032 | —/0.3327 | —/1.1508 —/20.0901 —/8.8713 0.1177/0.0043
80% | 1.9854/0.0184 0.0085/0.0029 | 6.1501/0.0038 || 0.6414/0.0074 | —/0.1842 | —/0.7420 —/3.4221 —/1.8950 0.4573/0.0016
soybean 40% | 0.3236/0.0005 || 0.0038/0.0002 | 0.9865/0.0004 || 0.1196/0.0022 | —/0.0179 | —/0.0551 —/2.3844 —/0.9900 0.0144/0.0006
80% | 0.4297/0.0005 0.0019/0.0003 | 5.6716/0.0005 || 0.1425/0.0026 | —/0.0060 | —/0.0177 —/0.5183 —/0.2364 0.0227/0.0002
tic-tac-toe 10% | 0.4584/0.0075 0.0014/0.0062 | 1.6829/0.0067 || 0.0950/0.0067 | —/1.3941 | —/5.6510 —/20.9977 —/43.4990 1.6074/0.0275
80% | 608.0292/0.0453 || 0.0279/0.0095 | 6.4564/0.0198 || 0.1770/0.0282 | —/0.3650 | —/1.4081 —/9.7731 —/28.9718 4.2377/0.0090
waveform 10% | 12.2411/0.2928 | 0.0104/0.2482 | 1.0755/0.2812 | 0.5865/0.0932 | —/15.4851 | —/65.1324 | —/855.5814 —/611.6011 | 145.4131/0.7518
80% | 829.7202/0.4492 || 0.4571/0.3928 | 8.9339/0.4198 || 6.7461/0.7184 | —/2.9219 | —/9.2873 | —/1680.3573 | —/1861.4028 | 623.8684,/0.4934
irs 10% | 0.1153/0.0031 0.0011/0.0028 | 0.5758/0.0031 || 0.1215/0.0022 | —/0.1053 | —/0.3295 —/1.2787 —/3.3414 0.0589/0.0049
80% | 0.8489/0.0051 0.0017/0.0031 | 1.9140/0.0032 || 0.1008/0.0026 | —/0.0284 | —/0.1259 —/0.2043 —/0.6039 0.1204/0.0008
wine 10% | 0.1679/0.0006 0.0010/0.0004 | 0.5031/0.0005 || 0.3585/0.0022 | —/0.1197 | —/0.3897 —/4.8668 —/13.0849 0.0634/0.0053
80% | 1.5706/0.0011 0.0022/0.0007 | 4.4151/0.0009 || 0.5401/0.0033 | —/0.0391 | —/0.1857 —/0.6620 —/2.0059 0.1366,/0.0009
wdbc 10% | 0.3483/0.0030 0.0015/0.0019 | 0.8616/0.0031 || 0.2970/0.0051 | —/0.7537 | —/2.6102 —/28.8852 —/14.5917 0.5634/0.0139
80% | 8.6359/0.0049 || 0.0132/0.0037 | 0.0579/0.0109 || 0.8931/0.0191 | —/0.3075 | —/1.3105 | —/8.2812 —/5.5584 1.4089/0.0031
car 10% | 1.0257/0.0232 || 0.0028/0.0224 | 0.6065/0.0228 | 0.5038/0.0133 | —/3.3769 | —/15.2333 | —/40.7142 —/109.4065 6.6843/0.0656
80% | 67.7757/0.0367 | 0.0894/0.0346 | 0.4174/0.0444 || 0.3354/0.0777 | —/0.6319 | —/2.6011 —/49.8702 —/148.4166 | 23.4052/0.0408

RAM. All algorithms are implemented in MATLAB. Both training drtesting
time are reported. The DANN, ADAMENN and kNN classifiers dazy leaners,
hence training time is not applicable for those classifidtete that the training
time of the LDDM approach in Table 6 and the proposed distameiic methods
using ensemble framework in Table 7 is high, but their tgstime is rather low,
which empirically confirm what has been analyzed in Sectiolh i$ encouraging
to point out that in our experiments the testing time for LD¥Vomparable to
the state-of-the-art efficient classifiers and its staldere performance makes it
applicable for complex real world applications.

7. Conclusion

In this paper, we present a local discriminative distancériose(LDDM)
learning algorithm for classification under the local leagniframework. LDDM
trains a set of local discriminative distance metrics agdicay to different training
samples and predicts a test sample by classifiers enseniiEMiperforms well
on the multimodal distribution problem and greatly redutbesinfluence of noise
samples. We theoretically prove the convergence rate banddhe risk bound
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Table 7: Computation time on UCI datasets for the the sthtbesart classifiers and representa-
tive distance metrics approaches under ensemble framewbenumbers in each cell represent
training time(s)/test time(s) respectively.

Classifiers Ensemble distance metric

kNN Decisiontree | Naive Bayes SVM Xing LFDA LMNN
balance-scal 10% | —/0.0309 | 0.0168/0.0063 | 0.0258,/0.2455 | 0.0021/0.0020 1.5200/0.0200 0.8152/0.0223 1.3328/0.0221
80% | —/0.0056 | 0.0359/0.0064 | 0.0252/0.0768 | 0.0083/0.0016 12.3733/0.0054 1.6028/0.0102 2.5549/0.0070
glass 10% | —/0.0098 | 0.0168/0.0077 | 0.0919/0.2496 | 0.0022/0.0011 0.8072/0.0111 0.1507/0.0111 0.9137/0.0110
80% | —/0.0016 | 0.0272/0.0064 | 0.1104/0.0778 | 0.0045/0.0005 2.4737/0.0020 0.2312/0.0020 1.4948/0.0021
image 10% | —/0.1512 | 0.0295/0.0074 | 0.2742/0.2232 | 0.0134/0.0286 34.1132/0.2933 23.1882/0.2921 | 31.4615/0.2843
80% | —/0.0465 | 0.0915/0.0069 | 0.2665/0.0771 | 0.4141/0.0207 | 314.7649/0.1509 | 78.2493/0.1627 | 121.2005/0.1861
ionosphere 10% | —/0.0169 | 0.0153/0.0063 | 0.1392/0.2429 | 0.0013/0.0023 || 11.0466/0.3133 0.2299/0.0080 4.3036,/0.0083
80% | —/0.0032 | 0.0311/0.0084 | 0.1369/0.0762 | 0.0069/0.0018 73.2879/0.0016 1.0480/0.0280 3.1444/0.0018
soybean 40% | —/0.0013 | 0.0181/0.0063 | 0.2743/0.2673 | 0.0015/0.0009 5.7415/0.1771 0.0346,/0.0006 3.9483/0.0011
80% | —/0.0003 | 0.0175/0.0064 | 0.2727/0.0758 | 0.0017/0.0002 0.8831/0.0003 0.0361/0.0012 4.0519/0.0003
tic-tac-toe 10% | —/0.0500 | 0.0204/0.0056 | 0.0360,/0.2416 | 0.0032/0.0046 3.3813/0.0272 1.4729/0.0271 3.0261/0.0270
80% | —/0.0101 | 0.0385/0.0050 | 0.0378/0.0948 | 0.0339/0.0036 | 556.2084/0.0085 | 3.2032/0.0088 5.9560,/0.0099
waveform 10% | —/0.4666 | 0.0696/0.0110 | 0.1281/0.2800 | 0.0125/0.0814 | 121.3833/0.6829 | 104.7261/0.7042 | 109.3327/0.7150
80% | —/0.2567 | 0.4735/0.0075 | 0.1476/0.0844 | 0.4664/0.0652 | 1499.7533/0.4752 | 545.5000/0.4541 | 655.7652/0.5579
iris 10% | —/0.0070 | 0.0128/0.0062 | 0.0241,/0.2516 | 0.0005/0.0004 8.4097/0.6977 0.0491/0.0046 1.0363/0.0047
80% | —/0.0011 | 0.0156/0.0061 | 0.0245/0.0887 | 0.0022/0.0013 | 13.3046/0.6850 0.0692/0.0007 0.9776,/0.0009
wine 10% | —/0.0079 | 0.0134/0.0058 | 0.0769/0.2479 | 0.0020,/0.0014 0.6282/0.0053 0.0704,/0.0053 0.8044,/0.0054
80% | —/0.0013 | 0.0223/0.0067 | 0.0792/0.0792 | 0.0060/0.0011 1.7969/0.0010 0.0970/0.0009 2.6352/0.0011
wabe 10% | —/0.0272 | 0.0157/0.0060 | 0.1201/0.2417 | 0.0028/0.0040 1.4807/0.0146 0.5788/0.0138 2.4588/0.0140
80% | —/0.0049 | 0.0383/0.0050 | 0.1179/0.0786 | 0.0257/0.0034 11.0047/0.0037 1.1426/0.0033 4.6641/0.0047
car 10% | —/0.1005 | 0.0227/0.0064 | 0.0490/0.2491 | 0.0034/0.0071 11.5376/0.1088 9.4427/0.1130 10.1548/0.1091
80% | —/0.0266 | 0.0420/0.0063 | 0.0519/0.0809 | 0.0610/0.0061 | 211.4799/0.0610 | 28.0524/0.0485 | 35.0583/0.0672

of local classifiers using local metrics by introducing a remcept of local do-

main based VC-dimension. We also prove the risk bound of filsisdiers en-

semble. We extensively evaluate LDDM using two synthettasiets and eleven
UCI datasets. The experiments show that the proposed mettpertorms many

state-of-the-art distance metric learning algorithms.
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