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Abstract

This paper takes manifold learning and regression simulta-

neously into account to perform unsupervised spectral fea-

ture selection. We first extract the bases of the data, and

then represent the data sparsely using the extracted bases

by proposing a novel joint graph sparse coding model, JGSC

for short. We design a new algorithm TOSC to compute the

resulting objective function of JGSC, and then theoretically

prove that the proposed objective function converges to its

global optimum via the proposed TOSC algorithm. We re-

peat the extraction and the TOSC calculation until the value

of the objective function of JGSC satisfies pre-defined condi-

tions. Eventually the derived new representation of the data

may only have a few non-zero rows, and we delete the zero

rows (a.k.a. zero-valued features) to conduct feature selec-

tion on the new representation of the data. Our empirical

studies demonstrate that the proposed method outperforms

several state-of-the-art algorithms on real datasets in term

of the kNN classification performance.

1 Introduction

Feature selection is an effective solution to the high-
dimensionality problem in real applications. Recent
studies on spectral feature selection have integrated
manifold learning into features selection. Spectral
feature selection can improve the performance of feature
selection because it preserves the local structures of the
data via manifold learning. However, most existing
efforts are designed to sequentially conduct manifold
learning and regression. For example, the MCFS
method in [2] (see Fig. 1.(a)) includes two key steps,
manifold learning and spectral regression respectively.
After performing manifold learning, i.e., performing
locality preserving projection (LPP), MCFS conducts
spectral regression one eigenvector at a time to generate
the element sparsity (see Fig. 2.(a)). Then a new score
rule is designed to rank the goodness of the features
(with the element sparsity). At last MCFS performs
feature selection by deleting the features with low score
values.
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Figure 1: Methods on spectral feature selection.

MCFS has the following limitations. Firstly, the
element sparsity is ill-fitted for feature selection. Given
an example shown in Fig. 2.(a), according to the
score rule in MCFS, the second row will be the first
feature to be deleted for feature selection. However,
the non-zero values in the second row (i.e., 0.51, 0.23,
0.45 and 0.58) will be lost. It is obvious that no
matter which row is deleted, the non-zero values in that
row will be lost since the element sparsity does not
generate zero elements through the whole row, which
is different from the row sparsity illustrated in Fig.
2.(b). Secondly, MCFS conducts spectral regression
one eigenvector at a time, thus it does not consider
the correlations among the spectral features. Recent
studies (e.g., [15]) have shown that evaluating the
spectral features individually cannot effectively identify
redundant features. Thirdly, the performance of MCFS
can be further improved by simultaneously performing
manifold learning and regression, such as the GSC and
JGSC methods (see Fig. 1.(c) and Fig. 1.(d)). Existing
literatures (e.g., [3, 16]) have shown that simultaneously
considering manifold learning and regression results
improved performance in learning, e.g., classification or
clustering.

Zhao et al., [15] proposed the MRSF algorithm
(see Fig. 1.(b)) to perform spectral regression after
conducting manifold learning. MRSF uses the ℓ2,1-
norm regularizer to replace the ℓ1-norm regularizer in
MCFS. As illustrated in Fig. 2, the row sparsity used
in MRSF obviously fits better for feature selection than
the element sparsity used in MCFS. However, MRSF
only solves the first two problems of MCFS but does
not address the third one.

Recently graph sparse coding (GSC) [3, 16] (see Fig.
1.(c)) embeds manifold learning into the reconstruction
process. It has been shown that GSC achieves improved
performance in real applications. Due to employing
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Figure 2: An illustration to compare the element
sparsity (via the ℓ1-norm regularizer) with the row
sparsity (via the ℓ2,1-norm regularizer).

the ℓ1-norm regularizer for achieving the sparsity, GSC
generates the element sparsity (see Fig. 2.(a)). GSC
only focuses on the third problem of MCFS and does
not address the first two issues. Moreover, GSC is
designed for clustering [16] and classification [3] rather
than feature selection.

In this paper we discuss a new feature selection
method to overcome the drawbacks of MCFS. Motivated
by existing studies (e.g., [2, 3, 15, 16]), we model
feature selection as a novel joint graph sparse coding
model (JGSC). The proposed JGSC (see Fig. 1.(d)) is
designed to simultaneously perform manifold learning
and regression as well as to achieve the row sparsity. In
particular, JGSC consists of three key steps: 1) Basis
extraction. The bases are derived from the data via
an existing dictionary learning method, such as [8]. 2)
Data reconstruction. The data is reconstructed into the
derived basis space to generate its new representation
using the proposed new joint graph sparse coding model.
We repeat these two steps (i.e., basis extraction and
data reconstruction respectively) until the value of
the objective function of JGSC satisfies pre-defined
conditions. 3) Feature selection. Due to introducing
the ℓ2,1-norm regularizer, the derived representation of
the data contains many zero rows. This shows that
the zero rows (a.k.a. zero-valued features) of the new
representation of the data are unimportant. To achieve
efficiency and effectiveness, we delete those rows to
obtain a reduced dataset.

We summarize the contributions of this paper as
follows:

• We identify limitations existing in traditional spec-
tral feature selection, mainly caused by unavoidable
drawbacks of MCFS discussed above. We devise an
effective solution to tackle the limitations via the
proposed joint graph sparse coding model by si-
multaneously performing manifold learning and re-

gression (between the original data and the bases,
also called as reconstruction) with the ℓ2,1-norm
regularizer.

• The proposed JGSC employs the least square loss
function to achieve the minimal reconstruction er-
ror, and uses the graph Laplacian regularizer (i.e.,
manifold learning) to preserve the local structures
of the data and consider the correlations among the
data. JGSC also employs the ℓ2,1-norm regularizer
to achieve the goals, such as avoiding the issue of
over-fitting, achieving the row sparsity and consid-
ering the correlations among the features.

• The proposed model performs feature selection on
the new representation of the data (or in the basis
space), rather than performing feature selection on
the original data (or in the original space) used
in traditional feature selection methods, such as
[2, 15, 13]). Using the bases to represent the data
has been proven to be a higher -level and more
abstract representation than the traditional ones,
such as raw pixel intensity values. Compared to the
traditional methods, the high-level representation
makes the learning process easier and leads to
better results in practice [8, 11]. Furthermore,
extensive experimental results on the benchmark
datasets show that the proposed model is more
effective than state-of-the-art methods.

The remainder parts are organized as below: Sec-
tion 2 reviews related work. Section 3 gives the details of
the proposed approach followed by its theoretical anal-
ysis in Section 4. The experimental results are reported
and analyzed in Section 5 while Section 6 concludes the
paper.

2 Related work

In this section, we give a brief review of feature selection
and sparse learning, and describe the notations used in
this paper.

2.1 Feature selection Given a data set with a large
number of features, if some of them are irrelevant, fea-
ture selection performs dimension reduction by remov-
ing the irrelevant features, and then outputting the rele-
vant features. Feature selection is popular in many real-
world applications [17], such as information retrieval,
image analysis, intrusion detection, bioinformatics, and
so on.

During the process of feature selection, the training
data can be either labeled, or unlabeled, or partially
labeled. This leads to supervised feature selection (e.g.,
[10]), unsupervised feature selection (e.g., the method



in [13], MCFS, MRSF and the proposed JGSC) and
semi-supervised feature selection (e.g., [12]).

According to design strategies, existing feature se-
lection methods can be broadly categorized into three
groups: the filter approach, the wrapper approach and
the embedded approach [6]. In real applications, the
filter approach (e.g., [4]) is robust against the issue of
over-fitting, but may fail to select the most “useful” fea-
tures. The wrapper approach (e.g., [9]) can in principle
find the most “useful” features, so often outperforms the
filter approach. However, the wrapper approach needs
high computational cost and is prone to the issue of
over-fitting. The embedded approach (e.g., the method
in [13], MCFS, MRSF and our proposed JGSC) can ob-
tain superior performance and efficiency than the other
two. Comparing with the filter approach, both wrap-
per and embedded approaches can obtain higher per-
formance because they always select an optimal feature
subset. Comparing with the wrapper approach, the em-
bedded approach needs less computational cost and is
less prone to the issue of over-fitting.

2.2 Sparse learning Sparse learning distinguishes
important elements from unimportant ones by assigning
the codes of unimportant elements as zero and the
important ones as non-zero. This enables that sparse
learning reduces the impact of noises and increase the
efficiency of learning models [8].

According to the way to generate sparsity patterns,
we categorize existing sparse learning into two cate-
gories, separable sparse learning (e.g., lasso [8], group
lasso [14], MCFS and GSC, see Fig. 2.(a)), and joint
sparse learning (e.g., MRSF, and the proposed JGSC,
see Fig. 2.(b)). Separable sparse learning encodes one
sample individually. Joint sparse learning simultane-
ously encodes all samples once. For example, the codes
of five samples are shown in each subfigure of Fig. 2.
Each column is the codes of one sample, where a zero el-
ement means sparse code and non-zero element means
dense code (or non-sparse code). In this example, to
generate codes for all five samples, separable sparse
learning needs to perform its objective function five
times, while joint sparse learning only performs once
for all samples.

Sparse learning employs different regularizers to
lead to different sparse patterns. For example, the ℓ1-
norm regularizer (e.g., [8]) leads to the element sparsity
(Fig. 2.(a)) on separable sparse learning; the ℓ2,1-norm
regularizer leads to the row sparsity Fig. 2.(b) by
considering the correlation among the training data on
joint sparse learning.

2.3 Notations In this paper an ℓp-norm of vector

v ∈ R
n is defined as ‖v‖p =

(

n
∑

i=1

|vi|
p

)
1

p

, where vi

is the i-th element of the vector v. The transpose of X
is denoted as XT , the inverse of X is denoted as X−1,
and the trace operator of a matrix is denoted as the
symbol “tr”.

3 Approach

In this section, we first discuss learning the bases of
the data. Then we give details on the proposed JGSC
for reconstructing the data into the basis space spanned
by the learnt bases. We repeat the two processes until
the proposed objective function satisfies pre-defined
conditions. As a result, each data point is mapped
into the basis space to generate its new representation.
Finally, we describe how to perform feature selection on
the new representation of the data.

3.1 Basis extraction In this subsection, we briefly
review the process of learning the bases of the data,
aiming at describing the data with a high-level feature
representation, i.e., the bases. Such a representation
has been shown to make the learning task easier and to
obtain much better results in practice [7]. In this paper,
a dictionary learning method is used to learn the bases.

Given a data matrix X = (xij) ∈ R
d×n (where each

column represents a data point), we want to learn m

bases (or dictionaries) B ∈ R
d×m with the given sparse

codes S ∈ R
m×n, then the objective function is defined

as

min
{B,S}

‖X−BS‖
2
F+λ

n
∑

i=1

‖Si‖1, s.t.

n
∑

i=1

d
∑

j=1

b2i,j ≤ 1(3.1)

where ‖.‖F means the Frobenius norm.
n
∑

i=1

d
∑

j=1

b2i,j ≤ 1

(where bi,j is the element in the i-th row and j-th column
of B) is to prevent B from having arbitrarily large
values which would lead to very small values of S. We
use the package SPAMS [8] to learn the bases B. The
value of S is obtained in the next subsection.

3.2 Data reconstruction In this subsection we fo-
cus on devising a novel and effective model to recon-
struct the data into the basis space. To this end, we
consider three objectives simultaneously, i.e., minimiz-
ing the reconstruction error, preserving the local struc-
tures of the data and generating the row sparsity.

Given a set of n data points X and the learnt
bases B, the reconstruction process, which uses B to
reconstruct X to obtain X’s new representation S, can



be achieved by the following least square loss function

min
S

‖X−BS‖2F(3.2)

where S = [s1, . . . , sn] are the new representation of X.
Given a loss function (Eq.3.2) during optimization,

a regularizer is often used to avoid the issue of over-
fitting as well as to meet predefined criteria such as
leading to the sparsity. In this paper, to conduct feature
selection, we should choose a regularizer to distinguish
the features, i.e., discriminating the important features
and the unimportant features. Motivated by the charac-
teristics of the sparsity in sparse coding, we expect the
important features to be represented by non-zero values
and the unimportant features by zeros after the recon-
struction process. Then we discard the unimportant
features (i.e., the features with zero values) and use the
important features via performing feature selection dur-
ing the learning process. However, as mentioned before,
the ℓ1-norm regularizer leads to the element sparsity.
Instead, the ℓ2,1-norm regularizer has been designed to
measure the distance in feature dimensions via the ℓ2-
norm, while performing summation over different data
points via the ℓ1-norm [10]. Thus the ℓ2,1-norm regu-
larizer leads to the row sparsity as well as to consider
the correlations of all the features. In this paper the
ℓ2,1-norm, as the second goal in the proposed objective
function, is proposed as follows

‖S‖2,1 =
m
∑

j=1

‖(S)j‖2(3.3)

where (S)j is the jth row of matrix S, which indicates
the effect of the jth feature to all the data points.

To effectively perform feature selection, we recon-
struct the data via mapping them into the basis space.
We might expect that the local structure of each data
point in the original space can be well preserved in the
basis space. That is, two close data points in the origi-
nal space should also be close in the basis space. Mani-
fold learning has been shown to achieve this goal as well
as to take the correlations among the data points into
account. Following the idea in [1], we build a k -nearest-
neighbor graph for each data point to achieve such a
similarity preservation, which is the third goal in the
proposed objective function.

3.3 Pseudo code of the proposed JGSC By
integrating the three goals aforementioned together, we
obtain the objective function for reconstructing data as

min
S

‖X−BS‖2F + αtr(SLST ) + λ‖S‖2,1(3.4)

Algorithm 1 : The proposed JGSC algorithm.

Input: X ∈ R
d×n

repeat

Learn the bases B from X; See Sec. 3.1.
Generate S of X by Algorithm 2; See Sec. 3.2

until satisfying the predefined conditions

where α ≥ 0 and λ ≥ 0 are the tuning parameters, and
L is a Laplacian matrix obtained by the built k -nearest-
neighbor graph.

In Eq.3.4, the first two terms are designed to address
the third problem of MCFS discussed in Section 1,
i.e., simultaneously considering the regression process
(via the first term) and manifold learning (via the
second term) to perform feature selection. The last
two terms are designed to handle the first two problems
of MCFS, i.e., generating the row sparsity (via the
ℓ2,1-norm regularizer), taking the possible correlations
among all the features (via the ℓ2,1-norm regularizer)
and the possible correlations among all data points (via
the second term) into account.

By integrating Eq.3.1 into Eq.3.4, the overall objec-
tive function of JGSC is defined as

min
{B,S}

‖X−BS‖2F+αtr(SLST )+λ‖S‖2,1, s.t.

n
∑

i=1

d
∑

j=1

b2i,j ≤ 1

(3.5)
Actually, the optimization issue in Eq.3.5 is non-

convex on both B and S, but is convex for each one
while fixing the other one. Thus we can optimize S (or
B) by fixing B (or S). We repeat the two steps until the
pre-defined conditions are satisfied, e.g., the difference
of the values of the objective function in Eq.3.4 between
two sequential iterations reaches a given threshold. We
summarize the pseudo code of the proposed JGSC in
Algorithm 1.

3.4 Features selection After the calculation dis-
cussed in Section 3.3, we obtain a new representation S

of the data X. Due to the ℓ2,1-norm regularizer, many
rows in S shrink to zeros. This indicates that the corre-
sponding features (i.e., these zero rows) are not impor-
tant to the new representation. To achieve efficiency
and effectiveness, we may remove them to perform fea-
ture selection. More specifically, we first rank the rows
in S in descending order according to the ℓ2-norm val-
ues of each individual row ‖sj‖2, j = 1, . . . ,m, and then
select top-ranked rows as the results of feature selection.

4 Optimization

The objective function in Eq.3.4 is convex, so it admits
the global optimum. However, ‖S‖2,1 in Eq.3.4 is



Algorithm 2 : The TOSC algorithm.

Input: X ∈ R
d×n,B ∈ R

d×m,L ∈ R
d×d, α and λ;

Initialize t = 0;
C0 as an m×m identity matrix;
repeat

Update St+1 in Eq.4.6 by Algorithm 3;
Update Ct+1 via Eq.4.7;
t = t+1;

until the objective function in Eq.3.4 converges

convex but non-smooth. In this section we discuss
an algorithm to optimize the objective function in
Eq.3.4 via calculating the gradient of ‖S‖2,1. Then we
prove that the proposed algorithm makes the objective
function in Eq.3.4 converge to its global optimum.

4.1 The proposed algorithm By setting the
derivative of the objective function in Eq.3.4 with re-
spect to S as zero, we obtain

(BTB+ λC)S+ S(αL) = BTX(4.6)

where C is a diagonal matrix with its ith diagonal
element calculated as

ci,i =
1

2‖(S)i‖2
(4.7)

where (M)j denotes the ith row of matrix M.
By observing Eq.4.6, we know that C depends on

the value of S; and S also depends on the value of C.
Hence it is impractical to compute S (or C) directly.
In this paper we design a novel iterative algorithm
to optimize Eq.4.6 by alternatively computing S and
C (i.e., an iTerative algOrithm to optimize S and C,
TOSC for short). We first summarize the details in
Algorithm 2, and then prove that in each iteration
the updated S and C make the value of the objective
function in Eq.3.4 decrease. As shown in Algorithm
2, in each iteration, given a fixed C, the value of S is
first calculated using Eq.4.6. Then C is updated using
Eq.4.7. The iteration process is repeated until there is
no change to the value of the objective function.

Given a fixed S, to solve C is easy according to
Eq.4.7. Given a fixed C, the optimization process for
solving S admits an analytical solution. We denote the
proposed Analytical Solution to Solve S with a fixed C

as the AS3 algorithm1. We describe the details of the

1We should state that the equation to optimize S with fixed
C in Eq.4.7 is called Sylvester equation, which can be solved by
directly employing Matlab function lyap or software LAPACK
with complexity O(n3), n is sample size. Such a high complexity
makes Sylvester equation unfeasible in large-scale datasets. In

Algorithm 3 : The AS3 algorithm.

Input: X,B,L,C, α and λ;
Obtain P and R in Eq.4.8 by Cholesky factorization;
Conduct SVD on P and R;
Obtain Σ̃1 , Σ̃2, S̃ and Q according to Eq.4.12;
Obtain S̃i,j according to Eq.4.13;
Obtain S according to Eq.4.15;

proposed algorithm as follows and give its pseudo code
in Algorithm 3.

Since both BTB + λC and αL are systemic and
positive-definite, we perform Cholesky factorization on
them respectively to produce lower triangular matrices
P and R to satisfy the equations:

BTB+ λC = PT ×P

αL = R×RT(4.8)

By performing eigen-decomposition on P and R respec-
tively, we denote

P = U1Σ1V
T
1

R = U2Σ2V
T
2

(4.9)

where both U and V are unitary matrices. Then Eq.4.6
can be expressed as

V1Σ
T
1 Σ1V

T
1 S+ SU2Σ2Σ

T
2 U

T
2 = BTX(4.10)

By multiplying VT
1 and U2 from the left and the right

on both sides of Eq.4.10 respectively, we obtain

ΣT
1 Σ1V

T
1 SU2 +VT

1 SU2Σ2Σ
T
2 = VT

1 B
TXU2(4.11)

By denoting

ΣT
1 Σ1 = Σ̃1 = diag(σ

(1)
1 , ..., σ

(d)
1 )

Σ2Σ
T
2 = Σ̃2 = diag(σ

(1)
2 , ..., σ

(m)
2 )

VT
1 SU2 = S̃

−VT
1 B

TXU2 = Q(4.12)

and denoting “diag” as the diagonal operation, Eq.4.11
becomes

Σ̃1S̃+ S̃Σ̃2 = Q(4.13)

Thus the elements in S̃ can be obtained by

S̃i,j =
Q

σi
1 + σ

j
2

(4.14)

After getting the S̃, we can obtain the optimal S as

S = V1S̃U
T
2(4.15)

this paper the proposed AS3 algorithm solves Sylvester equation
by an analytical solution with complexity is min(n2d, d3), d is the
dimensionality. This makes Sylvester equation to be applied in
large-scale datasets.



4.2 Convergence In this subsection we show that
the proposed Algorithm 2 makes the value of the
objective function in Eq.3.4 monotonically decrease via
Theorem 4.1 below. We first give a lemma as follows.

Lemma 4.1. For any positive values ai and bi, i =
1, ...,m, the following holds:

m
∑

i=1

b2i
ai

≤
m
∑

i=1

a2

i

ai
⇐⇒

m
∑

i=1

(bi+ai)(bi−ai)
ai

≤ 0

⇐⇒
m
∑

i=1

(bi − ai) ≤ 0 ⇐⇒
m
∑

i=1

bi ≤
m
∑

i=1

ai(4.16)

Theorem 4.1. With the Lemma 4.1 and following the
proof in the literature [10], we can easily prove that in
each iteration Algorithm 2 monotonically decreases the
objective function value in Eq.3.4.

4.3 Discussion As mentioned in Section 1, the ob-
jective function in the algorithms (such as MRSF, GSC
and our JGSC) employ least square loss function, but
use different regularizers. For example, MRSF utilizes
ℓ2,1-norm regularizer, GSC uses ℓ1-norm regularizer,
and the proposed JGSC utilizes two regularizers, i.e.,
ℓ2,1-norm and Laplacian matrix of data respectively.

The algorithm STDR [18] employs same regular-
izers as our JGSC but utilizes robust loss function2.
Moreover, STDR learns the bases of training data from
external data while JGSC obtains them from train-
ing data because STDR assumes learning with limited
training data and JGSC does not make such assump-
tion. More specifically, STDR belongs to self-taught
learning but JGSC is unsupervised learning. The most
distinguished thing between STDR and JGSC is the so-
lution of Sylvester equation with low complexity. STDR
employs Matlab function lyap but our JGSC proposes
an analytical solution. Details please see Footnote 1.

5 Experiment analysis

In order to evaluate the performance of the proposed
JGSC model, we compare it with several state-of-the-art
dimensionality reduction algorithms in terms of classi-
fication accuracy on three types of real applications, in-
cluding text mining (with datasets PCMAC and BASE-
HOCK), face recognition (AR10P and PIE10P) and
bioinformatics (TOX and SMK-CAN).

2In our experiments we found no significant difference between
robust loss function and least square loss function in our proposed
framework. We did not report the results in the experimental part
because we do not focus on this in this paper.

5.1 Experiment setup The used
datasets are downloaded from
http://featureselection.asu.edu/datasets.php and
http://www.zjucadcg.cn/dengcai/Data/data.html re-
spectively. The number of the features in the used
datasets varies from 2,420 to 19,993.

We compare JGSC with the following algorithms,
“Original” (i.e., using all original features to perform
kNN classification), MCFS [2], MRSF [15], GSC [3,
16], and UDFS [13], which is an embedded approach
via taking the ℓ2,1-norm regularizer and discriminative
ability into account.

In our experiments, we set the values of param-
eters for the comparison algorithms according to the
instructions in their papers. We perform line search
with 4 levels for each parameter in our JGSC. In all
algorithms, the number of left dimensionality is kept
as {10%, 20%, ..., 80%} of those of the original ones for
each dataset. The number of k in the kNN classifier is
set as 5. Given a reduced dataset, we perform 10-fold
cross validation with the kNN algorithm. The average
results among ten runs and the corresponding standard
deviation are reported in this paper.

In the following subsections, we first evaluate con-
vergence rate of the proposed JGSC on all datasets, for
evaluating the efficiency of our proposed optimization
Algorithm 2, in terms of the objective function value in
each iteration. Then we test the parameters’ sensitiv-
ity of the proposed JGSC according to the variation of
the parameters, such as λ and α in Eq.3.4, aiming at
achieving the best performance of the proposed JGSC.
Finally, we compare JGSC with the comparison algo-
rithms in terms of average classification accuracy (ACA
for short).

Given a data point xi, let yi and ŷi be the derived
labels via a classification algorithm and the true label
respectively. The ACA is defined as follows:

ACA =

∑n

i=1 δ(yi, ŷi)

n
(5.17)

where n is the sample size, δ(x, y) = 1 if x = y, and
δ(x, y) = 0, otherwise. The larger the performance on
ACA is, the better the method.

5.2 Convergence rate In this subsection, we want
to know the convergence rate of Algorithm 2, so we
report some of the results in Fig.3 due to lack of space.
Fig.3 shows the results of the objective function value
while fixing the value of α and varying λ.

We can observe in Fig.3: 1) the objective function
value rapidly decreases at the first few iterations; and
2) the objective function value becomes stable after
about 30 iterations (or even less than 20 iterations in
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(c) TOX-171

10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

5

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

 

 

λ = 0.5
λ = 2
λ = 5
λ = 10
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Figure 3: An illustration on convergence rate of Algorithm 2 for solving the proposed objective function with
fixed α.

many cases) on all datasets. This confirms that the fast
convergence rate of Algorithm 2 to solve the proposed
optimization problem in Eq.3.4. Similar results are
observed for other α and λ values.

5.3 Parameters’ sensitivity In this subsection we
study the classification performance of JGSC with re-
spect to the variations of different parameters’ settings,
i.e., λ and α in Eq.3.4. Due to the page limit, we only
report the results on the case with 50% dimensionality
left from the original dimensionality. The other cases
have similar results. The experimental results are pre-
sented in Fig. 4.

As can be seen in Fig. 4, JGSC is sensitive to
the parameter setting. According to the experimental
results, the average maximal improvement of the best
results to the worst ones in the six datasets varies
from 17.76% to 85.38%. Moreover, to obtain the best
classification performance, different datasets need to set
parameters differently.

5.4 Classification results by all algorithms The
classification performance ACA by all algorithms is
presented in Fig. 5. The horizontal axis represents the
number of the dimensions left after performing feature

selection, and the values vary from 10% to 80%. The
vertical axis describes the value of ACA.

According to Fig.5, we have the following observa-
tions: 1) The proposed JGSC achieves the best perfor-
mance. This is obviously because the proposed JGSC
overcomes all three drawbacks of MCFS, but each of the
rival algorithms only solves part of the problems. More-
over, JGSC outperforms UDFS, which also considers
two constraints (i.e., discriminative ability and mani-
fold learning with the ℓ2,1-norm regularizer) to perform
feature selection. 2) The results of “Original” are better
than the results of some dimensionality reduction algo-
rithms on some datasets. However, these dimensionality
reduction algorithms are more efficient due to their sig-
nificantly reduced dimensionality of the datasets. Thus
it is crucial for conducting dimensionality reduction on
high-dimensional data. This is consistent with the con-
clusion in [2, 4, 13]. 3) Although both MCFS and GSC
lead to the element sparsity, the classification perfor-
mance of MCFS is worse than GSC. This occurs because
GSC simultaneously performs manifold learning and re-
gression, but MCFS sequentially performs them. This
demonstrates that simultaneously performing manifold
learning and regression is better. 4) MRSF outperforms
MCFS. That is because MRSF has more advantages
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Figure 4: ACA results on different datasets with different parameters.

than MCFS by replacing the ℓ1-norm regularizer with
the ℓ2,1-norm regularizer, such as considering the corre-
lations among the spectral features and leading to the
row sparsity. 5) The literatures (e.g., [2, 13]) have shown
that their methods (e.g., UDFS and MCFS) outperform
the popular methods, such as LPP [5], LScore [4], so we
can make the conclusion that JGSC also outperforms
LPP and LScore.

6 Conclusion

In this paper, we propose a novel feature selection
method to deal with high-dimensional data. Moreover,
we have shown that our method theoretically makes
the proposed objective function converge to its global
optimum. Furthermore, the experimental results have
shown the effectiveness of the proposed method. In
the future we will extend the proposed method into its
kernel edition to deal with more complex cases, such as
datasets with limited data points.
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