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ABSTRACT 
This paper proposes a novel framework for mining regional co-
location patterns with respect to sets of continuous variables in 
spatial datasets. The goal is to identify regions in which multiple 
continuous variables with values from the wings of their statistical 
distribution are co-located. A co-location mining framework is 
introduced that operates in the continuous domain and which 
views regional co-location mining as a clustering problem in 
which an externally given fitness function has to be maximized. 
Interestingness of co-location patterns is assessed using products 
of z-scores of the relevant continuous variables. The proposed 
framework is evaluated by a domain expert in a case study that 
analyzes Arsenic contamination in Texas water wells centering on 
regional co-location patterns. Our approach is able to identify 
known and unknown regional co-location patterns, and different 
sets of algorithm parameters lead to the characterization of 
Arsenic distribution at different scales. Moreover, inconsistent co-
location sets are found for regions in South Texas and West Texas 
that can be clearly attributed to geological differences in the two 
regions, emphasizing the need for regional co-location mining 
techniques. Moreover, a novel, prototype-based region discovery 
algorithm named CLEVER is introduced that uses randomized 
hill climbing, and searches a variable number of clusters and 
larger neighborhood sizes. 

Categories and Subject Descriptors 
I.5.3 [Clustering]: Algorithms H.2.8 [Database  
Management]: Database Applications – data mining, 
spatial databases and GIS. 

General Terms  
Algorithms, Experimentation. 

Keywords 
spatial data mining, regional co-location mining, regional 
knowledge discovery, clustering, finding associations between 

continuous variables. 

1.  INTRODUCTION1 
As the ability to capture and store information expands, spatial 
context has emerged as an increasingly important part of 
discovering knowledge in large amounts of data. The motivation 
for regional knowledge discovery is driven by the fact that global 
statistics seldom provide useful insight and that most relationships 
in spatial datasets are geographically regional. The need for robust 
tools capable of extracting knowledge from large spatial datasets 
is critical for advancing scientific research in areas ranging from 
global climate change and its effect on regional ecosystems, to 
environmental risk assessment and for choosing appropriate 
environmental policies. 

 

Figure 1. Regional co-location patterns involving 
chemical concentrations in Texas wells. 

Discovery of co-location patterns, a co-occurrence of different 
types of features at approximately the same locations, is an 
important example of a data mining task with many practical 
applications. Most existing research has concentrated on 
discovering global co-location patterns with respect to categorical 
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features, which identify sets of classes whose instances co-occur 
in geographical proximity with high frequency. A classic example 
[23] of such a relationship is the co-location of two types of 
animals, the Nile crocodile and the Egyptian plover, which is 
traced by domain scientists to their symbiotic relationship. 
However, not all real-life problems are susceptive to the 
categorical formulation. In a broad range of problems the spatial 
dataset is given in the form of continuous variables. Formulating 
such a problem in terms of categorical, discrete features is not 
natural. In this paper, we are interested in identifying regions 
where extreme values of different continuous variables are present 
in geographical proximity. Figure 1 illustrates what we are trying 
to accomplish for a dataset that contains concentrations of 
chemicals in different wells in Texas. The goal is to find regions 
(sets of wells that cover a contiguous area) in which 
concentrations of multiple chemicals take extreme values. The 
figure shows the result of running a regional co-location mining 
algorithm on such a dataset; it identifies five regions with five 
different patterns of of associations between high levels of arsenic 
with other chemical concentrations. For example, one such region 
is identified in West Texas that contains high concentrations of 
Arsenic (As↑), Molybdenum (Mo↑), Vanadium (V↑) and 
Selenium (Se↑).  

In this paper, we propose and evaluate a novel framework for 
discovering co-location regions and their associated patterns in a 
highly automated fashion in continuous datasets without the need 
for discretization. The proposed framework treats region 
discovery as a clustering problem in which clusters have to be 
obtained that maximize an externally given fitness function. The 
fitness function combines contributions of interestingness from 
each individual cluster and can be customized by a domain expert. 
The framework allows the actual clustering task to be performed 
by a variety of different algorithms.  

Related Work. The relevant research spans three areas:  

Hot Spot Discovery in Spatial Statistics. In [4] the detection of 
hot spots using a variable resolution approach was investigated in 
order to minimize the effects of spatial superposition. The 
definition of hot spots was extended in [18] using circular zones 
for multiple variables. [13, 21] propose a popular method to find 
hot spots in spatial datasets relying on the G* Statistic. The G* 
Statistic detects local pockets of spatial association. The value of 
G* depends on an a priori given scale of the packets and is 
calculated for each object individually. Visualizing the results of 
G* calculations graphically reveals hot spots and cold spots. 
However, it should be noted that such aggregates are not formally 
defined clusters, as the G*-approach has no built-in clustering 
capabilities. 

Spatial Co-Location Pattern Discovery.  Shekhar et al. discuss 
several interesting approaches to mine co-location patterns, which 
are subsets of Boolean spatial features whose instances are 
frequently located together in close proximity [23, 28, 29]. Huang 
et al. proposed co-location mining involving rare events [14]. In 
[15], Huang and Zhang explored the relations between clustering 
and co-location mining. Instead of clustering spatial objects, the 
features of spatial objects are clustered using a proximity function 
that is designed to find co-locations. However, it should be 
stressed that all the approaches mention above are restricted to 
categorical datasets and center on finding global co-location 
patterns, whose scope is the whole dataset. Our approach, on the 

other hand, as we will explain later in more detail, centers on 
discovering regions and regional co-location patterns whose scope 
is a subspace of the whole dataset. Localized association rule 
mining [2] takes a similar approach to ours, but it discovers 
association rules that hold in local clustered basket data. Thus, 
their discovery is limited to non-spatial basket datasets. 

Finding Associations between Continuous Attributes. Most of 
the approaches to mine association rules in datasets containing 
continuous attributes use discretization. In [26], numerical 
attributes are discretized and then adjacent partitions are 
combined as necessary. This leads to information loss and can 
generate spurious rules. Aumann et al. [3] introduce numerical 
association rules that support statistical predicates for continuous 
attributes, such as variance, and algorithms that mine such rules. 
In [5], rank correlation is used to mine associations between 
numerical attributes. Basically, continuous attributes are 
transformed to ordinal attributes, and a method is proposed to find 
sets of numerical attributes with high attribute value associations. 
Achtert [1] and Jaroszewicz [16] propose different methods for 
deriving equations describing relationships between continuous 
variables in datasets.  

Contributions.  
1. A novel measure of interestingness and a regional co-

location mining framework is proposed that identifies places 
in which continuous variables taking values from the wings 
of their respective distributions co-occur. The proposed 
method directly operates in the continuous space without any 
need for discretization.  

2. Techniques are proposed that find regional and not global 
associations between continuous variables. One particular 
challenge of this task is that the employed algorithms need to 
search for both interesting places and interesting patterns at 
the same time.  

3. We apply our framework to the problem of identifying 
regional co-location patterns with respect to high and low 
Arsenic concentrations in Texas water supply. A thorough 
analysis of this case study is presented including comparison 
of results obtained using different parameter settings and an 
assessment of the found patterns by a domain expert is given.   

4. As by product, a novel prototype-based clustering algorithm 
named CLEVER is introduced which employs randomized 
hill climbing, allows for a variable number of clusters, and 
searches larger neighborhood sizes to battle premature 
convergence. 

2. REGION DISCOVERY FRAMEWORK 
As mentioned in the previous section, we are interested in the 
development of frameworks and algorithms that find interesting 
regions in spatial and spatio-temporal datasets. The presented 
framework has originally been introduced in [10, 11], and will be 
generalized in this section to mine datasets that contain multiple 
continuous variables. A novel measure of interestingness for 
mining co-locations involving continuous attributes that is 
embedded into this framework will be introduced in Section 3.  

Our work assumes that region discovery algorithms we develop 
operate on datasets containing objects o1,..,on: O={o1,..,on}⊂F 
where F is feature space of the dataset and the objects belonging 
to O are tuples that are characterized by attributes S∪N, where: 

S={S1,…,Sp } is a set of spatial and temporal  attributes.  



N= {A1,…,Aq} is a set of other, non-geo-referenced attributes. 

Dom(S) and Dom(N) describe the possible values the attributes in 
S and N can take; that is, each object o∈O is characterized by a 
single tuple that  takes values in F=Dom(S)×Dom(N). Datasets 
that have the structure we just introduced are called geo-
referenced datasets in the following, and O is assumed to be a 
geo-referenced dataset throughout this paper. The purpose of the 
framework is to find interesting places, called regions in the 
following, in geo-referenced datasets. Regions are assumed to be 
contiguous areas in the spatial-temporal space Dom(S) which is a 
subspace of F. A region has an extension which is the set of 
objects in O it contains and an intension that describes the area it 
occupies.   For example, the intension of the region with pattern 
As↑B↑Cl-↑TDS↑ in Fig. 1 is South Texas, and its extension 
includes the water wells in O that are located in this region.  

The region discovery framework employs additive, plug-in fitness 
functions q that capture what kind of regions are of interest to the 
domain expert; moreover, fitness functions are assumed to have 
the following structure:  

        ��
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where i(c) denotes the interestingness of region c—a quantity to 
reflect a degree to which regions are “newsworthy". It is important 
to find regions at different levels of granularity. The amount of 
premium put on the size of the extension of a region (‘|c|’ denotes 
the cardinality of c) is controlled by the value of parameter �. A 
region reward is proportional to its interestingness, but rewards 
increase with region size non-linearly (�>1) to encourage merging 
neighboring regions with similar characteristics.  

Given a geo-referenced dataset O, there are many possible 
algorithms to seek interesting regions in O with respect to a plug-
in fitness function q, subject to the following specification: 

Given: O, q, and possibly other input parameters 
Find: X={r1,...,rk} that maximize q({r1,...,rk}) subject to the 
following constraints: 
(1) ri⊆O (i=1,…,k) 
(2) r1 , r2, …, rk are contiguous in Dom(S) 
(3) ri ∩rj=∅ (i≠j) 

So far, nine region discovery algorithms (four representative-
based, three agglomerative, one divisive, and one density-based 
region discovery algorithm) have already been designed and 
implemented in our past work [6, 9, 12]. A novel unpublished, 
prototype-based clustering algorithm named CLEVER will be 
later used to evaluate the presented co-location mining approach; 
therefore, CLEVER will be briefly described in this section.  

Prototype-based clustering algorithms construct clusters by 
seeking a set of “optimal” representatives; clusters are then 
created by assigning objects in the dataset to the closest 
representative. Popular prototype-based clustering algorithms are 
K-Medoids/PAM [17] and K-means [19]. CLEVER (CLustEring 
using representatiVEs and Randomized hill climbing) seeks to 
maximize the fitness function q(X). The algorithm (see Figure 2) 
starts with randomly selecting k’ representatives from O—k’ is a 
parameter of the algorithm. It samples p solutions in the 
neighborhood of the current solution; unlike CLARANS [20] 
which picks the first best neighbor as the next solution, CLEVER 
evaluates all the p neighbors and picks the best among them. 

Neighboring solutions of the current solution are created using 
three operators: ‘Insert’ – inserts a new representative into the 
current solution, ‘Delete’ – deletes a representative from the 
current solution and ‘Replace’ – replaces a representative with a 
non-representative. Each operator has a certain selection 
probability and representatives to be manipulated are chosen at 
random. The algorithm also allows for larger neighborhood sizes; 
the experiments in this paper were run for neighborhood size 3: in 
this case, solutions that are sampled are generated by applying 
three randomly selected operators to the current solution. 
Moreover, to battle premature convergence, CLEVER re-samples 
p’>p solutions before terminating. Figure 2 gives the pseudo-code 
for CLEVER.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

By adding and deleting representatives and by using 
neighborhood size of larger than one, CLEVER samples from 
much larger neighborhood of the current solution. This 
characteristic distinguishes CLEVER from other prototype-based 
clustering algorithms.   

3. A MEASURE OF INTERESTINGNESS 
FOR REGIONAL CO-LOCATION 
PATTERNS 

In the following a function i is introduced that measures the 
interestingness of co-location patterns for a region c. The pattern 
A↑ denotes that attribute A has high values and the pattern A↓ 
indicates that attribute A has low values. For example, the pattern 
{A↑, B↓, D↑} describes that high values of A are co-located with 
low values of B and high values of D.   

Let  
O be a dataset 
c⊆O be  a region  
o∈O be an object in the dataset O  

CLEVER 
Inputs: k’, neighborhood-size, p, p’  

Outputs: regions, region representatives, number of 
representatives (k), fitness, interestingness,… 

Algorithm: 
1. Create a current solution by randomly 

selecting k’ representatives from O. 
2. Create p neighbors of the current solution 

randomly using the given neighborhood 
definition. 

3. If the best neighbor improves the fitness, it 
becomes the current solution. Go back to step 
2. 

4. If the fitness does not improve, the solution 
neighborhood is re-sampled by generating p’ 
more neighbors. If re-sampling does not 
improve the current solution, terminate; 
otherwise, go back to step 2 replacing the   
current solution by the best solution found by 
re-sampling. 

Figure 2. Pseudo-code of algorithm CLEVER. 



N={A1,…,Aq} be the set of non-geo-referenced continuous 
attributes in the dataset O 
Q={A1↑, A1↓,…, Aq↑, Aq↓} be the set of possible base co-
location patterns 
B⊆Q be a set of co-location patterns 
P(B) be a predicate over B that restricts the co-location sets 
considered2 
z-score(A,o) be the z-score3 of object o’s value of attribute A 
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z(p,o) is called the z-value of base pattern p∈Q for object o in the 
following. The interestingness of an object o with respect to a co-
location set B⊆Q is measured as the product of the z-values of the 
patterns in the set B. It is defined as follows: 

               ∏
∈

=
Bp

opzoBi ),(),(                               (4)                            

When using the above formula, the more extreme the z-values of 
the involved objects are, the bigger the above product becomes—
moreover, if the value of a continuous variable does not match its 
suggested pattern in B its z-value is 0 and the interestingness is 
therefore 0 as well. Although this approach compresses multiple 
z-values into a single value, the product of z-values still allows for 
meaningful statistical interpretation using the geometric mean; for 
example, if the geometric mean of the z-values of the patterns in 
set B is 1.5, this suggests that values of the involved variables are 
at an average 1.5 standard deviations off their mean value.  

In general, the interestingness of a region can be straightforwardly 
computed by taking the average interestingness of the objects 
belonging to a region. However, using this approach some very 
large products might dominate interestingness computations. For 
some domain experts just finding a few objects with very high 
products in close proximity of each other is important, even if the 
remaining objects in the region deviate from the observed pattern. 
In other cases, domain experts are more interested in patterns with 
highly regular products so that all or almost all objects in a region 
share this pattern, and are less interested in a few very high 
products. To satisfy the needs of both groups, our approach 
additionally considers purity when computing region 
interestingness, where purity(B,c) denotes the percentage of 
objects o∈c for which i(B,o)>0. In summary, the interestingness 
of a region c with respect to a co-location set B, denoted by 
ϕ(B,c), is computed as follows:  

                                                           
2 e.g. P(B)=|B|<5 (“only co-locations sets with cardinalities 2, 3 

and 4 are considered”) or P(B)=As↑∈B (“only look for patterns 
involving high arsenic”) 

3 The z-score of value a for attribute A is: (a-µA)/σA where µA is 
the mean value and σA is standard deviation of attribute A. 
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The parameter θ∈[0,∞) controls the importance attached to purity 
in interestingness computations; θ=0 implies that purity is 
ignored, and using larger values increases the importance of 
purity.  

The un-normalized, raw interestingness of a region c, denoted by 
κS(c) is measured as the maximum interestingness ϕ(B,c) 
observed over all subsets B⊆Q with cardinalities 2 and higher 
considered, subject to the restrictions imposed in predicate P. 

             ( ) ( ) ),(max &1& cBc BPBQBs ϕκ >⊂=         (6)                     

The normalized4 interestingness of a region c, i(c), is defined as 
follows: 

                  ( ) ( )( ) ( )
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The threshold parameter th≥0 is introduced to weed out regions c 
with κS(c) close to 0. Moreover, η is a scaling factor that allows 
modifying raw interestingness super-linearly by choosing η>1, 
and sub-linearly by choosing η<1.  

Finally, as discussed earlier, the reward of the region c is 
computed as follows: 

                     
β
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Within our present focus, i(c) must encapsulate a degree to which 
extreme values of variables are present together in region c. The 
region size is denoted by |c|, and the quantity i(c)∗|c|β can be 
considered as a “reward’’ given to a region c; we seek X such that 
the sum of rewards over all of its constituent regions is 
maximized.  

Example. Table 1 shows the extension of an example region c, 
containing four objects with the indicated values for attributes C 
and D,  and intermediate values used in calculating i(B,o) for 
pattern B={C�, D�}. Column 3 and 4 display the z-values for C� 
and D� respectively that are calculated using formulas (2) and (3). 
Column 6 displays i(B,o) as per formula (4). We can see that 
purity of pattern B is 0.5. Assuming �=1, using formula (5) we 
obtain: �(B,c)=((0.24+0.24)/4)*0.5=0.06.   
It is not feasible to employ pruning using maximum valued co-
location sets of size m when computing co-location sets of size  
(m+1), because the interestingness function i is not anti- 
monotone. Hence when computing i(c) all legal subsets B⊆Q with 

                                                           
4 One assumption underlying our framework is that clusters that 

are not interesting for a domain expert receive a reward of 0. 
The framework treats objects belong to clusters that receive no 
reward as outliers. Therefore, fitness functions are usually 
normalized and scaled in collaboration with domain experts 
based on what the domain expert finds “newsworthy”.  



Table 1.  Interestingness computations for a region 

ID C 
z-score 

D 
 z-score C� D� i(B, o) 

1 0.43 -0.56 0.43 0.56 0.24 

2 0.42 -0.56  0.42 0.56 0.24 

3 -0.06 0.13 0 0 0 

4 -0.57 -0.22 0 0.22 0 

 

cardinality 2 and higher have to be considered. We explain why 
pruning is not feasible by giving a counter example. Let us 
assume that for a region c, B={A1�,A2�} is the binary  pattern 
with the highest interestingness; however, the highest 
interestingness pattern of size three B’ may not necessarily 
contain B as the subset. Let’s assume, that all objects with 
positive z-scores for A1 and A2 in region c have zero z-scores for 
remaining attributes A3,…,A5 and that there is at least one object 
in region c that has zero z-scores for A1 and A2 and positive z-
scores for remaining attributes. All the patterns of size 3 having B 
as a subset will therefore have interestingness 0, but 
{A3�,A4�,A5�}’s interestingness is above 0. Therefore, the 
maximum interestingness pattern of size 3 does not contain 
{A1�,A2�} as a subset for region c. 

In general, when the co-location framework is used without 
imposing any restrictions on co-location sets considered a large 
number of co-location sets (O(2|N|)) has to be evaluated. This 
leads to a very slow performance of the co-location mining 
algorithm. Moreover, when a large number of disjoint co-location 
sets are searched in parallel, the crudeness of the maximum 
operation in formula 6 results that only the most interesting 
pattern will be reported, and other interesting patterns will be 
ignored. 

Therefore, to alleviate this problem, when the framework is used 
in practice for larger attribute sets, it is mandatory to restrict 
pattern exploration by imposing constraints on co-location sets. A 
promising approach is to use seeded patterns; the idea here is to 
request that co-location sets have to contain certain patterns.  For 
example, in the experiments that will be discussed in the next 
section, only co-location sets that contain either As� or As↓ are 
considered, restricting the number of patterns significantly. In the 
seeded approach, instead of finding all the patterns in a single run, 
we run the co-location mining algorithm multiple times with 
different seeds. On the positive side, this allows for a more 
focused and quicker discovery of co-location patterns; on the 
negative side, once seeded exploration is used, results of multiple 
runs have to be analyzed and integrated; posing a new challenge 
for co-location mining that will be revisited in Section 4.   

4. CASE STUDY: FINDING REGIONAL 
CO-LOCATION PATTERNS WITH 
RESPECT TO ARSENIC IN THE TEXAS 
WATER SUPPLY 

We evaluated our framework in a real world case study to 
discover regional co-location patterns involving Arsenic and other 
chemicals in the Texas water supply.   

Dataset Description and Preprocessing. Datasets used in this 
case study are created using the Groundwater database (GWDB) 
maintained by the Texas Water Development Board [27]. Long 
term exposure to low level concentrations of Arsenic causes 
cancer [23]. Figure 3 shows various aquifers and Arsenic 
pollution sites on the map of Texas reported by Texas 
Commission on Environmental Quality (TCEQ). Understanding 
factors that cause Arsenic water pollution is of great interest to 
hydrologists. 

 
Figure 3. Arsenic pollution map (source TCEQ). 

Currently the GWDB has water quality data for 105,814 wells in 
Texas that have been collected over last 25 years. The database 
has to be cleaned of duplicate, missing and/or inconsistent values. 
As we are particularly interested in Arsenic, we have considered 
only those wells where there is at least one sample for Arsenic 
concentration. When multiple samples exist for a well, we take the 
average value.  For each non-spatial attribute, we calculate z-
scores and then calculate z(A↑,o) and z(A↓,o) using formulas (2) 
and (3). The particular dataset we used in the evaluation has 3 
spatial attributes: longitude, latitude and aquifer, and 10 non-
spatial attributes: Arsenic (As), Molybdenum (Mo), Vanadium 
(V), Boron (B), Fluoride (F-), Silica (SiO2), Chloride (Cl-) and 
Sulfate (SO4

2-) to which Total Dissolved Solids (TDS) and Well 
Depth (WD) are added. Those particular elements are chosen 
among the number of chemical elements available because of 
similar geochemical behavior—that is, travel together—(Mo, V) 
[24], or because those parameters could point out mobilizing 
mechanisms (Cl-, SO4

2-, TDS, well depth), or because they could 
suggest the ultimate origin of Arsenic (F-, B, SiO2). The created 
dataset contains average values of the 10 non-spatial attributes 



among 1,653 wells and no null values. Here onwards we call this 
dataset Arsenic_10_avg.  We also created other datasets from 
GWDB that are available on the web [8]. 

Table 2. Fitness function parameters used. 

All experiments: P(B) = (As↑∈B or As↓∈B) and |B|<5; 
th=0, η=1. 

Experiment 1 β = 1.3, �=1.0 

Experiment 2 β = 1.5, �=1.0 

Experiment 3 β = 2.0, �=1.0 

Experiment 4 β = 1.5, �=5.0 

 
Experimental Results. We have tested our regional co-location 
mining framework by applying the algorithm CLEVER using the 
fitness function described in Section 3 to the above dataset.  
Because we are interested in discovering co-location patterns with 
respect to Arsenic, only co-location sets that contain As↑ or 
contain As↓ are considered. Table 2 summarizes the fitness 
function parameters used in the experiments. As the value of 
parameter � affects region size, we have conducted experiments 
using three different values for this parameter (Experiments 1-3); 
maximum co-location set size is restricted to four in these 

experiments. The parameter � determines importance of purity 
when evaluating regions. To examine the impact of parameter �, 
we design Experiment 4 using a very high � value but otherwise 
the parameters are identical to those of Experiment 2.  When 
using our methodology, we observed that domain experts are 
interested in both top ranked regions with respect to 
interestingness and reward. While ranking using interestingness 
highlights local outliers, ranking using reward identifies larger 
regions with more general patterns. Table 3 gives details of top 5 
regions ranked by interestingness, and Table 4 visualizes these 
regions on the map of Texas. Table 5 describes the top 5 co-
location regions ranked by reward, and Table 6 visualizes the top 
reward regions of experiments 2 and 4.  
The parameter � affects the size of the co-location regions 
discovered. As illustrated in Table 4, as � increases from 
Experiment 1 to Experiment 3, CLEVER finds fewer, larger 
regions. For example, for �=2.0, CLEVER finds only 4 quite large 
regions capturing almost global patterns. The algorithm is able to 
determine known areas of high Arsenic concentrations as well as 
interesting unknown features. High Arsenic is a well-known 
problem in the Southern Ogallala Aquifer in the Texas Panhandle 
(rectangular area in northern Texas) and in the Southern Gulf 
Coast Aquifer north of the Mexican border (see Figure 3 for the 
aquifer locations).  Figure 4 (Experiment 1) does recognize the 
higher Arsenic concentration areas in the Panhandle (ranks 1, 2, 

Table 3. Top 5 regions ranked by interestingness (as per formula 7). 

Exp. No. Top 5 
Regions 

Region 
Size i(c) Maximum Valued 

Pattern in the Region Purity 
Average Product for 

maximum valued 
pattern 

Exp. 1 

1 23 174.3191 As↑Mo↑V↑F-↑ 0.83 211.0179 

2 40 104.8576 As↑Mo↑V↑ 0.65 161.3194 

3 11 92.9385 As↑Mo↑V↑SO4
2-↑ 0.55 170.3873 

4 36 89.4068 As↑B↑Cl-↑TDS↑ 0.58 153.2687 

5 7 30.5775 As↑Mo↑Cl-↑TDS↑ 0.57 53.5107 

Exp. 2 

1 80 33.5978 As↑B↑Cl-↑TDS↑ 0.48 70.7322 

2 181 25.3314 As↑Mo↑V↑F-↑ 0.49 52.1020 

3 17 6.4819 As↑Mo↑Cl-↑TDS↑ 0.29 22.0383 

4 23 6.4819 As↓Cl-↑SO4
2-↑TDS↑ 0.78 8.1287 

5 10 3.4645 As↓B↑Cl-↑TDS↑ 0.4 8.6612 

Exp. 3 

1 238 5.3234 As↑B↑Cl-↑TDS↑ 0.22 23.9052 

2 833 1.8118 As↑Mo↑V↑F-↑ 0.16 11.4334 

3 152 0.3201 As↓SiO2↑WD↑ 0.53 0.6006 

4 432 0.1969 As↓TDS↓ 0.93 0.2122 

Exp. 4 

1 7 630.1098 As↑B↑Cl-↑TDS↑ 1.0 630.1097 

2 2 541.4630 As↑Mo↑V↑B↑ 1.0 541.4630 

3 1 466.8389 As↑B↑ SO4
2-↑TDS↑ 1.0 466.8389 

4 4 275.4066 As↑V↑ SO4
2-↑TDS↑ 1.0 275.4066 

5 3 234.7918 As↑Mo↑B↑SO4
2-↑ 1.0 234.7918 



and 3) associated with high Molybdenum and Vanadium, and is 
also able to discriminate among companion elements such as 
Fluoride (rank 1 region) or Sulfate (rank 3 region). The Gulf 
Coast area (rank 4 region) is characterized by a Boron marker, not 
present in the Panhandle, suggesting different Arsenic 
mobilization mechanisms. When the clusters are not as tightly 
defined (Figure 5 Experiment 2, larger �), they display the usually 
recognized extend of Arsenic contamination in Texas: Ogallala 
Aquifer, Southern Gulf Coast, and West Texas basins. Areas 
delimited by clusters of ranks 4 and 5 are characterized by low 
Arsenic but general chemistry similar to the high Arsenic cluster 
(rank 1). A further loosening of cluster definition (Figure 6 
Experiment 3) results in a display of the known, often described 
as sharp, boundaries between high and low Arsenic areas in the 
Ogallala Aquifer (ranks 2 and 4) and the Gulf Coast aquifer (ranks 
1 and 3). In addition, analysis of the Arsenic pollution map in 
Figure 3 and the algorithm results in Tables 3 and 4 clearly shows 
that our approach successfully identified all known regions with 
high Arsenic contamination. 

The results also identify some inconsistent co-location sets in 
Table 3, Exp. 2 (Figure 5): the rank 3 region located in the area of 
the Hueco-Mesilla Bolson Aquifer is characterized by the co-

location set {As↑Mo↑Cl-↑TDS↑} and the rank 5 region in the 
Gulf Coast Aquifer has co-location set {As↓B↑Cl-↑TDS↑}: As↑ 
is co-located with Cl-↑ and TDS↑ in one region but As↓ is co-
located with Cl-↑ and TDS↑ in the other region. As displayed in 
Figure 5, the rank 3 region  is in West Texas, whereas the rank 5 
region is in South Texas. Our regional co-location mining 
framework successfully identifies such inconsistent regional 
patterns. The inconsistent patterns are not a problem as they are 
regional and not global patterns. 

Moreover, as we increase the value of θ to 5, as expected, only 
co-location sets with purities above 90% are discovered. We also 
observe that, the region of {As↑Mo↑V↑F-↑}, the maximum 
reward regions of Exp. 2 (Figure 8) and the region of { As↑V↑F-

↑}, the second ranked reward region of Exp. 4 (Figure 9) occupy 
a similar spatial extent in North-West Texas. The first region is 
characterized by the co-location set {As↑Mo↑V↑F-↑}, whereas 
the second region has the co-location set {As↑V↑F-↑} associated 
with it and is slightly wider but significantly shorter than the first 
region. The dropping of Mo↑ from the co-location set increases 
purity  49% to 91%, but the average product drops from 

                                
 

 

Table 4. Top 5 regions ranked by interestingness 

 
Figure 4. Experiment 1. 
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Table 5. Top 5 regions ranked by reward (as per formula 8) 

Exp. No. 
Top 5 
Regi-
ons 

Region 
Size Region Reward Maximum Valued 

Pattern in the Region Purity 
Average Product for 

maximum valued 
pattern 

Exp. 1 

1 40 12684.6304 As↑Mo↑V↑ 0.65 161.3194 

2 23 10270.49 As↑Mo↑V↑F-↑ 0.83 211.0179 

3 36 9431.1264 As↑B↑Cl-↑TDS↑ 0.58 153.2687 

4 11 2098.970187 As↑Mo↑V↑SO4
2-↑ 0.55 170.3873 

5 507 578.8116 As↓TDS↓ 0.90 0.1968 

Exp. 2 

1 181 61684.5323 As↑Mo↑V↑F-↑ 0.49 52.1019 

2 80 24040.6315 As↑B↑Cl-↑TDS↑ 0.48 70.7322 

3 467 1884.8856 As↓TDS↓ 0.91 0.2047 

4 23 701.7072 As↓Cl-↑SO4
2-↑TDS↑ 0.78 8.1287 

5 189 587.9790 As↓F-↓ 0.78 0.2909 

Exp. 3 

1 833 1257170.945 As↑Mo↑V↑F-↑ 0.16 11.4334 

2 238 301539.908 As↑B↑Cl-↑TDS↑ 0.22 23.9052 

3 432 36754.1035 As↓TDS↓ 0.93 0.2122 

4 152 7394.7640 As↓SiO2↑WD↑ 0.53 0.6006 

Exp. 4 

1 7 11669.7965 As↑B↑Cl-↑TDS↑ 1.0 630.1097 

2 117 10407.3250 As↑V↑F-↑ 0.91 12.8550 

3 4 2203.2526 As↑V↑ SO4
2-↑TDS↑ 1.0 275.4066 

4 2 1531.4887 As↑Mo↑V↑B↑ 1.0 541.4630 

5 530 1426.9140 As↓TDS↓ 0.90 0.1939 

Table 6. Top 5 regions ranked by reward.  

 
Figure 8. Experiment 2. 

 
Figure 9. Experiment 4. 

52.1 to 12.8; this explains why the smaller co-location set is 
selected when  θ is 5—but the larger set is better when θ is 1. 
When θ is decreased to 0, surprisingly, the complete dataset is 
returned as a single region with the co-location set of 
{As↑Mo↑V↑F-↑} with an average product of 5.95 and a purity of 
only 0.086. Also, in the rank 3 reward region of the Exp. 2, the 

pattern {As↓TDS↓} is observed (Figure 8 in yellow); its z-value 
product is quite low, but its purity is 0.91 and the region contains 
467 wells. In general, when ranking regions by reward, region size 
becomes more important.  

Parameters and Multi-Run Analysis. When the co-location 
mining framework is used in the case study a lot of parameters 



have to be selected prior to running the mining algorithm. These 
parameters can be subdivided into fitness function parameters and 
region discovery algorithm parameters. As far as fitness function 
parameters are concerned, they are selected in close collaboration 
with domain experts and a selection is made based on what kind of 
patterns the domain expert is interested in� However, it should be 
noted that domain experts are usually interested in obtaining 
regions and their associated patterns taking multiple perspectives 
which necessitates running region discovery algorithms multiple 
times with different fitness function parameter settings. For 
example, in the particular application the domain expert is 
interested in finding very small, local regions containing few 
objects with very large z-value products that more resemble 
outliers for further scientific investigation. Moreover, results that 
characterize associations between Arsenic (or the absence of 
Arsenic) and other chemicals at the regional level are also 
desirable. Consequently, because it is important to identify regions 
at different levels of granularity it is necessary to conduct 
experiment for multiple values of parameter β. In summary, for 
analyzing co-location relationships in the Arsenic data it is 
necessary to run the region discovery algorithm multiple times; e.g. 
for 30 different fitness function parameter settings. This raises the 
question what can be done to facilitate the analysis of results from 
multiple runs. To address this problem, we are currently 
developing a multi-run analysis system that stores the obtained 
regions and their associated properties in a spatial database. 
Regions themselves can be represented as polygons5 which makes 
it easy to query them and to analyze relationships with respect to 
results of multiple runs automatically. For example, overlap 
between two regions can be computed as the size of the 
intersection of two region polygons. 

As far as region discovery algorithm parameters�CLEVER in our 
case�are concerned, it is desirable to select those automatically. In 
particular values for parameters k’, p, and p’ were chosen 
automatically based on results of short runs that were stopped after 
20 iterations. Basically, the results of short runs are used to 
determine the utility of different parameter settings for the three 
parameters relying on a simple reinforcement learning procedure 
and CLEVER is then run with the “best” parameter setting. Run 
time used and quality of solutions found (measured by q(X)) 
provided the environmental feedback for the reinforcement 
learning procedure; basically, q(X) is maximized but algorithm 
runtime had to be bounded.    

Performance. We also analyze the run-time needed to conduct the 
experiments. Our algorithms have been developed using an open 
source, Java-based data mining and machine learning framework 
Cougar^2, which is developed by our research group [7]. All the 
experiments are conducted on a machine with 1.3 GHz of 
processor speed and 4 GB of memory.  The machine runs RedHat 
Enterprise Linux 3 on ia64 architecture. Our analysis shows that 
the CLEVER algorithm allocated more than 98% of its resources 
to the following two tasks: creating clusters for a given set of 
representatives and for fitness computations. With maximum 
pattern length set to 3, around 76% of time is allocated to 
computing q(X) and it takes around 1-2 hours for the algorithm to 
terminate. With maximum pattern length set to 4, 90% of the 

                                                           
5 Basically, CLEVER computes spatial clusters that are Voronoi 

cells in the 2D longitude-latitude space. 

runtime is allocated to fitness computations and in most cases the 
algorithm terminates in 6-15 hours.  

5.  SUMMARY AND DISCUSSION 
This paper proposes a novel framework for mining co-locations 
patterns in spatial datasets. In contrast to past co-location mining 
research that centers on finding global co-location patterns in 
categorical datasets, a regional co-location mining framework is 
introduced that operate in the continuous domain without need for 
discretization. The framework views regional co-location mining 
as a clustering problem in which an externally given reward-based 
fitness has to be maximized; in particular, fitness functions we 
employ in our approach, rely on products of z-scores of continuous 
variables to assess the interestingness of co-location patterns in the 
continuous space. A highly desirable feature of our approach is 
that it provides search-engine-like capabilities to scientists by 
returning regions ranked by the scientist's notion of interestingness 
that has been captured in a plug-in fitness function.  

The framework is evaluated in a case study involving chemical 
concentrations of Texas water wells centering on co-location 
patterns involving Arsenic. The tested region discovery algorithm 
is able to identify known and unknown regional co-location sets. 
Different sets of algorithm parameters lead to the characterization 
of Arsenic distribution at different levels of granularity—stressing 
the need for parameterized, plug-in fitness functions that allow 
domain experts to express what patterns they are looking for at 
what level a granularity.  

Arsenic water pollution is a serious problem for Texas and its 
causes are complex and frequently difficult to explain, particularly 
for wells in the Ogallala aquifer [22]. A large number of possible 
explanations exist what causes high levels of Arsenic 
concentrations to occur. Therefore, scientists face the problem to 
decide which promising hypotheses from a large set of hypotheses 
to be investigated further. The proposed framework is particularly 
useful in the early stages of a research study when domain 
scientists are exposed to massive amount of data with only a few 
clues to organize them. In general, our regional co-location mining 
framework turned out to be valuable to domain experts in that it 
provides a data driven approach which suggests promising 
hypotheses for future research. In particular, unexpected 
associations selected by the framework can challenge preconceived 
ideas and open the way to potential breakthroughs in the study of 
Arsenic subsurface contamination.  

Finally, a novel, prototype-based region discovery algorithm 
named CLEVER has been introduced that seeks the optimal 
number of clusters, uses larger neighborhood sizes to battle 
premature convergence, and uses randomized hill climbing and re-
sampling to reduce algorithm complexity. 
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