
Crime Forecasting Using Spatio-Temporal
Pattern with Ensemble Learning

Chung-Hsien Yu1, Wei Ding1, Ping Chen1, and Melissa Morabito2

1 University of Massachusetts Boston,
100 Morrissey Blvd., Boston, MA 02125, USA
{csyu,ding}@cs.umb.edu,Ping.Chen@umb.edu

2 University of Massachusetts Lowell,
One University Avenue, Lowell, MA 01854, USA

Melissa_Morabito@uml.edu

Abstract. Crime forecasting is notoriously difficult. A crime incident is
a multi-dimensional complex phenomenon that is closely associated with
temporal, spatial, societal, and ecological factors. In an attempt to utilize
all these factors in crime pattern formulation, we propose a new feature
construction and feature selection framework for crime forecasting. A
new concept of multi-dimensional feature denoted as spatio-temporal
pattern, is constructed from local crime cluster distributions in different
time periods at different granularity levels. We design and develop the
Cluster-Confidence-Rate-Boosting (CCRBoost) algorithm to efficiently
select relevant local spatio-temporal patterns to construct a global crime
pattern from a training set. This global crime pattern is then used for
future crime prediction. Using data from January 2006 to December 2009
from a police department in a northeastern city in the US, we evaluate
the proposed framework on residential burglary prediction. The results
show that the proposed CCRBoost algorithm has achieved about 80%
on accuracy in predicting residential burglary using the grid cell of 800-
meter by 800-meter in size as one single location.
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1 Introduction

Crime forecasting is notoriously difficult. A crime incident is a multi-dimensional
complex phenomenon that is closely associated with temporal, spatial, societal,
and ecological factors. In an attempt to utilize all these factors in crime pattern
formulation, we propose a new feature construction and feature selection frame-
work for crime forecasting. A new concept of multi-dimensional feature denoted
as spatio-temporal pattern, is constructed from local crime cluster distributions
in different time periods at different granularity levels.
Crime distributions are of different sizes and shapes with respect to spatial space
over time. We use clustering to find local crime distributions in different time
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periods. The spatial-temporal patterns then are induced from each crime distri-
bution through classification. Each spatio-temporal pattern uses related crime
incidences as indicators to represent a local crime pattern at certain clustered
locations during a certain time period. However, these locally learned patterns
could be redundant or overlapping at global level.
We design and develop the Cluster-Confidence-Rate-Boosting (CCRBoost) al-
gorithm to efficiently select relevant local spatio-temporal patterns to construct
a global crime pattern from a training set. The main idea of this approach is
to iteratively pick a set of local patterns which give the least classification error
at each boosting round. Each set of local patterns is referred as an ensemble
spatio-temporal pattern and is assigned a score (Called confidence-rate in our
approach). At the end of boosting, a global pattern is constructed from these
ensemble patterns. This global pattern is capable of predicting crime by scaling
the total score of an input, a collection of crime indicators, evaluated on each
crafted ensemble patterns. The proposed algorithm is depicted in Figure 1.
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Fig. 1. The flowchart of the proposed CCRBoost algorithm (Better viewed in color).

In our real-world case study, we collaborated with the police department of a
northeastern city in the US to collect 4-year historical crime data, from January
2006 to December 2009. These data are used to evaluate the proposed framework
on residential burglary prediction. This city is 90 square miles in size and more
than 600 thousands in population. The results show that the proposed CCR-
Boost algorithm has achieved about 80% on accuracy in predicting residential
burglary using the grid cell of 800-meter by 800-meter in size as one single loca-
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tion.
This rest of the paper is organized as the followings. The related work is de-
scribed and compared with our algorithm in Section 2. Our proposed CCRBoost
algorithm is thoroughly discussed in Section 3, including its theoretical analysis.
The setting and results of our experiments are presented in Section 4. We then
conclude our study in Section 5.

2 Related Work

Crime forecasting techniques from feature construction and feature selection
point of view, can be categorized into statistic mapping, mathematical model-
ing, and clustering.
Statistic mapping uses historical statistics of the crime occurred at the same
location for forecast[1]. It focuses on seasonality of the crime with the assump-
tion that same type of crime recurs regularly with respect to time, while our
approach, in addition to time dimension, also factors in spatial neighborhood
and other relevant societal and ecological factors.
In [11], mathematical modeling is used to simulate the formatting of the crime
hotspots based on the crime frequency obtained from statistical model of indi-
vidual criminals. These hotspots are density based and overlapped with each
other. Therefore, a suppression process is needed to filter out the true hotspots.
Later in [8], Mohler proposed a point-based model that eliminates the suppres-
sion step. Using the concept in predicting aftershock, this model simulates how
the crime spreads out, like diseases, from the initial background events. The
hotspots defined in this model are those locations covering most spread points.
The approach suits better for capturing the crime patterns with short life cycles
at local level while our algorithm is able to capture the long term cycles at global
level using our ensemble patterns. Another caveat of this model fitting approach
is that the results can be way off when the incorrect initial points are given. In
our framework, the built-in feature selection process can discard irrelevant or
misrepresenting patterns when learning the global ensemble pattern.
The clustering approach adapted by Kumar is to define the geographic bound-
aries of each spatial clusters [7]. With these boundaries, the changing of crime
densities in a fixed size cluster is considered as the crime trend of this particu-
lar cluster. Our global ensemble spatio-temporal pattern is designed to forecast
crime for the whole study area.

3 Crime Forecasting Using Spatio-Temporal Patterns

3.1 The Concept of Spatio-Temporal Patterns

Our approach is designed to enhance the utility of the near repeat hypothesis
formulated in Social Science [12]. This hypothesis suggests that the same type
of crime possibly recurs not only at the same neighboring locations but also at a
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regular interval of time. In addition, crime incidents are closely related with so-
cial behaviors and environmental conditions[6]. This implies that crime tends to
have similar trends at locations with similar societal and ecological structures.
We hypothesize that crime can be foreseen by investigating the trends of its
correlated crime incidences. All of these three dimensions (location, time, and
correlated incidences) are taking into account when we define a spatio-temporal
pattern. A spatio-temporal pattern is a local pattern that represents the crime
pattern at certain locations during certain time period using correlated crime
incidences as the indicators. These indicators are used to represent societal and
ecological factors of different locations.
The challenges are that how many local patterns there are during certain time
period and at which locations are unknown. Additionally, crime is not evenly
distributed throughout a city and there are areas that are more attractive than
others to criminals[3]. In order to find the possible local patterns, we use the un-
supervised clustering approach without involving geographical features to group
those locations with similar indicators in the same time period. This group of
locations is considered as the spatial distribution of a possible crime pattern.
By varying the configuration of the clustering method, the clusters with differ-
ent sizes during different periods of time can be generated. A classifier is then
trained from each cluster and will be used to represent a local crime pattern.
Our next task is to use the spatio-temporal patterns as features to construct
a global level spatio-temporal pattern. This global crime pattern should be ca-
pable of detecting crime incidences at every location. Which of these patterns
should be selected to form the global crime pattern? Those locally learned spatio-
temporal patterns could be redundant or overlapping. And, how can this global
pattern be constructed? To resolve these two issues at the same time, we pro-
pose a confidence-rate boosting approach. We will first formulate the problem
and then discuss our boosting algorithm in detail.

3.2 Problem Formulation

We denote one crime indicator, a type of relevant crime event, as fp. Different
indicators of the same location in the same period of time are used to form a
vector, denoted as x = [f1, f2, . . . , fP ], where P is the number of correlated inci-
dence types. Each vector x has one class label y which tells whether this location
is a hotspot. Through the clustering process, the vectors with similar indicators
are grouped into one cluster, denoted as c. A local spatio-temporal pattern, de-
noted as r, is defined as: r = q(c). q(), in our case, is a classifier induced from
the cluster c and used to extract the crime pattern. This pattern r is used to
identify whether a vector is a hotspot. We denote x ∈ r if x is recognized as
hotspot by pattern r. Otherwise, x 6∈ r.
In reality, a crime pattern might not be represented as one single local pattern
because this pattern might shift location-wise or change size over time[9]. In or-
der to truly capture the dynamics of crime patterns, we introduce the ensemble
spatio-temporal pattern, denoted as R = [r1 ∧ r2 ∧ . . . ∧ ri], which is the con-
junction of selected spatio-temporal patterns. Thus, if x ∈ R, then it must be
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true that x ∈ r1 and x ∈ r2 and . . . and x ∈ ri. This ensemble pattern is served
as the base learner in our confidence-rate boosting approach.

3.3 Confidence-Rate Boosting

Before boosting, we balance the training data by setting the weight of hotspots
as 1

2H and 1
2C for coldspots, H and C are the numbers of hotspots and coldspots,

respectively. Each vector xi in the training data is denoted as D(i). The main
idea of our confidence-rate boosting approach is to repeatedly pick the best
hypothesis ht which yields the least error rate at each boosting round t. In our
case, ht is an ensemble spatio-temporal pattern Rt built at round t. The error
function is defined as:

Ei∼Dt
[yiht(xi)] =

∑
i

Dt(i)yiht(xi), (1)

where Dt is the weight distribution at boosting round t. The theoretical back-
ground of the confidence-rate boosting approach is analyzed as follows.
Based on the study in [10], it has been proved that

∑
iDt(i)yiht(xi) ≤

∏
t Zt so

the upper bound of the error rate is
∏

t Zt. Zt is defined as:

Zt =
∑
i

Dt(i)exp(−αtyiht(xi)) (2)

Thus, a smaller Zt that has a lower error upper bound will lead to a smaller
training error at each boosting round. Now, we let CR = αtht(xi) and ignore
the boosting round t. Then, we define our loss function as:

Z =
∑
i

D(i)exp(−CRyi) (3)

and we want to find the minimum value of Z to lower the training error as much
as possible. CR is the confidence-rate for pattern R and CR = 0 if xi /∈ R. Here,
xi ∈ R means that xi is recognized by pattern R as a hotspot and then set
yi = 1. Otherwise, set yi = −1. Since CR = 0 where xi /∈ R, we obtain

Z =
∑

i|xi /∈R

D(i) +
∑

i|xi∈R

D(i)exp(−CRyi) (4)

Equation (4) can be rewritten as:

Z = W0 +W+exp(−CR) +W−exp(CR), (5)

where W0 =
∑

i|xi /∈RD(i) so W0 is the total weights of predicted coldspots. And,

W+ =
∑

i|xi∈R and y=1

D(i),W− =
∑

i|xi∈R and y=−1

D(i), (6)
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W+ is the total weights of true hotspots (true positives), and W− is the total
weights of false hotspots (false positives). By taking the first derivative of Z with
respect to CR and let dZ

dCR
= 0, we can find the value of CR when Z has the

maximum or minimum value:
dZ
dCR

= −W+exp(−CR) +W−exp(CR) = 0
=⇒W−exp(CR) = W+exp(−CR)
=⇒ ln(W−exp(CR)) = ln(W+exp(−CR))
=⇒ ln(W−) + CR = ln(W+)− CR

=⇒ 2CR = ln(W+)− ln(W−)

=⇒ CR = 1
2 ln(W+

W−
)

And then, we take the second derivative of Z, dZ
dC2

R
= W+exp(−CR)+W−exp(CR) >

0. Since the second derivative of Z is greater than zero, Z has the minimum value
of W0 + 2

√
W+W− when CR = 1

2 ln(W+

W−
).

To prevent the situation of W− = 0, we adjust the above equation as:

ĈR =
1

2
ln(

W+ + 1
2n

W− + 1
2n

), (7)

where n is the total number of vectors. Equation (7) is then used to calculate
the confidence-rate ĈRt

for pattern Rt at each round t.

3.4 CCRBoost Algorithm

As described in Algorithm 1, the first task of the CCRBoost algorithm is to
identify spatio-temporal patterns of different sizes and shapes with respect to
spatial space during each period of time. To add spatio-temporal dimension to
our feature, a clustering step is adopted to find the crime distributions at local
level in different time periods. K-Means, but not limited to, is chosen to find these
patterns. We perform K-Means K times to obtain 1+2+. . .+K clusters and then
train classifiers from each cluster to extract local spatio-temporal patterns at
different granularity levels. The data is divided into M subsets before clustering
by certain length of time interval. For example, if the raw crime data is processed
by month, then M equals to 12 when one year worth of data is used. As a result,
there are total M × (1 + 2 + . . .+K) possible patterns acquired from these M
subsets.
Next, the weights of the entire data set is set to be in a probability distribution
which makes the total weight equals to 1. The data set is then randomly divided
into two subsets, GrowSet and PruneSet. This split is based on the total
weight instead of the number of records. By calling BuildChain(), an ensemble
spatio-temporal pattern R is built from those local patterns. This R gives the
minimum Z value while evaluating R on GrowSet. Furthermore, PruneChain()
is called to trim the list of R and prevents R from over fitting by using PruneSet
to reevaluate R and then obtain the final ensemble pattern Rt. The confidence-
rate ĈRt is then calculated by evaluating Rt on the entire data set using Equation
(7). Based on ĈRt

, the boosting algorithm updated the weights of those vectors
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that are classified as hotspots. This weight update function is defined as:

Dt+1(i) =
Dt(i)

exp(yiĈRt)
, if xi ∈ Rt (8)

The goal is to exponentially lower the weights on those vectors that are recog-
nized by the current global pattern. This way, the data instances which have not
been fitted to the pattern are getting more attentions for the next round.
The boosting process is repeated for T times, where T is a user-defined vari-
able. At the end, T ensemble spatio-temporal patterns, R1, R2, . . . , RT , and
T confidence-rates, ĈR1

, ĈR2
, . . . , ĈRT

are produced. The formula of the final
global spatio-temporal pattern is defined as:

h(x) =

{
hotspot

∑
Rt|x∈Rt

ĈRt
> α

coldspot otherwise
, (9)

while α is a user-defined threshold.
By taking an input vector x, this formula evaluates x over each ensemble pattern
Rt. If x is recognized by Rt as a hotspot, then ĈRt is added to the total confidence
score h(x). x is predicted as a hotspot if h(x) is greater than the threshold α.
Normally, this threshold α is set to zero. This ensemble learning algorithm is
inspired by Cohen and Singer’s research in [2]. The steps of the CCRBoost
algorithm are given in Algorithm 1.

Algorithm 1 CCRBoost Algorithm

1: Given crime data (x1, y1), . . . , (xn, yn).
2: K is a user-defined variable and M is the total number of time periods.
3: for k = 1 . . .K do
4: for m = 1 . . .M do
5: Run K-Means using the vectors in period m to generate k clusters. Then, k

spatio-temporal patterns are extracted from these clusters.
6: end for
7: end for
8: Balance the data set by weights.
9: for t = 1 . . . T do

10: Normalize the weights, let Dt be a probability distribution.
11: Divide weighted data into two sets, GrowSet and PruneSet.
12: Call BuildChain() and then PruneChain() to obtain Rt.
13: Calculate ĈRt using entire data set and Equation (7).
14: Update the weights based on Equation (8).
15: end for
16: The final global spatio-temporal pattern is defined as:

h(x) =

{
hotspot

∑
Rt:x∈Rt

ĈRt > α

coldspot otherwise
, α is a user-defined threshold.
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4 Case Study: Forecasting Residential Burglary in a
Northeastern City of The U.S.A.

Data Configuration: 4-years’ (January 2006 to December 2009) crime records
have been used for the evaluation. In addition, three different grid resolutions
have been applied to generate three data sets from the original crime records.
These three resolutions have the squared cell/block with edge lengths of 800,
600, and 450 meters, respectively.
The targeting crime to be predicted is residential burglary in our experiments.
Residential burglary is a particularly interesting crime to study from a predic-
tion perspective since the near repeat hypothesis suggests that proximity to a
burgled residence increases the likelihood of victimization of other domiciles in
the neighborhood[12].
Based on the criminology theory[6] and after consulting with the domain experts,
six categories of incidences are identified having the higher correlation with res-
idential burglary crime than others. These six categories are arrest, commercial
burglary, foreclosure, motor vehicle larceny, 911 call, and street robbery. Thus,
the aggregations of these six categories from the crime records are used as the
crime indicators in our experiments.
The Choice of Pattern Learning Classifier: LADTree[5] has been chosen as
the base classifier to identify these patterns in our experiments because LADTree
adapts same confidence-rated system to grow a decision tree. However, our al-
gorithm is not limited to LADTree because a spatio-temporal pattern can be
represented in any format or model as long as it can tell whether a vector is a
hotspot.
Clustering Approach in Finding Spatio-Temporal Patterns: In this ex-
periment, the effectiveness of K is evaluated. The other user-defined variables
T (The number of boosting iteration) and α (The threshold for h(x)) are set to
500 and 0, respectively. The results of this experiment are obtained from three
data sets with different grid cell sizes. When K = 1, the data is not clustered.
Therefore, the results obtained from the setting of K = 1 is used as the baseline
to compare with others. According to the results shown in Figure 2, the clus-
tering approach yields not only the better overall accuracy but also the better
F1-score on hotspots. This is because using clustering enhances the feature with
spatial dimension by taking into account the crime distribution at local levels.
Moreover, we found that the performance reaches certain level when K = 4 and
then maintains at this level when K ≥ 5. This shows that the patterns lose the
true representative of local crime distributions when the resolution is set too high
and suggests that there are less than or equal to 5 different levels of local crime
patterns in our target city. Thus, K is set to 5 in the rest of our experiments.
Comparing Spatio-Temporal Pattern Features with Random Sampling
Features: In this experiment, the variable K is used to decide the number of
random sampling data sets. This sampling method randomly selects 50% of the
data records from a monthly data set for 1 + 2 + . . .+K times without replace-
ment, which means that there is no duplicated records in each sample. This
method constructs 1 + 2 + . . .+K samples with unified size and then trains the
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Fig. 2. The results of using different K for clustering on 3 data sets.

base classifiers from them using the LADTree algorithm. The purpose is to have
same number of features while comparing random sampling with the proposed
spatio-temporal pattern.
Next, our confidence-rate boosting algorithm is used to pick features from those
patterns generated from random sampled clusters and then build a global pat-
tern. By this way, we can tell that which kind of feature delivers the better pre-
diction results. According to Figure 3, using spatio-temperal patterns has better
performance regardless the resolution of the data set. Thus, spatio-temperal pat-
terns do have the advantage over random sampling due to their spatio-temporal
multi-dimensional characteristic.

1 2 3 4 5 6 7 8 9 10
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

K

A
cc

u
ra

cy

 

 

1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

K

F
1

 

 

Pattern (800−meter)

Sampling (800−meter)

Pattern (600−meter)

Sampling (600−meter)

Pattern (450−meter)

Sampling (450−meter)

Fig. 3. Comparing spatio-temperal patterns with random sampling on different
datasets.

Comparing with Classification Approaches: Using the same crime data
sets, other commonly used classification methods are adapted to generate the
prediction results to compare with our proposed algorithm. Support Vector Ma-
chine (SVM), C4.5, Naive Bayes classifier, and LADTree[5] are chosen in this
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experiment. As shown in Table 1, our proposed CCRBoost algorithm has the
best accuracy and F1-score over other classifiers on all three data sets.

Table 1. The results of comapring CCRBoost with existing classifiers.

Data Set 800-meter 600-meter 450-meter

Method Accuracy F1 Accuracy F1 Accuracy F1

SVM 0.817 0.801 0.776 0.742 0.651 0.489
C4.5 0.500 0.667 0.500 0.667 0.500 0

NaiveBayes 0.730 0.675 0.703 0.647 0.667 0.592
LADTree 0.772 0.757 0.728 0.702 0.644 0.487

CCRBoost 0.857 0.818 0.820 0.746 0.772 0.610

Comparing CCRBoost with AdaBoost: During this experiment, the var-
ious numbers of iterations, T , are used in comparing our algorithm with the
AdaBoost[4] algorithm. LADTree is chosen as the base learning classifier in both
algorithms. Shown in Figure 4, the accuracy obtained from the AdaBoost algo-
rithm reaches its ceiling when T > 50. However, our CCRBoost algorithm not
only can obtain better accuracy but also has better convergence rate throughout
three data sets. In conclusion, the boosting effect of our algorithm is more effi-
cient than AdaBoost because our algorithm enhanced with new spatio-temporal
features has a strong impact in predicting crime.
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Fig. 4. Comparing AdaBoost with CCRBoost on different iterations T .

The Resulting Global Spatio-Temporal Pattern: The selection of the lo-
cal patterns used in the final spatio-temporal pattern has been visualized on
the map, which is shown in Figure 5. The red grid cells represent hotspots and
blue cells are coldspots. The first pattern chosen by the proposed algorithm is
a cluster from September 2007. The locations of this cluster are consistent with
known crime pattern of our target city. The second cluster representing August
2009 data identifies crime hotspots that were excluded from the first cluster.
More importantly, this second cluster is useful for pinpointing coldspots areas
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that have some protective factor against residential burglary and other crimes.
As a result, the first two clusters are complementary in identifying locations
where we would expect residential burglary across the entire city as well as
areas that are coldspots. Interestingly and consistent with criminological liter-
ature, both clusters are in the summer months when children are out of school
and individuals may take vacations and be less vigilant about protecting their
property. It may be that there is an increased likelihood of residential burglary
in this city during the summer time. Based on the consistency with actual crime
patterns, our algorithm does find the patterns which recognize not only the spa-
tial but also the temporal factors that are useful for criminal justice professionals
in predicting the incidence of future crime.

(1) September 2007 (2) August 2009

Fig. 5. The first two local patterns used in the final global spatio-temporal pattern
resulting from 800-meter grid data set. The red blocks are hotspots and blues are
coldspots. (Better viewed in color)

5 Conclusions

From a practical standpoint, the patterns selected from this algorithm are in-
dicative of the true locations of residential burglaries throughout the target city.
This gives the concrete evidence that using proposed spatio-temporal pattern
has the great potential in predicting crime. The ultimate goal of our research is
to build a crime prediction system with strong predictive power, which is able
to provide forecast in a timely manner and requires less amount of data inputs.
Ultimately, the law enforcement is able to fight criminals pro-actively instead of
passively.
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