
Hereditary
Families of

Sets in Data
Mining

Dan A.
Simovici

The Apriori
Algorithm

Rough Sets
and
Approximative
Descriptions

Exact
Descriptions
of Sets of
Objects

Determining
Sets for
Partially
Defined
Functions

Hereditary Families of Sets in Data Mining

Dan A. Simovici

Dan A. Simovici Hereditary Families of Sets in Data Mining



Hereditary
Families of

Sets in Data
Mining

Dan A.
Simovici

The Apriori
Algorithm

Rough Sets
and
Approximative
Descriptions

Exact
Descriptions
of Sets of
Objects

Determining
Sets for
Partially
Defined
Functions

1 Exact Descriptions of Sets of Objects

Dan A. Simovici Hereditary Families of Sets in Data Mining



Hereditary
Families of

Sets in Data
Mining

Dan A.
Simovici

The Apriori
Algorithm

Rough Sets
and
Approximative
Descriptions

Exact
Descriptions
of Sets of
Objects

Determining
Sets for
Partially
Defined
Functions

How It All Began

Combinatorial Challange:

A typical supermarket may well have several thousand
items on its shelves.

If no customer has more than five items in his shopping
cart, there are

∑5
i=1

(10000
i

)
possible contents of this cart!
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What Supermarkets Need

identifying associations between item sets: how many of
the customers who bought bread and cheese also bought
butter;

associations have marketing consequences: if it turns out
that many of the customers who bought bread and cheese
also bought butter, the supermarket will place butter
physically close to bread and cheese in order to stimulate
the sales of butter.
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Rymon Tree

T is a Rymon tree for P(S) if

the root of T is labelled by S , and

the set of children of U in T is

{U − {e} ∈ F | e ∈ U}.
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Dual Rymon Tree

T is a dual Rymon tree for P(S) if

the root of T is labelled by the empty set ∅, and

the set of children of U in T is

{U ∪ {e} ∈ F | e ∈ S − U}.
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Rymon Tree for P({1, 2, 3, 4})
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Dual Rymon tree for P({1, 2, 3, 4})
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Formal Setting

I is a finite set: set of items
A transaction data set on I is a function
T : {1, . . . , n} −→ P(I ). The set T (k) is the kth transaction of
T . The numbers 1, . . . , n are the transaction identifiers (tids).
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Presentation of the Problem - I

Trans. Content

T (1) {Aspirin, Vitamin C}
T (2) {Aspirin, Sudafed}
T (3) {Tylenol}
T (4) {Aspirin, Vitamin C, Sudafed}
T (5) {Tylenol, Cepacol}
T (6) {Aspirin, Cepacol}
T (7) {Aspirin, Vitamin C}
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Presentation of the Problem - II

Aspirin Vitamin C Sudafed Tylenol Cepacol
T (1) 1 1 0 0 0
T (2) 1 0 1 0 0
T (3) 0 0 0 1 0
T (4) 1 1 1 0 0
T (5) 1 0 0 0 1
T (6) 1 0 0 0 1
T (7) 1 1 0 0 0
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Frequent Item Sets

Let T : {1, . . . , n} −→ P(I ) be a transaction data set on a set
of items I .
The support count of a subset K of the set of items I in T is
the number suppcountT (K ) given by

suppcountT (K ) = |{k | 1 ≤ k ≤ n and K ⊆ T (k)}|.

The support of an item set K is the number

suppT (K ) =
suppcountT (K )

n
.

Dan A. Simovici Hereditary Families of Sets in Data Mining



Hereditary
Families of

Sets in Data
Mining

Dan A.
Simovici

The Apriori
Algorithm

Rough Sets
and
Approximative
Descriptions

Exact
Descriptions
of Sets of
Objects

Determining
Sets for
Partially
Defined
Functions

Example

Let I = {i1, i2, i3, i4} be a collection of items. Consider the
transaction data set T given by

T (1) = {i1, i2},
T (2) = {i1, i3},
T (3) = {i1, i2, i4},
T (4) = {i1, i3, i4},
T (5) = {i1, i2},
T (6) = {i3, i4}.

Thus, the support count of the item set {i1, i2} is 3; similarly,
the support count of the item set {i1, i3} is 2. Therefore,
suppT ({i1, i2}) = 1

2 and suppT ({i1, i3}) = 1
3 .
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Central Observation

Let T : {1, . . . , n} −→ P(I ) be a transaction data set on a set
of items I . If K and K ′ are two item sets, then K ′ ⊆ K implies
suppT (K ′) ≥ suppT (K ).
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Frequent Item Sets

An item set K is µ-frequent relative to the transaction
data set T if suppT (K ) ≥ µ.

F
µ
T the collection of all µ-frequent item sets relative to the

transaction data set T

F
µ
T =

⋃
r≥1

F
µ
T ,r .

Crucial fact: F
µ
T is a hereditary collection.
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A Property of Dual Rymon Trees

Let Sr be the collection of item sets that have r elements. and
let T be the dual Rymon tree of P(I ), where I = {i1, . . . , in}.
If W ∈ Sr+1, where r ≥ 2, then there exists a unique pair of
distinct sets U,V ∈ Sr that has a common immediate ancestor
T ∈ Sr−1 in T such that U ∩ V ∈ Sr−1 and W = U ∪ V .
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Let T be a transaction data set on a set of items I and let
k ∈ N such that k > 1.
If W is a µ-frequent item set and |W | = k + 1, then there
exists a µ-frequent item set Z and two items im and iq such
that |Z | = k − 1, Z ⊆W , W = Z ∪ {im, iq}, and both
Z ∪ {im} and Z ∪ {iq} are µ-frequent item sets.
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The apriori gen Procedure

Input: a minimum support µ, the collection F
µ
T ,k of

frequent item sets having k elements;
Output: the set of candidate frequent item sets C

µ
T ,k+1;

Method:
set j = 1;
C
µ
T ,j+1 = ∅;

for each L,M ∈ F
µ
T ,k such that

L 6= M and L ∩M ∈ F
µ
T ,k−1 do

add L ∪M to C
µ
T ,k+1;

remove all sets K in C
µ
T ,k+1 where

there is a subset of K containing k elements
that does not belong to F

µ
T ,k .
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Features of Apriori Algorithm

AA operates on “levels” of the form C
µ
T ,k of candidate

item sets of µ-frequent item sets.

To build the initial collection of candidate item sets C
µ
T ,1,

every single item set is considered for membership in C
µ
T ,1.

The algorithm alternates between a candidate generation
phase (accomplished by using apriori gen) and an
evaluation phase that involves a data set scan and is
therefore the most expensive component of the algorithm.
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The AA

Input: transaction data set T and a minimum support µ;
Output: the collection F

µ
T of µ-frequent item sets;

Method: C
µ
T ,1 = {{i} | i ∈ I};

set i = 1;
while (CµT ,i 6= ∅) do

/* evaluation phase */
F
µ
T ,i = {L ∈ C

µ
T ,i | suppT (L) ≥ µ};

/* candidate generation */
C
µ
T ,i+1 = apriori gen(FµT ,i );

i + +;
end while;
output F

µ
T =

⋃
j<i F

µ
T ,j
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Example

i1 i2 i3 i4 i5
T (1) 1 1 0 0 0
T (2) 0 1 1 0 0
T (3) 1 0 0 0 1
T (4) 1 0 0 0 1
T (5) 0 1 1 0 1
T (6) 1 1 1 1 1
T (7) 1 1 1 0 0
T (8) 0 1 1 1 1
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Example (cont’d)

i1 i2 i3 i4 i5
5 6 5 2 5

i1i2 i1i3 i1i4 i1i5 i2i3 i2i4 i2i5 i3i4 i3i5 i4i5
3 2 1 3 5 2 3 2 3 2

i1i2i3 i1i2i4 i1i2i5 i1i3i4 i1i3i5 i1i4i5 i2i3i4 i2i3i5 i2i4i5 i3i4i5
2 1 1 1 1 1 2 3 2 2
i1i2i3i4 i1i2i3i5 i1i2i4i5 i1i3i4i5 i2i3i4i5

1 1 1 1 2
i1i2i3i4i5

0
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Example (cont’d)

C
µ
T ,1 = {i1, i2, i3, i4, i5},

F
µ
T ,1 = {i1, i2, i3, i4, i5},

C
µ
T ,2 = {i1i2, i1i3, i1i4, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},

F
µ
T ,2 = {i1i2, i1i3, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},

C
µ
T ,3 = {i1i2i3, i1i2i5, i1i3i5, i2i3i4, i2i3i5, i2i4i5, i3i4i5},

F
µ
T ,3 = {i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5},

C
µ
T ,4 = {i2i3i4i5},

F
µ
T ,4 = {i2i3i4i5},

C
µ
T ,5 = ∅.
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Association Rules

An association rule on an item set I is a pair of nonempty
disjoint item sets (X ,Y ).

If |I | = n, then there exist possible 3n − 2n+1 + 1
association rules on I .

An association rule (X ,Y ) is denoted by X ⇒ Y . The
confidence of X ⇒ Y is the number

confT (X ⇒ Y ) =
suppT (XY )

suppT (X )
.

An association rule holds in a transaction data set T with
support µ and confidence c if suppT (XY ) ≥ µ and
confT (X ⇒ Y ) ≥ c .
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Identifying Association Rules

Z , µ-frequent item set:

Examine the support levels of the subsets X of Z to
ensure that X ⇒ Z − X has a sufficient level of
confidence, confT (X ⇒ Z − X ) = µ

suppT (X ) .

suppT (X ) ≥ µ because X is a subset of Z . To obtain a
high level of confidence for X ⇒ Z − X , the support of X
must be as small as possible.

If X ⇒ Z − X does not meet the level of confidence, then
it is pointless to look for rules of the form X ′ ⇒ Z − X ′

among the subsets X ′ of X .
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Frequent Item Sets and Galois Connections-I

Let I be a set of items and T : {1, . . . , n} −→ P(I ) be a
transaction data set. Denote by D the set of transaction
identifiers D = {1, . . . , n}. The functions
itemsT : P(D) −→ P(I ) and tidsT : P(I ) −→ P(D) are defined
by

itemsT (E ) =
⋂
{T (k) | k ∈ E},

tidsT (H) = {k ∈ D | H ⊆ T (k)},

for every E ∈ P(D) and every H ∈ P(I ).
Note that suppcountT (H) = |tidsT (H)| for every H ∈ P(I ).
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Closed Item Sets

Let T : D −→ P(I ) be a transaction data set and let
Ki : P(I ) −→ P(I ) and Kd : P(D) −→ P(D) be defined by
Ki (H) = itemsT (tidsT (H)) for H ∈ P(I ) and
Kd(E ) = tidsT (itemsT (E )) for E ∈ P(D). Then, Ki and Kd

are closure operators on I and D, respectively.
A set of items H is closed if and only if, for every set L ∈ P(I )
such that H ⊂ L, we have suppT (L) < suppT (H).
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Closed Item Sets

The importance of determining the closed item sets is based on
the equality suppcountT (itemsT (tidsT (H))) =
|tidsT (itemsT (tidsT (H)))| = |tidsT (H)|.
If we have the support counts of the closed sets, we have the
support count of every set of items and the number of closed
sets can be much smaller than the total number of item sets.
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Frequent Item Sets and Galois Connections-II

Let T : {1, . . . , n} −→ P(I ) be a transaction data set. The pair
(itemsT , tidsT ) is a Galois connection between the posets
(P(D),⊆) and (P(I ),⊆):

1 if E ⊆ E ′, then itemsT (E ′) ⊆ itemsT (E ),

2 if H ⊆ H ′, then tidsT (H ′) ⊆ tidsT (H),

3 E ⊆ tidsT (itemsT (E )), and

4 H ⊆ itemsT (tidsT (H))

for every E ,E ′ ∈ P(D) and every H,H ′ ∈ P(I ).
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Rough Sets

Z. Pawlak

Very useful for approximative descriptions

Vast number of applications
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Approximation Spaces

Approximation space: a pair (S , ρ), where S is a set and ρ is
an equivalence on S .

Lower approximation:

lapρ(U) =
⋃
{[x ]ρ ∈ S/ρ | [x ]ρ ⊆ U}.

Upper approximation:

uapρ(U) =
⋃
{[x ]ρ ∈ S/ρ | [x ]ρ ∩ U 6= ∅}.
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Approximation Spaces

Approximation space: a pair (S , ρ), where S is a set and ρ is
an equivalence on S .

Lower approximation:

lapρ(U) =
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Upper approximation:
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Lower and Upper Approximations

B9

B8

B2

B3

B4

B5

B6

B7

B10

U
B12

B11

B1
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Borders of Sets

The positive ρ-border of U:

∂+
ρ (U) = U − lapρ(U)

The negative ρ-border of U:

∂−ρ (U) = U − lapρ(U)

The ρ-border of U:

∂ρ(U) = ∂+
ρ (U) ∪ ∂−ρ (U) = uapρ(U)− lapρ(U).
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lapρ(U) ⊆ uapρ(U)

uapρ(U) = {t ∈ S | (t, s) ∈ ρ for some s ∈ U},
lapρ(U) = {t ∈ U | (t, s) ∈ ρ implies s ∈ U}.

U is

ρ-rough if ∂ρ(U) 6= ∅
ρ-crisp otherwise.
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Monotonicity Properties

ρ ⊆ σ implies:

lapσ(U) ⊆ lapρ(U) ⊆ U ⊆ uapρ(U) ⊆ lapσ(U)

∂ρ(U) ⊆ ∂σ(U)

∂ρ1∧ρ2(U) ⊆ ∂ρ1(U) ∩ ∂ρ2(U)
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Data Sets

A data set on H: T : {1, . . . , n} × H −→
⋃m

j=1 Dom(Aj) such
that T (i ,Aj) ∈ Dom(Aj) for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The kth object of T : the sequence
tk = (T (k , 1), . . . ,T (k ,m)).
Object identifiers: 1, . . . , n
The set of objects: OT = {t1, . . . , tn}.
Projection of tk = (T (k, 1), . . . ,T (k,m)) on
L = {Ai1 , . . . ,Aip}: the p-tuple (T (k , i1), . . . ,T (k , ip)),
denoted by tk [L].
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A set of objects D = {t5, t6, t7, t8, t9}

T
A B C D

t1 a1 b2 c1 d1

t2 a2 b2 c1 d2

t3 a3 b1 c2 d1

t4 a4 b1 c2 d3

t5 a1 b1 c1 d2

t6 a3 b1 c1 d2

t7 a5 b3 c3 d4

t8 a1 b3 c3 d2

t9 a2 b3 c2 d3

t10 a3 b3 c2 d3

t11 a4 b2 c2 d1

t12 a1 b3 c4 d4
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Equivalences defined by attribute sets

The equivalence ρL on OT defined by

ρL = {(t, t ′) ∈ O2
T | t[L] = t ′[L]}.

If L,K are attribute sets, then ρKL = ρK ∩ ρL.

The border of a set of objects relative to an attribute set
is anti-monotonic: ∂ρL

(U) ⊆ ∂ρK
(U).
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A set of objects D = {t5, t6, t7, t8, t9}

T
A B C D

t1 a1 b2 c1 d1

t2 a2 b2 c1 d2

t3 a3 b1 c2 d1

t4 a4 b1 c2 d3

t5 a1 b1 c1 d2

t6 a3 b1 c1 d2

t7 a5 b3 c3 d4

t8 a1 b3 c3 d2

t9 a2 b3 c2 d3

t10 a3 b3 c2 d3

t11 a4 b2 c2 d1

t12 a1 b3 c4 d4

ρBC = {{t1, t2}, {t3, t4}, {t5, t6},
{t7, t8}, {t9, t10},
{t11}, {t12}}

lapρ(D) = {{t5, t6}, {t7, t8}}
∂BC (D) = {{t9, t10}}
∂+

BC (D) = {{t9}}
∂−BC (D) = {{t10}}.
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Exact and Approximative Descriptions

A set of objects D is described by a set of attributes K if
∂K (D) = ∅ and we refer to K as an exact description of D.

Let ε be a number such that 0 ≤ ε ≤ 1. A set of objects
D is ε-described by a set of attributes K if

|∂K (D)|
|D|

≤ ε.
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Our goal:

Finding an exact description as a relational expression of
the attributes is intractable.

Our goal: given T , a set of objects D ⊆ OT , determine
whether there exists an attribute set K with |K | ≤ k , such
that |∂K (D)| ≤ p.

Dan A. Simovici Hereditary Families of Sets in Data Mining



Hereditary
Families of

Sets in Data
Mining

Dan A.
Simovici

The Apriori
Algorithm

Rough Sets
and
Approximative
Descriptions

Exact
Descriptions
of Sets of
Objects

Determining
Sets for
Partially
Defined
Functions

Rymon Tree of H = {A, B , C , D}
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Main features

The Rymon tree is searched in a top-down manner.

Computation of borders take place in breadth-first search
fashion.

In a database having no duplicates the error of the root
node is zero.

If the error at K is greater than the error threshold there is
no need for border computing for its descendants because
of (the anti-monotonicity property). Thus, we can prune
all descendants of K .

Dan A. Simovici Hereditary Families of Sets in Data Mining



Hereditary
Families of

Sets in Data
Mining

Dan A.
Simovici

The Apriori
Algorithm

Rough Sets
and
Approximative
Descriptions

Exact
Descriptions
of Sets of
Objects

Determining
Sets for
Partially
Defined
Functions

Computation of Border FindBorder(T , D, K )

Input: T data set, D set of objects
Output: Positive and negative borders of D

Pos := ∅;
Neg := ∅;
D̄ = OT −D;
foreacht ∈ D do

foreacht ′ ∈ D̄ do
// project on K
if t[K ] == t ′[K ] then

add t to Pos;
add t ′ to Neg ;

output Pos ∪ Neg;
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Prunning of Attribute Sets Prunning(L, R)

Input: L list of failed descriptors, R set of attributes
Output: all qualified |R| − 1 children of R
list all |R| − 1-size children of R into P;
foreachp ∈ P do

if L contains a superset of p then
remove p from P;

output P;
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Finding Descriptors of D, FindAll(T , H , D, err)

Input: T data set, D set of objects, err error threshold
Output: all descriptors of D

initialize a queue Q;
initialize a list L;
add H to Q;
while(Q is non-empty) do

R := remove head of Q;
if |FindBorder(T ,D,R)| ≤ err then

output R;
children := Prunning(L,R);
add children to Q;

else
add R to L;
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Running Time Results for a 40K set
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Unique Descriptors for a 40K set
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What is next?

Using genetic algorithms for searching the space of
approximative descriptions

Identification of applications for the algorithm
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What is next?

Using genetic algorithms for searching the space of
approximative descriptions

Identification of applications for the algorithm
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Problem is suggested by circuit designers who deal with
logically programmable arrays for which only a limited
number of input tuples are significant.

We develop an Apriori-like algorithm that takes advantage
of the fact that the family of determining sets for a partial
function is dually hereditary.
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Notations

n = {0, 1, . . . , n − 1} by n;

PF(rn,p): set of partial functions with Dom(f ) ⊆ rn and
range of ( is f ) ⊆ p;
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Partial Functions as Tables

Tf
x1 x2 x3 y

0 1 1 0
0 1 2 1
0 2 1 2
0 2 2 2
1 0 1 3
1 0 2 3
2 0 1 3
2 0 2 3
1 1 0 2
1 2 0 2
2 1 0 1
2 2 0 0

Table Tf represents f ∈ PF(33, 4).
Dom(f ) consists of 44.4% of the possible 27 triplets of 33.
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Projections (Restrictions)

t

x1 x2 …            K                … xny

t[K] 0 2 1 . . . 2102

0 2 1 . . . 2102

For t in Tf and K ⊆ {x1, . . . , xn, y} let t[K ] be the projection
of t on K , that is, the restriction of t to the set K .
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Determining Sets for Partial Functions

V = {xi0 , . . . , xip−1} is a determining set for f if for every two
tuples t and s from Tf , t[V ] = s[V ] implies t[y ] = s[y ].
DS(f ): the collection of determining sets for f
V is a minimal determining set for f if V ∈ DS(f ) and there is
no strict subset of V in DS(f ).
MDS(f ): the set of minimal determining sets of f .
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A Partial Order on PF(rn, p)

Define f v g if Dom(f ) ⊆ Dom(g) and
f (a1, . . . , an) = g(a1, . . . , an) for every (a1, . . . , an)
(equivalently, if g is an extension of f ).

If V ∈ DS(f ) and V ⊆W , then W ∈ DS(f ).

If f v g , then DS(g) ⊆ DS(f ).
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Computing MDS(f )

Input: A partially defined function f .
Output: A collection D of minimal determining variables sets.

dLevel←−∞
ENQUEUE(Q,∅)
while Q 6= ∅ do

X ←− DEQUEUE(Q)
for each V ∈ Child[X ] do

ENQUEUE(Q,V )
if D = ∅ or LEVEL(v) ≤ dLevel then

if IS DSET[V ] then
ADD(D,V )
if dLevel =∞ then
dLevel = LEVEL(V )

else break
end
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Features of Algorithm

input is a partially defined function f ; the output is a
collection of sets with minimum number of variables that
f depends on;

breadth-first search on the Rymon tree for the power-set
of the set of variables E = {x1, x2, ..., xn} of f ;

the children of a minimal set need not be searched.

Dan A. Simovici Hereditary Families of Sets in Data Mining



Hereditary
Families of

Sets in Data
Mining

Dan A.
Simovici

The Apriori
Algorithm

Rough Sets
and
Approximative
Descriptions

Exact
Descriptions
of Sets of
Objects

Determining
Sets for
Partially
Defined
Functions

The Procedure IS DET(V )

Input: A node containing a subset of the variables set
Output: true if the set is a determining one, false, otherwise
begin
S ←− GET VARIABLES(V )

for each tuple ∈ File do
key ←− GET VALUES(tuple, S)
if key ∈ MAP then

y ←− ELEMENT(MAP, key)
ifF (tuple) 6= GET FVALUE(y) then

return false
break

else
ADD(MAP,key,F(tuple))

return true
end
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Experimental Setting - I

We carried out experiments on a Windows Vista 64-bit
machine with 8Gb RAM and 2 × Quad Core Xeon Proc
E5420, running at 2.50 GHz with a 2×6Mb L2 cache. The
algorithm was written in Java 6.

One hundred files were randomly generated for each type
of partially defined function (with 8, 16, and 24 variables)
using an input radix r = 3 and an output radix p = 5:

1000 tuples for partially defined functions with 8 variables.
5000 tuples for partially defined functions with 16 and 24
variables.
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Experimental Setting - II

if (f1, f2, . . . , fk) is a sequence of functions such that

f1 v f2 v · · · v fk ,

we have

DS(fk) ⊆ · · · ⊆ DS(f2) ⊆ DS(f1).

In our case, k ∈ {10, 15, 20, 30, 40, 50, 75, 90, 100, 200}.
The averages over 100 functions within each group of
generated functions (8, 16 and 24 variables).
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Dependency of average time on number of tuples
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Average size of minimal determining set

No of Determining Variables

0

1

2

3

4

5

6

7

8

9

10 15 20 30 40 50 75 90 100 200

N
D

V 24 Variables

16 Variables

8 Variables

 

Dan A. Simovici Hereditary Families of Sets in Data Mining



Hereditary
Families of

Sets in Data
Mining

Dan A.
Simovici

The Apriori
Algorithm

Rough Sets
and
Approximative
Descriptions

Exact
Descriptions
of Sets of
Objects

Determining
Sets for
Partially
Defined
Functions

Average size of MDS(f ) for 8, 16 and 24 variables
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Conclusions and Future Work

Alternative approaches to be considered:

a clustering technique for discrete functions starting from
a semi-metric that measures the discrepancy between the
kernel partitions of these functions;

using the entropy associated with a set of attributes to
determine minimal determining sets.
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