
March 21, 2020 11:40 ws-book9x6 book page 825

Appendix G

Programming in R

G.1 Variables in R

A variable in R can store an atomic vector, group of atomic vectors or a

combination of many R objects. A valid variable name consists of letters,

numbers and the dot or underline characters. The variable name starts

with a letter or the dot.

The variables can be assigned values using leftward, rightward and equal

to operator. The values of the variables can be printed using print()

function.

Assignment using equal operator:

v1 = c(0,1,2,3)

Assignment using leftward operator.

v2 <- c("learn","R")

Assignment using rightward operator.

c(TRUE,1) -> v3

The vector c(TRUE,1) has a mix of logical and numeric class. So logical

class is coerced to numeric class making TRUE as 1.

R is a dynamically typed language. This means that a variable itself

is not declared of any data type, rather it gets the data type of the object

assigned to it. This also means that we can change a the data type of a

variable again and again when using it in a program.
The function cat produces a stream of characters:

> var_x <- "Hello"

> cat("The class of var_x is ",class(var_x),"\n")

825

March 21, 2020 11:40 ws-book9x6 book page 826

826 Clustering - Theoretical and Practical Aspects

> var_x <- 34.5

> cat(" Now the class of var_x is ",class(var_x),"\n")

> var_x <- 27L

> cat(" Next the class of var_x becomes ",class(var_x),"\n")

The above code produces the following result:

The class of var_x is character

Now the class of var_x is numeric

Next the class of var_x becomes integer

The function ls() can be used to determine all variables currently avail-

able. Also the ls() function can use patterns to match the variable names

as in print(ls()).

The ls() function can use patterns to match the variable names.

Example G.123. To list the variables starting with the pattern "x1" one
could use:

> print(ls(pattern = "x1"))

Variables can be deleted by using the rm() function. Below we delete

the variable v.

G.2 R packages

R packages are collections of functions and data sets developed by the

R community. The official repository (CRAN) reached 10,000 packages

published, and many more are publicly available through the internet.

A package is a suitable way to organize your own work and, if you want

to, share it with others. Typically, a package will include

• code

• documentation for the package and its functions,

• and data sets.

The basic information about a package is provided in the description

file, where you can find out what the package does, who the author is, what

version the documentation belongs to, the date, the type of license its use,

and the package dependencies.

The description file can be accessed with

the command packageDescription("package"), via the documentation

of the package help(package = "package"), or online in the repository of

the package.

March 21, 2020 11:40 ws-book9x6 book page 827

Programming in R 827

For example, for the stats package, these ways will be:

• packageDescription("stats")

• help(package = "stats")

• ??stats

A repository is a place where packages are located so you can install

them from it. Typically, repositories are on-line and accessible to everyone.

The most popular repository for R packages is CRAN that is a network of

ftp and web servers maintained by the R community around the world.

it.
To install a package from CRAN, say, ksvm you need to use:

install.packages("ksvm")

After running this, you will receive some messages on the screen.

CRAN is a network of servers (each of them called a mirror). The user

can choose which one to use. If R is used through the RGui interface, then

the mirror can be selected from a list. The list of available mirrors can be

inspected using getCRANmirrors().
To check what packages are installed you can use:

installed.packages()

Uninstalling a package
is straightforward with the function remove.packages. For example, to
remove the package ksvm one could write

remove.packages("ksvm")

G.3 Logical Operators

Logical operators in R serve to construct logical expression and include

the following:

& and < less than

— or <= less or equal

== equal to > greater than

!= not equal >= greater or equal

! negation xor exlusive or

Example G.124. Consider the following R fragment:

> x <-sqrt(2)

> x

[1] 1.414214

March 21, 2020 11:40 ws-book9x6 book page 825

Appendix G

Programming in R

G.1 Variables in R

A variable in R can store an atomic vector, group of atomic vectors or a

combination of many R objects. A valid variable name consists of letters,

numbers and the dot or underline characters. The variable name starts

with a letter or the dot.

The variables can be assigned values using leftward, rightward and equal

to operator. The values of the variables can be printed using print()

function.

Assignment using equal operator:

v1 = c(0,1,2,3)

Assignment using leftward operator.

v2 <- c("learn","R")

Assignment using rightward operator.

c(TRUE,1) -> v3

The vector c(TRUE,1) has a mix of logical and numeric class. So logical

class is coerced to numeric class making TRUE as 1.

R is a dynamically typed language. This means that a variable itself

is not declared of any data type, rather it gets the data type of the object

assigned to it. This also means that we can change a the data type of a

variable again and again when using it in a program.
The function cat produces a stream of characters:

> var_x <- "Hello"

> cat("The class of var_x is ",class(var_x),"\n")

825

March 21, 2020 11:40 ws-book9x6 book page 826

826 Clustering - Theoretical and Practical Aspects

> var_x <- 34.5

> cat(" Now the class of var_x is ",class(var_x),"\n")

> var_x <- 27L

> cat(" Next the class of var_x becomes ",class(var_x),"\n")

The above code produces the following result:

The class of var_x is character

Now the class of var_x is numeric

Next the class of var_x becomes integer

The function ls() can be used to determine all variables currently avail-

able. Also the ls() function can use patterns to match the variable names

as in print(ls()).

The ls() function can use patterns to match the variable names.

Example G.123. To list the variables starting with the pattern "x1" one
could use:

> print(ls(pattern = "x1"))

Variables can be deleted by using the rm() function. Below we delete

the variable v.

G.2 R packages

R packages are collections of functions and data sets developed by the

R community. The official repository (CRAN) reached 10,000 packages

published, and many more are publicly available through the internet.

A package is a suitable way to organize your own work and, if you want

to, share it with others. Typically, a package will include

• code

• documentation for the package and its functions,

• and data sets.

The basic information about a package is provided in the description

file, where you can find out what the package does, who the author is, what

version the documentation belongs to, the date, the type of license its use,

and the package dependencies.

The description file can be accessed with

the command packageDescription("package"), via the documentation

of the package help(package = "package"), or online in the repository of

the package.

March 21, 2020 11:40 ws-book9x6 book page 827

Programming in R 827

For example, for the stats package, these ways will be:

• packageDescription("stats")

• help(package = "stats")

• ??stats

A repository is a place where packages are located so you can install

them from it. Typically, repositories are on-line and accessible to everyone.

The most popular repository for R packages is CRAN that is a network of

ftp and web servers maintained by the R community around the world.

it.
To install a package from CRAN, say, ksvm you need to use:

install.packages("ksvm")

After running this, you will receive some messages on the screen.

CRAN is a network of servers (each of them called a mirror). The user

can choose which one to use. If R is used through the RGui interface, then

the mirror can be selected from a list. The list of available mirrors can be

inspected using getCRANmirrors().
To check what packages are installed you can use:

installed.packages()

Uninstalling a package
is straightforward with the function remove.packages. For example, to
remove the package ksvm one could write

remove.packages("ksvm")

G.3 Logical Operators

Logical operators in R serve to construct logical expression and include

the following:

& and < less than

— or <= less or equal

== equal to > greater than

!= not equal >= greater or equal

! negation xor exlusive or

Example G.124. Consider the following R fragment:

> x <-sqrt(2)

> x

[1] 1.414214

March 21, 2020 11:40 ws-book9x6 book page 828

828 Clustering - Theoretical and Practical Aspects

> x * x

[1] 2

> x*x - 2

[1] 4.440892e-16

> x*x == 2

[1] FALSE

> all.equal(x*x,2)

[1] TRUE

Note that the first comparison x*x == 2 returns FALSE because the

error introduced in the computation of > x <-sqrt(2). However, if we test

equality within the tolerance limit of R as we do with all.equal(x*x,2),

the result is TRUE. By default, this tollerance is 2.220446e− 16.

The logical operators & and | can be applied to vectors of equal length in

a componentwise manner. On other hand, the operators && and || evaluate

left to right examining only the first element of each vector. Evaluation

proceeds only until the result is determined.

The function any returns TRUE if there exists at least a component that

is TRUE; the function all returns TRUE if all components of the vector are

TRUE.

Example G.125. The next R fragment exemplifies the functions previ-
ously mentioned.

> x <- c(TRUE,FALSE,TRUE)

> y <- c(FALSE,TRUE,TRUE)

> x&y

[1] FALSE FALSE TRUE

> x&&y

[1] FALSE

> x|y

[1] TRUE TRUE TRUE

> x||y

[1] TRUE

> any(x)

[1] TRUE

> all(x)

[1] FALSE

R contains two extended quantifiers, any and all. Both are applicable

to vectors of logical values. The quantifier any returns TRUE if at least one

component of its argument is TRUE and FALSE otherwise; all returns TRUE

if all components of the vector argument are TRUE and FALSE otherwise.

March 21, 2020 11:40 ws-book9x6 book page 829

Programming in R 829

This is illustrated next.

> u <- c(TRUE,TRUE,FALSE)

> v <- c(TRUE,FALSE,FALSE)

> any(u)

[1] TRUE

> any(v)

[1] TRUE

> all(u)

[1] FALSE

> all(v)

[1] FALSE

An optional argument of any and all, namely na.rm allows the removal

of all components of the vector argument that equal NA when set to TRUE.

G.4 Control Structures

We discuss the main control structures of R : the conditional instruction

if, the looping structures for, while, and repeat, and the selector switch.
The if statement has the form

if (Boolean expression) {

statement

}

and results in the execution of the statement if the expression is TRUE.

Example G.126. The following R fragment contains a single-branch if:

> x <- 5;

> if (x > 4) {

+ print("x is greater than 4")

+ }

Several statements can be grouped together to form a block using braces.

Since R reacts as an interpreter, so blocks are evaluated when a new line

is entered after the closing brace.
Another variant of this structure is if-else:

if (expression)

statement1

else

statement 2

March 21, 2020 11:40 ws-book9x6 book page 830

830 Clustering - Theoretical and Practical Aspects

If the value v returned by the expression is a logical vector with the first

element TRUE, statement1 is evaluated; otherwise, statement2 is evalu-

ated. If v is a numerical vector, statement1 is evaluated when the first

component is non-zero; otherwise, statement2 is evaluated.

Example G.127. The following code fragment is self-exaplanatory:

x <- 5;

> if (x >= 6) {

+ print("x is at least equal to 6")

+ } else {

+ print("x is less than 6")

+ }

[1] "x is less than 6"

The for loop has the syntax

for (var in vector)

statement

For each element in vector (or list) the value of variable is set to that

element and the statement is evaluated. The variable name still exists

after the loop has concluded and its value is equal to the last component

of the vector.

Example G.128. The following simple loop prints the first five perfect
squares:

lim <- 5

> for(i in 1:lim)

+ print(i^2)

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

The while has the syntax

while (condition)

statement list

If the value of condition is TRUE, statement list is evaluated and this

process is repeated until the value of condition is FALSE. In general, the

variables that occur in the condition are modified in the statement list;

otherwise, statement list is not executed or is repeated indefinitely.

March 21, 2020 11:40 ws-book9x6 book page 831

Programming in R 831

Example G.129. The following fragment generates six terms of the se-
quence (xn) defined by the recurrence xn+2 = 2xn+1 − xn, where x0 = 3
and x1 = 8:

> u <- 3

> v <- 8

> n <- 1

> while(n <= 6){

+ z <- 2*v - u

+ u <- v

+ v <- z

+ print(z)

+ n <- n+1

+ }

[1] 13

[1] 18

[1] 23

[1] 28

[1] 33

[1] 38

The repeat statement has the syntax

repeat

statement list

The effect is a repeated evaluation of the statement list. This list must

contain some computation and a test that determines whether to break

out of the loop. This is usually achieved using the statement break that

triggers the exit from the loop.

Example G.130. The same computation as in Example ?? can be
achieved using the following code fragment:

u <- 3

> v <- 8

> n <- 1

> repeat {

+ if(n > 6) break

+ z <- 2*v - u

+ u <- v

+ v <- z

+ print(z)

+ n <- n + 1

+ }

March 21, 2020 11:40 ws-book9x6 book page 832

832 Clustering - Theoretical and Practical Aspects

It is possible to skip an execution of the body of loop using the statement

next.

Example G.131. The next code fragment prints the squares of all multi-
ples of 5 less than 20:

> for(i in 1:20) {

+ if(i%%5 != 0) next()

+ print(i^2)

+ }

[1] 25

[1] 100

[1] 225

[1] 400

The switch statement has the syntax

switch (statement,list)

Its execution begins with the evaluation of the statement. If the resulting

values is a number between 1 and the length of the list, the corresponding

element of the list is evaluated and the result returned; if this is not the

case, a NULL value is returned.

Example G.132. In the next fragment, the third element of the list is
returned.

x <- 3

> switch(x,9,mean(1:10),median(1:99))

[1] 50

If the value returned by the statement is a string of characters, the

element of the list having a name which matches this string is returned; if

there is no match a single unnamed argument is returned as default. If no

default is specified, NULL is returned.

Example G.133. In the next fragment x matches the label of the second
element of the list.

> x <- "mammal"

> switch(x,reptile="snake",mammal = "horse", bird = "eagle", "neither")

[1] "horse"

March 21, 2020 11:40 ws-book9x6 book page 833

Programming in R 833

G.5 Functions in R

A simple function that computes the difference between the largest and

the smallest components of a vector can be created by an user using the

following R code:

span <- function(u){

if(is.numeric(u)){

return(max(u) - min(u))

}

else

print("Error!")

}

A call of span would produce the desired result

+ }

> v <- c(6,7,1,9,2)

> span(v)

[1] 8

Note that the result of the application of the function is transmitted

using the function return.

Example G.134. The function gcd computes the greatest common divisor
of integers p and q using Euclid’s algorithm:

gcd <- function(p,q){

if(p==round(p) && q==round(q)){

if(q==0) {

return(p)

}

else {

return(gcd(q,p\%\%q))

}

}

else print("Error: arguments are not integers")

}

Note that gcd is a recursive function. A call to gcd will yield:

> gcd(16,36)

[1] 4

Also, note that to test whether arguments are integers we used the test

p==round(p).

It is possible to define a default value for an argument of a function as
in

March 21, 2020 11:40 ws-book9x6 book page 834

834 Clustering - Theoretical and Practical Aspects

gcd <- function(p,q=10){

if(p==round(p) && q==round(q)){

if(q==0) {

return(p)

}

else {

return(gcd(q,p\%\%q))

}

}

else print("Error: arguments are not integers")

}

A call like

gcd(25)

will return the value 5; the call is equivalent to gcd(25,10).

A function in R is an object of the class function; its class can be

tested with the is.function.

A function f can be applied to each component of a list x of arguments

using the construct lapply(x,f). A list of the same length as x is returned.

The function f must be able to accept as input any of the components of

x.

Example G.135. The function mean is applied to each component of the
list x defined in Example E.120 using lapply(x,mean) and yields:hr

> lapply(x,mean)

$a

[1] 3

$b

[1] 4.535125

$c

[1] 0.25

The construct sapply is a variant of lapply that returns a vector or a
matrix as shown next:

> sapply(x,mean)

a b c

3.000000 4.535125 0.250000

The construct mapply(f,args) applies the function f to the arguments

args that follow f .

March 21, 2020 11:40 ws-book9x6 book page 835

Programming in R 835

Example G.136. Let A and B be two matrices, where A ∈ Rm× p and
B ∈ Rp×n. To compute the special matrix product defined in Section 9.9
we could use the function multiMatrix defined below.

multiMatrix <- function(A, B)

{

if(dim(A)[2] == dim(B)[1]){

m = dim(A)[1]

n = dim(B)[2]

C = matrix(0L, m, n)

for (i in 1:m)

for (j in 1:n)

C[i,j] = min(mapply(max, A[i,], B[,j]))

return (C)

}

else print("Error: dimension of matrices do not match")

}

R has several families of built-in functions, which we review next.

The first family of built-in functions serve for ordering, inverting, or

permuting a vector:
order

rev

rank

sort

Below we present the simplest variants of using these funtions.

The function order returns a permutation of the indices of a vector

which rearranges its components in ascending order.

Example G.137. By writing

> v <- c(10,50,20,40,90,65)

> order(v)

we obtain the permutation of the indices of v

[1] 1 3 4 2 6 5

that corresponds to the increasing order of the components of v. Therefore,

> v[order(v)]

returns the vector sorted in ascending order:

[1] 10 20 40 50 65 90

The function rev returns the components of v in reverse order as in

March 21, 2020 11:40 ws-book9x6 book page 836

836 Clustering - Theoretical and Practical Aspects

> rev(v)

[1] 65 90 40 20 50 10

The function rank gives the order of the components of v:

> rank(v)

[1] 1 4 2 3 6 5

Finally, the function sort rearranges the components of v in ascending
order:

sort(v)

[1] 10 20 40 50 65 90

Example G.138.

x <- c(50,20,30,60,40,90,70,20,50,50)

o <- order(x)

plot(x[o],rank(x[o])/length(x),type="S")

will give a graph of the cummulative distribution of x.

Another group of functions is dedicated to computing various sums or

products of arrays:

cummax prod

cummin sum

cumprod range

cumsum which.max

max which.min

min pmax

pmin

The cummulative functions cummax, cummin, cumprod, and cumsum re-

turn a vector whose elements are the cumulative maxima, minima, prod-

ucts, or sums of the elements of the argument.

Example G.139. The next fragment illustrates an application of the cu-
mulative functions:

> v <- c(1,5,2,4,9,6)

> cummax(v)

[1] 1 5 5 5 9 9

> cummin(v)

[1] 1 1 1 1 1 1

> cumprod(v)

[1] 1 5 10 40 360 2160

> cumsum(v)

[1] 1 6 8 12 21 27

March 21, 2020 11:40 ws-book9x6 book page 837

Programming in R 837

The use of the functions prod and sum is clear. The function range
produces the range of a vector as in

> range(v)

[1] 1 9

for the vector v defined above.

The functions pmax and pmin can be applied to one or more vectors as

arguments; if the length of the vectors do not match, the components of the

shorter vector are recycle to render all arguments to the same length. The

functions return a single vector giving the ’parallel’ maxima (or minima)

of the arguments.

Example G.140. For the vectors v andw defined by

> v <- c(1,5,2,4,9,6)

> w <- c(9,7,1,2)

we obtain

> pmax(v,w)

[1] 9 7 2 4 9 7

The functions which.max and which.min return the indices of the first

maximum (minimum) component of a vector, respectively.

Yet another group of function is used to round and truncate numeric

arguments:

ceiling

floor

round

trunc

The function call floor(x) returns the largest integer value which is

not greater than x while trunc(x) returns the integer formed by truncating

the value of x toward 0. Similarly, ceiling(x) returns the smallest integer

value which is not smaller than x, while round(x) the closest integer to x.
R allows trigonometric computations using the functions sin, cos,

tan. Natural logarithms can be computed using the log function, and
decimal logarithms can be obtained using the function log10. Absolute
values can be computed with the abs function which can be applied to real
or complex numbers as shown next:

> x = 3+4i

> abs(x)

[1] 5

> z = -8

March 21, 2020 11:40 ws-book9x6 book page 838

838 Clustering - Theoretical and Practical Aspects

> abs(z)

[1] 8

Further computations with complex numbers can be achieved using the

functions Re, Im, Arg (which returns the argument of a complex number in

radians), and Conj, with obvious effects.

The function choose(n,k) returns the binomial coefficient
(
n
k

)
.

Example G.141. To print a list of binomial coefficients
(

(
1

)
0, k) for 0 6

k 6 10 we can write

> for(i in 0:10)

+ print(choose(10,i))

[1] 1

[1] 10

[1] 45

[1] 120

[1] 210

[1] 252

[1] 210

[1] 120

[1] 45

[1] 10

[1] 1

G.6 Matrix Computations

Built-in R functions return, in general an object, whose components can
be accessed using the “$” notation. For example, the function eigen com-
putes the eigenvalues and the eigenvectors of a matrix m, as shown next.

m <- matrix(c(1,2,5,0,2,1,3,1,4),ncol=3)

> m

[,1] [,2] [,3]

[1,] 1 0 3

[2,] 2 2 1

[3,] 5 1 4

> eigen(m)

$values

[1] 6.934914 1.598564 -1.533479

$vectors

[,1] [,2] [,3]

March 21, 2020 11:40 ws-book9x6 book page 839

Programming in R 839

[1,] 0.4239582 0.17942954 0.7412273

[2,] 0.3417759 -0.98311922 -0.2423938

[3,] 0.8387185 0.03580004 -0.6259611

The components of the list are:

• values, a vector containing the eigenvalues of m, sorted in decreas-

ing order, according to their absolute values in the asymmetric case

when they might be complex (even for real matrices);

• vectors, which is either a square matrix whose columns contain

the eigenvectors of m; the vectors are normalized to unit length.
To verify the previous computation we write

> r <- eigen(m)

> V <- r$vectors

> lam <- r$values

> D = diag(lam)

> V %*% D %*% ginv(V)

which results in:

[,1] [,2] [,3]

[1,] 1 -2.775558e-16 3

[2,] 2 2.000000e+00 1

[3,] 5 1.000000e+00 4

The functions head(l) and tail(l) return, respectively, an initial and

a final part of a list l.
Using the sample function we can construct the function rpm that com-

putes a random permutation matrix as

rpm <- function(n) {

require(matlab)

A <- mat.or.vec(n,n)

x <- sample(1:n)

for(i in 1:n) A[i,x[i]] <- 1

return(A)

}

The determinant of a matrix can be computed using the function det:

m <- matrix(c(1,2,5,0,2,1,3,1,4),ncol=3)

d <- det(m)

> m

[,1] [,2] [,3]

[1,] 1 0 3

[2,] 2 2 1

[3,] 5 1 4

> d

[1] -17

March 21, 2020 11:40 ws-book9x6 book page 840

840 Clustering - Theoretical and Practical Aspects

Singular value decomposition of a rectangular matrix can be computed

using the svd function of the package matlib. To apply this function to a

real or complex matrix A we write

s <- svd(A)

The returned object s is a list with the following components:

• d: a vector containing the singular values of M sorted decreasingly;

• u: a matrix whose columns contain the left singular vectors;

• v: a matrix whose columns contain the right singular vectors.

Example G.142. For the matrix A in R3×4 defined as

> A <- matrix(c(1:12),3,4)

> A

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

the application of the svd function

> s <- svd(A)

returns the result:

\$d

[1] 2.546241e+01 1.290662e+00 8.106158e-18

\$u

[,1] [,2] [,3]

[1,] -0.5045331 -0.76077568 0.4082483

[2,] -0.5745157 -0.05714052 -0.8164966

[3,] -0.6444983 0.64649464 0.4082483

\$v

[,1] [,2] [,3]

[1,] -0.1408767 0.82471435 -0.4777689

[2,] -0.3439463 0.42626394 0.4373910

[3,] -0.5470159 0.02781353 0.5585247

[4,] -0.7500855 -0.37063688 -0.5181468

By the definition of singular value decomposition we will have A =
Udiag(d)V ′, where U and V belong to R3×3 and R4×3. Then we should
have AV = Udiag(D). The left member of this equality is

> A%*% s$v

[,1] [,2] [,3]

March 21, 2020 11:40 ws-book9x6 book page 841

Programming in R 841

[1,] -12.84663 -0.98190402 2.220446e-16

[2,] -14.62855 -0.07374908 -1.110223e-16

[3,] -16.41048 0.83440586 4.440892e-16.

The second member is

> s$u %*% diag(s$d)

[,1] [,2] [,3]

[1,] -12.84663 -0.98190402 3.309325e-18

[2,] -14.62855 -0.07374908 -6.618650e-18

[3,] -16.41048 0.83440586 3.309325e-18

and the equality AV = Udiag(d) is approximatively satisfied.

Cholesky factorization can be achieved using the function chol.

Example G.143. To factor the positive definite matrix A ∈ R3×3

> A

[,1] [,2] [,3]

[1,] 2 -1 0

[2,] -1 2 -1

[3,] 0 -1 2

we write:

> R <- chol(A)

> R

[,1] [,2] [,3]

[1,] 1.414214 -0.7071068 0.0000000

[2,] 0.000000 1.2247449 -0.8164966

[3,] 0.000000 0.0000000 1.1547005

A QR decomposition of a matrix A can be performed using the function
qr:

> d <- qr(A)

Example G.144. The Q and R factors can be determined as

> Q <- qr.Q(d)

> R <- qr.R(d)

> Q

[,1] [,2] [,3]

[1,] -0.8944272 -0.3585686 0.2672612

[2,] 0.4472136 -0.7171372 0.5345225

[3,] 0.0000000 0.5976143 0.8017837

> R

[,1] [,2] [,3]

March 21, 2020 11:40 ws-book9x6 book page 842

842 Clustering - Theoretical and Practical Aspects

[1,] -2.236068 1.788854 -0.4472136

[2,] 0.000000 -1.673320 1.9123658

[3,] 0.000000 0.000000 1.0690450

The result can be verified by writing

> Q %*% R

[,1] [,2] [,3]

[1,] 2 -1 -4.440892e-16

[2,] -1 2 -1.000000e+00

[3,] 0 -1 2.000000e+00

G.7 Graphics in R

The plot function is a basic constituent of the graphics facilities of R .
To produce the graph of the sin function we could write

> x <- seq(from=-pi,by=0.05,to=pi)

> y <- sin(x)

> plot(x,y)

This resulting graph can be printed or saved as an extended postscript file,

a pdf file (as we see next), etc.
To produce a pdf file containing a set of points placed on the parabola

y = x2 begin by specifying the directory where the pdf file should be saved.
Then, use the following code fragment:

> pdf("sincurve.pdf")

> x <- seq(from=-pi,by=0.05,to=pi)

> y <- sin(x)

> plot(x,y)

> dev.off()

This would result into a pdf file named sincurve.pdf shown in Figure G.1.

The final function call dev.off() closes the current device; in our case this

is the standard output device. Note that unless dev.off() the pdf file

cannot be used by outside allpications.

Graphics parameters in R can be determined using the function par.

This function may have a large number of parameters and allows the user

to set or query current values of graphics parameters.

Example G.145. To change the symbol used to represent points in the
previous graph we can write

March 21, 2020 11:40 ws-book9x6 book page 843

Programming in R 843

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●

●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●●●

●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Fig. G.1 Set of points located on the curve y = sin(x).

> pdf("sincurve17.pdf")

> x <- seq(from=-pi,by=0.05,to=pi)

> y <- sin(x)

> par(pch=17)

> plot(x,y)

> dev.off()

since 17 designates a solid triangle. This would result into the picture shown

in Figure G.2

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Fig. G.2 Points located on a sinus curve as solid triangles.

There is a vast collection of graphics parameters and the set of values

that many parameters range are quite large; these sets are described in the

March 21, 2020 11:40 ws-book9x6 book page 844

844 Clustering - Theoretical and Practical Aspects

excellent documentation that accopmpanies each R instalation.
To produce several graphical windows as parts of a shared layout we

could write, for example

> mylayout <- matrix(c(1:4),2)

> layout(mylayout)

> layout.show(4)

This will result in a four windows as shown in Figure G.3, that reflect the

entries of the matrix mylayout.

1

2

3

4

Fig. G.3 Four windows reflecting the matrix mylayout.

Example G.146. Next, we give a piece of R code that displays four
graphs containing sinus curves drawn with a variety of point shapes.

> x <- seq(from=-pi,by=0.05,to=pi)

> y <- sin(x)

> mylayout <- matrix(c(1:4),2)

> layout(mylayout)

> plot(x,y,pch=17,sub="plot using pch = 17")

> plot(x,y,pch=18,sub="plot using pch = 18")

> plot(x,y,pch=19,sub="plot using pch = 19")

> plot(x,y,pch=20,sub="plot using pch = 20")

Figure G.4 contains the graphs mentioned above.

March 21, 2020 11:40 ws-book9x6 book page 845

Programming in R 845

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

plot using pch = 17
x

y

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

plot using pch = 18
x

y

●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

plot using pch = 19
x

y

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●●

●
●

●
●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

plot using pch = 20
x

y

Fig. G.4 Four graphs drawn with various point types.

