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Eigenvalues of Positive Definite Matrices

Recall that a matrix A ∈ Rn×n is positive definite if x′Ax > 0 for x 6= 0.

Theorem

The eigenvalues of a real symmetric positive matrix are positive.

Proof: The eigenvalues of real symmetric matrices are real. If λ is an
eigenvalue of A with the eigenvector x, then Ax = λx, hence
x′Ax = λx′x = λ ‖ x ‖2> 0. Thus, λ > 0.
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Eigenvalues of Positive Definite Matrices

Theorem

If the eigenvalues if a real symmetric matrix are positive, then A is positive
definite.

Proof: For a real symmetric matrix there exists an orthogonal matrix Q
such that Q ′AQ = D, where

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn


If x 6= 0n, then x′Ax = x′Q ′DQx = y′Dy, where y = Qx.
Then, y′Dy = λ1y

2
1 + · · ·+ λny

2
n > 0 beacuse y = Q ′x is a non-zero

vector. Here we used the fact that Q−1 = Q ′.
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Hilbert Spaces

Hilbert space, named after David Hilbert, generalize the notion of
Euclidean space. They extend the methods of vector algebra and calculus
from the two-dimensional Euclidean plane and three-dimensional space to
spaces with any finite or infinite number of dimensions.
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Hilbert Spaces

An inner product (x , y) defined on a linear space H generates a norm
‖ x ‖=

√
(x , x).

A norm on a linear space generates a distance (a metric)
d(x , y) =‖ x − y ‖. Thus, every normed space becomes a metric
space.

A Cauchy sequence in a metric space is a sequence (xn) such that for
every ε > 0 there exists a number nε such that m, p > nε imply
d(xm, xp) < ε.

A metric space is complete if every Cauchy sequence has a limit in
that space.
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Hilbert Spaces

What is a Hilbert Space?

Hilbert spaces are generalizations of Euclidean spaces.
A Hilbert space is a linear space that is equipped with an inner product
such that the metric space generated by the inner product is complete.
As above, the inner product of two elements x , y of a Hilbert space H is
denoted by (x , y). Note that in the case of Rn (which is a special case of a
Hilbert space) the inner product of x, y was denoted by x′y.
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Hilbert Spaces

Example

The Euclidean space Rn equipped with the inner product

(x, y) = x1y1 + · · ·+ xnyn

is a Hilbert space.
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Hilbert Spaces

Example

The space `2 that consists of infinite sequences of the form
z = (z1, z2, . . .) such that the series

∑
n |zn|2 converges is a Hilbert space,

where the innner product is defined as

(z,w) =
∞∑
n=1

znwn.

9 / 52



Hilbert Spaces

Example

For two function f , g such that
∫ b
a f 2(x) dx and

∫ b
a g2(x) dx exist, an

inner product can be defined as

(f , g) =

∫ b

a
f (x)g(x) dx .

The resulting linear space is a Hilbert space.
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Kernels

Definition

A kernel over X is a function K : X × X −→ R such that there exists a
function Φ : X −→ H that satisfies the condition

K (u, v) = 〈Φ(u),Φ(v)〉,

where H is a Hilbert space called the feature space.
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Kernels

Recall the general form of the dual optimization problem for SVMs:

maximize for a
∑m

i=1 ai −
1
2aiajyiyjx

′
ixj

subject to 0 6 ai 6 C and
∑m

i=1 aiyi = 0
for 1 6 i 6 m.

Note the presence of the inner product x′ixj . This is replaced by the inner
product (Φ(xi ),Φ(xj)), in the Hilbert feature space, that is, by K (xi , xj),
where K is a suitable kernel function.
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Kernels

A More General SVM Formulation

maximize for a
∑m

i=1 ai −
1
2aiajyiyjK (xi , xj)

subject to 0 6 ai 6 C and
∑m

i=1 aiyi = 0
for 1 6 i 6 m.

The hypothesis returned by the SVM algorithm is now

h(x) = sign

(
m∑
i=1

aiyiK (xi , x) + b

)
.

with b = yi −
∑m

j=1 ajyjK (xj , xi ) for any xi with 0 < ai < C .
Note that we do not work with the feature mapping Φ; instead we use the
kernel only!

13 / 52



Functions of Positive Type

Definition

Let S be a non-empty set. A function K : S × S −→ C is of positive type
if for every n > 1 we have:

n∑
i=1

n∑
j=1

aiK (xi , xj)aj > 0

for every ai ∈ C and xi ∈ S , where 1 6 i 6 n.

K : S × S −→ R is of positive type if for every n > 1 we have

n∑
i=1

n∑
j=1

aiK (xi , xj)aj > 0

for every ai ∈ R and xi ∈ S , where 1 6 i 6 n.
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Functions of Positive Type

If K : S × S −→ C is of positive type, then taking n = 1 we have
aK (x , x)a = K (x , x)|a|2 > 0 for every a ∈ C and x ∈ S . This implies
K (x , x) > 0 for x ∈ S .
Note that K : S × S −→ C is of positive type if for every n > 1 and for
every x1, . . . , xs the matrix An,K (x1, . . . , xn) = (K (xi , xj)) is positive
definite, and, therefore it has positive eigenvalues.
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Functions of Positive Type

Example

The function K : R× R −→ R given by K (x , y) = cos(x − y) is of positive
type because

n∑
i=1

n∑
j=1

aiK (xi , xj)aj =
n∑

i=1

n∑
j=1

ai cos(xi − xj)aj

=
n∑

i=1

n∑
j=1

ai (cos xi cos xj + sin xi sin xj)aj

=
∣∣∣ n∑
i=1

ai cos xi

∣∣∣2 +
∣∣∣ n∑
i=1

ai sin xi

∣∣∣2.
for every ai ∈ C and xi ∈ S , where 1 6 i 6 n.
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Functions of Positive Type

Definition

Let S be a non-empty set. A complex-valued function K : S × S −→ C is
Hermitian if K (x , y) = K (y , x) for every x , y ∈ S .
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Functions of Positive Type

Theorem

Let H be a Hilbert space, S be a non-empty set and let f : S −→ H be a
function. The function K : S × S −→ C defined by

K (s, t) = (f (s), f (t))

is of positive type.
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Functions of Positive Type

Proof

We can write

n∑
i=1

n∑
j=1

aiajK (ti , tj) =
n∑

i=1

n∑
j=1

aiaj(f (ti ), f (tj))

=
∣∣∣∣∣∣ n∑

i=1

ai f (ai )
∣∣∣∣∣∣2 > 0,

which means that K is of positive type.
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Functions of Positive Type

Theorem

Let S be a set and let F : S × S −→ C be a positive type function. The
following statements hold:

i F (x , y) = F (y , x) for every x , y ∈ S , that is, F is Hermitian;

ii F is a positive type function;

iii |F (x , y)|2 6 F (x , x)F (y , y).
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Functions of Positive Type

Proof

Take n = 2 in the definition of positive type functions. We have

a1a1F (x1, x1) + a1a2F (x1, x2) + a2a1F (x2, x1) + a2a2F (x2, x2) > 0, (1)

which amounts to

|a1|2F (x1, x1) + a1a2F (x1, x2) + a2a1F (x2, x1) + |a2|2F (x2, x2) > 0,

By taking a1 = a2 = 1 we obtain

p = F (x1, x1) + F (x1, x2) + F (x2, x1) + F (x2, x2) > 0,

where p is a positive real number.
Similarly, by taking a1 = i and a2 = 1 we have

q = −F (x1, x1) + iF (x1, x2)− iF (x2, x1) + F (x2, x2) > 0,

where q is a positive real number.
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Functions of Positive Type

Proof (cont’d)

Thus, we have

F (x1, x2) + F (x2, x1) = p − F (x1, x1)− F (x2, x2),

iF (x1, x2)− iF (x2, x1) = q + F (x1, x1)− F (x2, x2).

These equalities imply

2F (x1, x2) = P − iQ

2F (x2, x1) = P + iQ,

where P = p − F (x1, x1)− F (x2, x2) and Q = q + F (x1, x1)− F (x2, x2),
which shows the first statement holds.
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Functions of Positive Type

The second part of the theorem follows by applying the conjugation in the
equality of Definition.
For the final part, note that if F (x1, x2) = 0 the desired inequality holds
immediately. Therefore, assume that F (x1, x2) 6= 0 and take a1 = a ∈ R
and to a2 = F (x1, x2). We have

a2F (x1, x1) + aF (x1, x2)F (x1, x2)

+F (x1, x2)aF (x2, x1) + F (x1, x2)F (x1, x2)F (x2, x2) > 0,

which amounts to

a2F (x1, x1) + 2a|F (x1, x2)|+ |F (x1, x2)|2F (x2, x2) > 0.

If F (x1, x1) this trinomial in a must be non-negative for every a, which
implies

|F (x1, x2)|4 − |F (x1, x2)|2F (x1, x1)F (x2, x2) 6 0.

Since F (x1, x2) 6= 0, the desired inequality follows.
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Functions of Positive Type

Theorem

A real-valued function G : S × S −→ R is a positive type function if it is
symmetric and

n∑
i=1

n∑
i=1

aiajG (xi , xj) > 0 (2)

for a1, . . . , an ∈ R and x1, . . . , xn ∈ S .
In other words G is a positive type function iff (G (xi , xj)) is a
positive-definite matrix for any x1, . . . , xn ∈ S .
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Functions of Positive Type

Theorem

Let S be a non-empty set. If Ki : S × S −→ C for i = 1, 2 are functions of
positive type, then their pointwise product K1K2 defined by
(K1K2)(x , y) = K1(x , y)K2(x , y) is of positive type.
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Functions of Positive Type

Proof

Since Ki is a function of positive type, the matrix

An,Ki
(x1, . . . , xn) = (Ki (xj , xh))

is positive, where i = 1, 2. Thus, such matrices can be factored as

An,K1(x1, . . . , xn) = PHP and An,K2(x1, . . . , xn) = RHR

for i = 1, 2. Therefore, we have:
n∑

i=1

n∑
j=1

aiK1(xi , xj)K2(xi , xj)aj

=
n∑

i=1

n∑
j=1

aiK (xi , xj) ·

(
n∑

m=1

rmi rmj

)
aj

=
n∑

m=1

(
n∑

i=1

ai rmi

)
K (xi , xj)

 n∑
j=1

rjmaj

 > 0,

which shows that (K1K2)(x , y) is a function of positive type. 26 / 52



Functions of Positive Type

Theorem

Let S be a non-empty set. The set of functions of positive type is closed
with respect to multiplication with non-negative scalars and with respect
to addition.
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Functions of Positive Type

Which of the following functions are kernels?
For x, y ∈ Rn:

K (x, y) =
n∑

i=1

(xi + yi )

K is not a kernel. Indeed, for x =

(
1
0

)
and y =

(
0
2

)
we have

k11 = K (x, x) = 2, k12 = K (x, y) = 3 = k21, and k22 = K (y, y) = 4.
The matrix of K is (

k11 k12

k21 k22

)
=

(
2 3
3 4

)
.
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Functions of Positive Type

Its characteristic polynomial is

det

(
2− λ 3

3 4− λ

)
= λ2 − 6λ− 1.

and has a negative eigenvalue.
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Functions of Positive Type

K2(x, y) =
n∏

j=1

h

(
xi − c

a

)
h

(
yi − c

a

)
,

where h(x) = cos(1.75x)e−
x2

2 .
K2 is a kernel because it can be written as a product K2 = f (x)f (y).
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Functions of Positive Type

K3(x, y) = − (x, y)

‖ x ‖‖ y ‖
K3 is not a kernel because it has negative eigenvalues.
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Functions of Positive Type

K4(x, y) =
√
‖ x− y ‖2 +1

K4 is not a kernel. Indeed, for x =

(
1
0

)
and y =

(
0
1

)
the matrix

(
k11 k12

k21 k22

)
=

(
1 5
5 1

)
has a negative eigenvalue.
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Functions of Positive Type

Example

A special case of functions of positive type on Rn are obtained by defining
K : Rn × Rn −→ R as Kf (x, y) = f (x− y), where f : Rn −→ C is a
continuous function on Rn. K is translation invariant and is designated as
a stationary kernel.
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Functions of Positive Type

A function K : S × S −→ C defined by K (s, t) = (f (s), f (t)), where
f : S −→ H is of positive type, where H is a Hilbert space.

The reverse is also true:
If K is of positive type a special Hilbert space exists such that K can
be expressed as an inner product on this space (Aronszajn’s Theorem).

This fact is essential for data kernelization that is essential for support
vector machines.
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Functions of Positive Type

Theorem

(Aronszajn’s Theorem) Let K : X × X −→ R be a positive type kernel.
Then, there exists a Hilbert space H of functions and a feature mapping
Φ : X −→ H such that K (x, y) = (Φ(x),Φ(y)) for all x, y ∈ X .
Furthermore, H has the reproducing property which means that for every
h ∈ H we have

h(x) = (h,K (x, ·)).

The function space H is called a reproducing Hilbert space associated with
K .
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Functions of Positive Type

Definition

A continuous linear operator on a Hilbert space H is positive if
(h(x), x)) > 0 for every x ∈ H.
h is positive definite if it is positive and invertible.

If h is an operator on a space of functions and h(f ) is the function defined
as h(f )(x) =

∫
K (x , y)f (y) dy , then we say that K is the kernel of h.
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Functions of Positive Type

Theorem

(Mercer’s Theorem) Let K : [0, 1]× [0, 1] −→ R be a function
continuous in both variables that is the kernel of a positive operator h on
L2([0, 1]). If the eigenfunctions of h are φ1, φ2, . . . and they correspond to
the eigenvalues µ1, µ2, . . ., respectively then we have:

K (x , y) =
∞∑
j=1

µjφj(x)φj(y),

where the series
∑∞

j=1 µjφj(x)φj(y) converges uniformly and absolutely to
K (x , y).
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Functions of Positive Type

From the equality for the kernel of a positive operator

K (u, v) =
∞∑
n=0

anφn(u)φn(v)

with an > 0 we can constract a mapping Φ into a feature space (in this
case the potentially infinite `2) as

Φ(u) =
∞∑
n=0

√
anφn(u).
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Examples of Positive Definite Kernels

Example

For c > 0 a polynomial kernel of degree d is the kernel defined over Rn by

K (u, v) = (u′v + c)d .

As an example, consider n = 2, d = 2 and the kernel K (u, v) = (u′v + c)2.
We have:

K (u, v) = (u1v1 + u2v2 + c)2

= u2
1v

2
1 + u2

2v
2
2 + c2 + 2u1v1u2v2 + 2u1v1c + 2u2v2c ,
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Examples of Positive Definite Kernels

Example (cont’d)

Feature space is R6

K (u, v) =



u2
1

u2
2√

2u1u2√
2cu1√
2cu2

c



′

v2
1

v2
2√

2v1v2√
2cv1√
2cv2

c

 = Φ(u)′Φ(v) and Φ(x) =



x2
1

x2
2√

2x1x2√
2cx1√
2cx2

c
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Examples of Positive Definite Kernels

In general, features associated to a polynomial kernel of degree d are all
monomials of degree d associated to the original features. It is possible to
show that polynomial kernels of degree d on Rn map the input space to a
space of dimension

(n+d
d

)
.
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Examples of Positive Definite Kernels

For the kernel K (u, v) = (u′v + 1)2 we have

Φ

(
x1

x2

)
=



x2
1

x2
2√

2x1x2√
2x1√
2x2

1

 .

42 / 52



Examples of Positive Definite Kernels

(
−1
1

)

(
−1
−1

)

(
1
1

)

(
1
−1

)

√
2x1

√
2x1x2

For the kernel K(u, v) = (u′v + 1)2 we have

Φ

(
1
1

)
=



1
1√
2√
2√
2

1

 ,Φ

(
−1
−1

)
=



1
1√
2

−
√

2

−
√

2
1

 ,Φ

(
−1
1

)
=



1
1

−
√

2

−
√

2√
2

1

 ,Φ

(
1
−1

)
=



1
1

−
√

2√
2

−
√

2
1


For this set of points differences occur in the third,fourth, and fifth features.
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Examples of Positive Definite Kernels

Definition

To any kernel K we can associate a normalized kernel K ′ defined by

K ′(u, v) =

0 if K (u, u) = 0 or K (v , v) = 0,
K(u,v)√

K(u,u)
√

K(v ,v)
otherwise.

If K (u, u) 6= 0, then K ′(u, u) = 1.
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Examples of Positive Definite Kernels

Theorem

Let K be a positive type kernel. For any u, v ∈ X we have

K (u, v)2 6 K (u, u)K (v , v).

Proof: Consider the matrix

K =

(
K (u, u) K (u, v)
K (v , u) K (v , v)

)
K is positive, so its eigenvalues λ1, λ2 must be non-negative. Its
characteristic equation is∣∣∣∣K (u, u)− λ K (u, v)

K (v , u) K (v , v)− λ

∣∣∣∣ = 0

45 / 52



Examples of Positive Definite Kernels

Equivalently,

λ2 − (K (u, u) + K (v , v))λ+ det(K) = 0

Therefore, λ1λ2 = det(K) > 0 and this implies

K (u, u)K (v , v)− K (u, v)2 > 0.
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Examples of Positive Definite Kernels

Theorem

Let K be a positive type kernel. Its normalized kernel is a positive type
kernel.

Proof: Let {x1, . . . , xm} ⊆ X and c ∈ Rm. We prove that∑
i ,j cicjK

′(xi , xj) > 0.
If K (xi , xi ) = 0, then K (xi , xj) = 0 and, thus, K ′(xi , xj) = 0 for 1 6 j 6 m.
Thus, we may assume that K (xi , xi ) > 0 for 1 6 i 6 m. We have∑

i ,j

cicjK
′(xi , xj) =

∑
i ,j

cicj
K (xi , xj)√

K (xi , xi )K (xj , xj)

=
∑
i ,j

cicj
〈Φ(xi ),Φ(xj)〉

‖ Φ(xi ) ‖H‖ Φ(xj) ‖H

=
∣∣∣∣∣∣∑

i

ciΦ(xi )

‖ Φ(xi ) ‖H

∣∣∣∣∣∣ > 0,

where Φ is the feature mapping associated to K .
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Examples of Positive Definite Kernels

Example

Let K be the kernel

K (u, v) = e
u′v
σ2 ,

where σ > 0. Note that K (u,u) = e
‖u‖2

σ2 and K (v, v) = e
‖v‖2

σ2 , hence its
normalized kernel is

K ′(u, v) =
K (u, v)√

K (u, u)
√
K (v , v)

=
e

u′v
σ2

e
‖u‖2

2σ2 e
‖v‖2

2σ2

= e−
‖u−v‖2

2σ2
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Examples of Positive Definite Kernels

Example

For a positive constant σ a Gaussian kernel or a radial basis function is the
function K : Rn × Rn −→ R defined by

K (u, v) = e−
‖u−v‖2

2σ2 .

We prove that K is of positive type by showing that
K (x, y) = (φ(x), φ(y)), where φ : Rk −→ `2(R). Note that for this
example φ ranges over an infinite-dimensional space.
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Examples of Positive Definite Kernels

We have

K (x, y) = e−
‖x−y‖2

2σ2

= e−
‖x‖2+‖y‖2−2(x,y)

2σ2

= e−
‖x‖2

2σ2 · e−
‖y‖2

2σ2 · e
(x,y)

σ2
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Examples of Positive Definite Kernels

Taking into account that

e
(x,y)

σ2 =
∞∑
j=0

1

j!

(x, y)j

σ2j

we can write

e
(x,y)

σ2 · e−
‖x‖2

2σ2 · e−
‖y‖2

2σ2 =
∞∑
j=0

(x, y)j

j!σ2j
e−
‖x‖2

2σ2 · e−
‖y‖2

2σ2

=
∞∑
j=0

e
− ‖x‖

2

2jσ2

σ
√
j!

1
j

e
− ‖y‖

2

2jσ2

σ
√
j!

1
j

(x, y)

j

= (φ(x), φ(y)),

where

φ(x) =

. . . , e− ‖x‖
2

2jσ2

σj
√
j!

1
j

(
j

n1, . . . , nk

) 1
2

xn1
1 · · · x

nk
k , . . .

 .

j varies in N and n1 + · · ·+ nk = j .
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Examples of Positive Definite Kernels

Example

For a, b > 0, a sigmoid kernel is defined as

K (x, y) = tanh(ax′y + b)

With a, b > 0 the kernel is of positive type.
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