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On-Line vs. Off-Line Learning

For support vector machines the training set part of the data set to
be classified is presented to the algorithm, the classification function
is inferred, and then the algorithm is tested on the test set part of the
data set.

The perceptron constructs the classification function
contemporaneously with the analysis of the training set; this
exemplifies the paradigm of on-line learning.
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On-Line vs. Off-Line Learning

A training set is a sequence of pairs S = ((x1, y1), . . . , (x`, y`)), where
(xi , yi ) ∈ Rn × {−1, 1} for 1 6 i 6 n. If y = 1, x is a positive
example; if y = −1, x is a negative example.

The sequence S is linearly separable if there exists a hyperplane
w′∗x + b∗ = 0 such that w′∗xi + b∗ > 0 if yi = 1 and w′∗xi + b∗ < 0 if
yi = −1. Both cases are captured by the inequality
γi = yi (w

′
∗xi + b∗) > 0. The number γi is the functional margin of

(xi , yi ).

If γi > 0 then (xi , yi ) is classified correctly; otherwise, it is incorrectly
classified and we say that a mistake occurred. Without loss of
generality we may assume that∣∣∣∣∣∣w∗∣∣∣∣∣∣ = 1;

if this is not the case, the coefficients of the hyperplane w′∗x + b∗ = 0

may be rescaled to make
∣∣∣∣∣∣w∗∣∣∣∣∣∣ = 1.
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On-Line vs. Off-Line Learning

Terminology

The vector w (or w∗) is the weight vector.

The number b (or b∗) is the bias.
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The Algorithm

Also, we may assume that there exists γ > 0 such that

yi (w
′
∗xi + b∗) > γ. (1)

The algorithm builds a sequence of weight vectors (wk) and a sequence of
bias values (bk).
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The Algorithm

How does it work?

Upon examining the first m − 1 training examples

(x1, y1), . . . , (xm−1, ym−1)

and making the predictions y1, . . . , ym−1 (some of which may be
erroneous, in which cases modification are applied to parameters
maintained by the algorithm), the algorithm is presented with the
input xm.

Asumming that at that moment the parameters of the algorithm are
wk and bk , an error is committed if yi (w

′
kxi + bk) < 0. In this case, a

correction of the parameters of the algorithm is applied; otherwise,
the algorithm continues by analyzing the next example.

The processing of the sequence of pairs ((x1, y1), . . . , (x`, y`)) that
occurs between two consecutive errors is referred to as an epoch of
the algorithm.
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The Algorithm

Let R be the minimum radius of a closed ball centered in 0, that contains
all points xi , that is,

R = max{‖ xi ‖ | 1 6 i 6 `}

and let η be a parameter called the learning rate.
If a correction is applied, the new weight vector is defined as:

wk+1 = wk + ηyixi ,

while the new bias value will be

bk+1 = bk + ηyiR
2.

In other words, the correction of the weight vector is

∆wk = wk+1 −wk = ηyixi

and the correction of the bias is

∆bk = ηyiR
2.
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The Algorithm

The Perceptron Algorithm

input: labelled training sequence S of length ` and learning rate η;
output: weight vector w and parameter b defining classifier

initialize w0 = 0, b0 = 0, k = 0, R = max{‖ xi ‖ | 1 6 i 6 `}, errors = 0;
repeat

errors← 0
for (i = 1 to `) do {

if (yi (w
′
kxi + bk) < 0) {

wk+1 ← wk + ηyixi ;
bk+1 ← bk + ηyiR

2;
k ← k + 1;
errors← 1;

}
}

until (errors == 0); # (no new errors occur in the current epoch)
return k, w∗ = wk and b∗ = bk where k is the number of mistakes
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The Algorithm

Theorem

S = ((x1, y1), . . . , (x`, y`)) be a training sequence that is linearly separable,
and let R = max{‖ xi ‖ | 1 6 i 6 `}. Suppose there exists a weight vector
w∗ and a bias b∗ such that

‖ w∗ ‖= 1 and yi (w
′
∗xi + b∗) > γ,

for 1 6 i 6 `. Then, the number of mistakes made by the algorithm is at
most (

2R

γ

)2

.
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The Algorithm

Proof

As we noted before, we may assume that ‖ w∗ ‖= 1.
Let k be the update counter and let wk be the weight vector when the
algorithm makes error k on example xi . Then,

wk+1 = wk + ηyixi

bk+1 = bk + ηyiR
2.

Let w̃k =

(
wk
bk
R

)
, and w̃∗ =

(
w∗
b∗
R

)
, and x̃i =

(
xi
R

)
.

Observe that ‖ x̃i ‖2=‖ x ‖2 +R2.
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The Algorithm

Proof (cont’d)

Note that

w̃k+1 =

(
wk+1
bk+1

R

)
=

(
wk + ηyixi
bk+ηyiR

2

R

)

=

(
wk
bk
R

)
+ ηyi

(
xi
R

)
=

(
wk
bk
R

)
+ x̃i

= w̃k + ηyi x̃i .
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The Algorithm

Proof (cont’d)

Since yi w̃
′
∗x̃i = yi (w

′
∗xi + b∗) > γ, and w̃k+1 = w̃k + ηyi x̃i it follows that:

w̃∗w̃k+1 = w̃∗w̃k + ηyi w̃
′
∗wk > w̃′∗w̃k + ηγ.

because yi w̃
′
∗x̃i > γ.

By repeated application of the above inequality we obtain

w̃∗wk > kηγ.
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The Algorithm

Proof (cont’d)

If the kth error occurs on input xi we have w̃k+1 = w̃k + ηyi x̃i . This
implies

‖ w̃k+1 ‖2 = w̃′k+1w̃k+1 = (w̃′k + ηyi x̃
′
i )(w̃k + ηyi x̃i )

= ‖ w̃k ‖2 +2ηyi w̃
′
k x̃i + η2 ‖ x̃i ‖2

(because yi w̃
′
kxi < 0 when an error occurs and y2

i = 1)

6 ‖ w̃k ‖2 +η2 ‖ x̃i ‖2

6 ‖ w̃k ‖2 +η2(‖ xi ‖2 +R2)

6 ‖ w̃k ‖2 +2η2R2,

where we took into account that ‖ x̃i ‖2=‖ x ‖2 +R2.
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The Algorithm

Proof (cont’d)

Therefore, ‖ w̃k ‖26 2kη2R2, hence ‖ w̃k ‖6 ηR
√

2k . By combining the
equalities

w̃∗wk > kηγ and ‖ w̃k ‖6 ηR
√

2k

we obtain

‖ w̃∗ ‖ ηR
√

2k >‖ w̃∗ ‖ · ‖ w̃k ‖> w̃′∗w̃k > kηγ,

which imply

k 6 2

(
R

γ

2)
‖ w̃∗ ‖26

(
2R

γ

)2

because b∗ 6 R, hence ‖ w̃∗ ‖26‖ w∗ ‖2 +1 = 2.
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