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The Bernoulli Distribution

A random variable X has a Bernoulli distribution if

1 0
X
<P 1—P>

We write this as X ~ Bernoulli(p).
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Binomial Distribution

Example

If we flip a coin that has the probability p of coming up heads and 1 — p of
coming up tails the random variable that describes this experiment has a
Bernoulli distribution.
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Binomial Distribution

Binomial Distribution

A random variable X has a Binomial distribution if

(0 1 : k e
X'<(1—p)” np(L—p)"t - (QPFA=p)nE p”>

We write this as X ~ Binomial(n, p).
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Binomial Distribution

If X1,...,X, are independent random variables such that
X; ~ Bernoulli(p), then X; + - - - + X, ~ Binomial(n, p).
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Binomial Distribution

Theorem
If X ~ Binomial(n, p), then E[X] = np and var(X) = np(1 — p). J
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Binomial Distribution

Binomial distributions can be drawn with this code:

k <- seq(from=0,by=1,t0=20)

bin20p05 <- choose(20,k)*0.57k*0.5" (20-k)
bin20p02 <- choose(20,k)*0.27k*0.8" (20-k)
mylayout <- c(1,2)

layout (mylayout)
plot(k,bin20p05,pch=17,sub="Binomial dist. for p
plot (k,bin20p02,pch=19,sub="Binomial dist. for p
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Binomial Distribution

The previous slide code results in the graphs shown below:
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Binomial Distribution

Note that if X is a Bernoulli random variable with parameter p,
X ~ Bernoulli(p), we have:

P(X = k)= p*(1 - p)**

for k € {0,1}.
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Binomial Distribution

As we saw in the previous group of slides, linear regression is not suitable
for predicting a probability p because it may lead to values outside the
interval [0, 1].

So, we replace p with the odds ratio

p
dd = —
odds(p) = 12—
and to the /ogit function
p
Up) =1
(p) "1,
for p € (0,1). Note that limp_04 ¢(p) = —o0 and limp_,1— K(p) = 0.
If n is a value of the logit function, n = logit(p), then p = Hep = L(p).
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The likelihood function

The likelihood function is a basic concept in statistical inference.
Suppose that we have a statistical model of an experiment involving a
binomially distributed variable with a parameter p and we record the
results of n experiments xi, ..., x,. These results are assummed to be
statistically independent, so their probability is

P(x1,...,xnlp) = f(x1|p)f(x2|p) - - - f(xn|P)

The notation “|p" means that the value of the parameter is supposed to
be p.
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Binomial Distribution

Starting now from a sequence xi, ..., x, we seek to determine p such that
the probability P(xi, ..., xs|p) is maximized. To reflect this new approach
we consider the likelihood function L defined as

L(plx1, ..., xn) = P(x1,..., xn|lp) = f(xa|p)f(x2|p) - - - f(xn|P)
and we seek p* that maximizes L(p|xi,...,x,), that is
pr(x1; ..., Xxn) = argmax,L(p|x1, . .., Xn)

This is the maximum likelihood estimate of p.
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Binomial Distribution

Since p*(xi, ..., xn) = argmax,L(p|x1, ..., x,), it follows that we also have
pr(x1; ..., xn) = argmax,al(plxa, ..., Xn)

for any positive a.. Thus, the value p* does not change if we multiply the
likelihood function by a positive constant.
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Binomial Distribution

Example

The maximum likelihood for Bernoulli trials:
n
L(phxa, - xa) = [[ P91 = p)* 7,
i=1

SO
n

InL(p|x1,...,%n) = Z(x; Inp+(1—x)In(1—p)).
i=1
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Binomial Distribution

By differentiating In L(p, x1, . .., Xp) with respect to p and setting

7&(”’22”"’(”) = 0 we have
1< 1 <
*ZX,'—i (1-x;)=0,
P P

hence

achieves the maximum of the log likelihood. This is equivalent to

p Ejﬁzlxi

logit(p) = T—p 7-5" %
=1
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Binomial Distribution

Maximum Likelihood for the Binomial Distribution

Example
The likelihood for a binomial distribution is:

n nl

L(p‘Xl, e 7Xn) = H mpxi(l _ p)nfx,-.

With the exception of the factor #l), the likelihood is the same as the

Xi
likelihood for n independent Bernoulli trials; note that the factor WLX),

does not depend on p and does not affect the maximum likelohood
estimate.

16/17



Binomial Distribution

As we saw, we seek p such that logit(p) = r'x.

Maximum Likelihood (ML) Principle: choose as an estimate the parameter
value p* which would maximise the probability of what we have already
observed, or the likelihood, or the logarithm of the likelihood (all
equivalent).

Since p* = argmaxL(p,x) = argmaxlog L(p, x), it follows that any
constant multiple of the likelihood produces the same result.
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