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Partition Entropy

The notion of entropy is a probabilistic concept that lies at the foundation
of information theory.
Our goal is to define entropy in an algebraic setting by introducing the
notion of entropy of a partition of a finite set. This approach allows us to
take advantage of the partial order that is naturally defined on the set of
partitions. Actually, we introduce a generalization of the notion of entropy
that has the Gini index and Shannon entropy as special cases.
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Partition Entropy

In classical information theory the Shannon entropy of a probability
distribution p = (p1, . . . , pm), where pi > 0 for 1 6 i 6 m and
p1 + · · ·+ pm = 1 is defined as

H(p1, . . . , pm) = −
m∑
i=1

pi log2 pi . =
m∑
i=1

pi log2
1

pi
.

If π = {B1, . . . ,Bm} is a partition of a set S , then a probability
distribution pπ can be defined as

pπ =

(
|B1|
|S |

, · · · , |Bm|
|S |

)
.

Accordingly, we can define the Shannon entropy of a partition π as:

H(π) = −
m∑
i=1

|Bi |
|S |

log2
|Bi |
|S |

.
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Partition Entropy

Example

Let S be a set containing ten elements and let π1, π2, π3, π4 be the four
partitions shown below.

q q q q q q q q q q
q qq q q q qq q q
q qq q q q qq qqq q q q q qq qqq

H(π1) = 2.32

H(π2) = 2.17

H(π3) = 2.04

H(π4) = 1.96
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Partition Entropy

The partition π1, which is the most uniform (each block containing two
elements), has the largest entropy. At the other end of the range, partition
π4 has a strong concentration of elements in its fourth block and the
lowest entropy.
The entropy can be viewed as a measure of impurity of a partition.
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Partition Entropy

Definition

The Gini index of π is the number

gini(π) = 1−
m∑
i=1

(
|Bi |
|S |

)2

.

Like Shannon entropy, the Gini index can be used to evaluate the
uniformity of the distribution of the elements of S in the blocks of π
because both H(π) and gini(π) increase with the uniformity of the
distribution of the elements of S .
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Partition Entropy

Example

Results concerning the Gini index are shown next:

q q q q q q q q q q
q qq q q q qq q q
q qq q q q qq qqq q q q q qq qqq

gini(π1) = 0.80

gini(π2) = 0.79

gini(π3) = 0.72

gini(π4) = 0.68

8 / 40



Partition Entropy

Generalized Entropy

Definition

Let π = {B1, . . . ,Bm} be a partition of a set S and let β > 1. The
β-entropy of a partition π is the number

Hβ(π) =
1

1− 21−β ·

(
1−

m∑
i=1

(
|Bi |
|S |

)β
)
.

If β = 2, we obtain H2(π), which is twice the Gini index,

Hβ(S , π) = 2 ·

(
1−

m∑
i=1

(
|Bi |
|S |

)2
)
.

The Gini index, gini(π) = 1−
∑m

i=1

(
|Bi |
|S |

)2
, is widely used in machine

learning and data mining.
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Partition Entropy

When we take limβ→1Hβ(π) we obtain the Shannon entropy! Indeed, we
can write:

lim
β→1
Hβ(π)

= lim
β→1

1

1− 21−β ·

(
1−

m∑
i=1

(
|Bi |
|S |

)β
)

= lim
β→1

−
∑m

i=1

(
|Bi |
|S|

)β
ln |Bi |
|S |

21−β ln 2

(by l’Hôpital Rule)

= −
m∑
i=1

|Bi |
|S |

log2
|Bi |
|S |

.
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Conditional Entropy and Entropy Gain

Reminder:

Definition

Let π ∈ PART(S) and let C ⊆ S .
The trace of π on C is the partition πC of C given by:

πC = {B ∩ C |B ∈ π such that B ∩ C 6= ∅}.

Clearly, πC ∈ PART(C ); also, if C is a block of π, then πC = ωC .
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Conditional Entropy and Entropy Gain

Definition

Let π, σ ∈ PART(S) and let σ = {C1, . . . ,Cn}. The β-conditional entropy
of the partitions π, σ ∈ PART(S) is the function Hβ : PART(S)2 −→ R>0

defined by

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S |

)β

Hβ(πCj
).

The Shannon conditional entropy is:

H(π|σ) =
n∑

j=1

|Cj |
|S |
H(πCj

).

The Shannon conditional entropy is a limit case of the β-condional
entropy, that is, H(π|σ) = limβ→1Hβ(π|σ).
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Conditional Entropy and Entropy Gain

Note that for π ∈ PART(S) we have:

Hβ(π|ωS) = Hβ(π)

and that

Hβ(ωS |σ) =
n∑

j=1

(
|Cj |
|S |

)β

Hβ(ωCj
)

= 0,

Hβ(π|αS) =
n∑

j=1

1

|S |
H(π{xj}) = 0

for every partition π ∈ PART(S).
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Conditional Entropy and Entropy Gain

For π = {B1, . . . ,Bm} and σ = {C1, . . . ,Cn}, the conditional entropy can
be written explicitly as

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S |

)β m∑
i=1

1

1− 21−β

[
1−

(
|Bi ∩ Cj |
|Cj |

)β
]

=
1

1− 21−β

n∑
j=1

((
|Cj |
|S |

)β

−
m∑
i=1

(
|Bi ∩ Cj |
|S |

)β
)
. (1)

For the special case when π = αS , we can write

Hβ(αS |σ) =
n∑

j=1

(
|Cj |
|S |

)β

Hβ(αCj
) =

1

1− 21−β

 n∑
j=1

(
|Cj |
|S |

)β

− 1

|S |β−1

 .

(2)
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Conditional Entropy and Entropy Gain

If σ, π are two partitions of S and π > σ, then σ is more informative than
π regarding the elements of S . This intuition is captured by the following
statement.

Theorem

Let S be a finite set and let π, σ ∈ PART(S). We have Hβ(π|σ) = Hβ(π)
if and only if π > σ.
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Conditional Entropy and Entropy Gain

Proof

Suppose that σ = {C1, . . . ,Cn}. If π > σ, each block of σ is included in a
block of π and, therefore, we have πCj

= ωCj
for 1 6 j 6 n. Consequently,

we have:

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S |

)β

Hβ(ωCj
) = 0.

Conversely, suppose that

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S |

)β

Hβ(πCj
) = 0.

This implies Hβ(πCj
) = 0 for 1 6 j 6 n, which means that πCj

= ωCj
for

1 6 j 6 n by a previous remark. This means that every block Cj of σ is
included in a block of π, so π > σ.
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Conditional Entropy and Entropy Gain

Definition

Let S ,T be two disjoint sets and let σ = {B1, . . . ,Bm} ∈ PART(S) and
τ = {C1, . . . ,Cn} ∈ PART(T ). The sum of the partitions σ and τ is the
partition π + σ of the set S ∪ T given by:

π + σ = {B1, . . . ,Bm,C1, . . . ,Cn}.
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Conditional Entropy and Entropy Gain

B1

B2

B3

C1

C2

C3

C4

S T

S ∪ T

π = {B1,B2,B3} ∈ PART(S), σ = {C1,C2,C3,C4} ∈ PART(T )
π + σ = {B1,B2,B3,C1,C2,C3,C4} ∈ PART(S ∪ T ).
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Conditional Entropy and Entropy Gain

Intersection of Two Partitions

Definition

Let now π, τ be two partitions in PART(S), where

π = {B1, . . . ,Bm},
τ = {D1, . . . ,Dp},

The partition π ∧ τ ∈ PART(S) is

π ∧ τ = {Bi ∩ Dj | Bi ∩ Dj 6= ∅}.
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Conditional Entropy and Entropy Gain

Example

Let S = {x1, x2, x3, x4, x5, x6, x7} and let

π = {{x1}, {x2, x3, x4, x5, x6}, {x7}}
τ = {{x1, x2, x3}, {x4, x5, x6, x7}}.

We have
π ∧ τ = {{x1}, {x2, x3}, {x4, x5, x6}, {x7}}.
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Conditional Entropy and Entropy Gain

The next statement is a generalization of a well-known property of
Shannon’s entropy.

Theorem

Let π and σ be two partitions of a finite set S . We have

Hβ(π ∧ σ) = Hβ(π|σ) +Hβ(σ) = Hβ(σ|π) +Hβ(π),
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Conditional Entropy and Entropy Gain

Proof

Let π = {B1, . . . ,Bm} and σ = {C1, . . . ,Cn} be two partitions of S .
We have

Hβ(π ∧ σ)−
n∑

j=1

(
|Cj |
|S |

)β

Hβ(πCj
)

=
1

1− 21−β

1−
∑
i

∑
j

(
|Bi ∩ Cj |
|S |

)β


− 1

1− 21−β

∑
j

(
|Cj |
|S |

)β
(

1−
∑
i

(
|Bi ∩ Cj |
|Cj |

)β
)

= Hβ(σ).
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Conditional Entropy and Entropy Gain

From the result established above

Hβ(π ∧ σ) =
n∑

j=1

(
|Cj |
|S |

)β

Hβ(πCj
) +Hβ(σ),

we obtain
Hβ(π ∧ σ) = Hβ(π|σ) +Hβ(σ).

The second equality has a similar proof.
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Conditional Entropy and Entropy Gain

Definition

Let π, σ be two partitions of a set S , where σ = {C1, . . . ,Cn}.
The β-information gain of σ is the number

gainβ(π, σ) = Hβ(π)−Hβ(π|σ).
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Conditional Entropy and Entropy Gain

Let π ∈ PART(S), and let σ = {C1, . . . ,Cn} ∈ PART(S). If β → 1 the
information gain of the Shannon entropy is

gain(π, σ) = H(π)−H(π|σ)

= H(π)−
n∑

i=1

|Cj |
|S |
H(πCj

).
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Conditional Entropy and Entropy Gain

Note that π > σ, where π, σ ∈ PART(S), we have Hβ(π|σ) = Hβ(π) if
and only if

gainβ(π, σ) = Hβ(π)−Hβ(π|σ) = 0,

by the Theorem on slide 21.
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Partitions Defined on Tables

Each attribute A of a table partitions the rows of a table into blocks of
rows that have equal values for that attribute. The partition that
corresponds to A is denoted by πA.

Example

The partitions of the form πA of the Tennis table are: are

πOutlook = {{1, 2, 8, 9, 11}, {3, 7, 12}, {4, 5, 6, 10, 13, 14}},
πTemperature = {{1, 2, 3, 13}, {4, 8, 10, 11, 12, 14}, {5, 6, 7, 9}},
πHumidity = {{1, 2, 3, 4, 8, 12, 14}, {5, 6, 7, 9, 10, 11, 13}},
πWind = {{1, 3, 4, 5, 8, 9, 10, 13}, {2, 6, 7, 11, 12, 14}},

πPlayTennis = {{1, 2, 6, 8, 14}, {3, 4, 5, 7, 9, 10, 11, 12, 13}}.

The PlayTennis attribute is the decision attribute.
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Partitions Defined on Tables

To decide which attribute is the best classifier we use the information gain.
Let T be a table having D as the decision attribute and let A be another
attribute of T . The set of all tuples of T is denoted by |S |.
Let πD be the partition determined by the attribute D. In our example,

πPlayTennis = {{1, 2, 6, 8, 14}, {3, 4, 5, 7, 9, 10, 11, 12, 13}}.

Suppose that Dom(A) = {a1, . . . , ak}. Define SA=ai as the set of tuples
whose A-component equals ai :

SA=ai = {t | t[A] = ai}.

The entropy of the decision attribute is H(πD).
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Partitions Defined on Tables

The information gain of D relative to an attribute A, where
Dom(A) = {a1, . . . , ak} is:

gain(D,A) = H(πD)−
k∑

i=1

|SA=ai |
|S |

H((πD)SA=ai
).
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Partitions Defined on Tables

Using again the PlayTennis example

Outlook Temperature Humidity Wind PlayTennis
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cool normal weak yes
6 rain cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes
10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 rain hot normal weak yes
14 rain mild high strong no

30 / 40



Partitions Defined on Tables

Example

For
πPlayTennis = {{1, 2, 6, 8, 14}, {3, 4, 5, 7, 9, 10, 11, 12, 13}}.

we have:

(πPlayTennis)SWind=weak
= {{1, 8}, {3, 4, 5, 9, 10, 13}}

(πPlayTennis)SWind=strong
= {{2, 6, 14}, {7, 11, 12}},

hence

gain(PlayTennis,Wind)

= H(πPlayTennis)− 8

14
H
(

(πPlayTennis)SWind=weak

)
− 6

14
H
(

(πPlayTennis)SWind=strong

)
= 0.940− 8

14
· 0.811− 6

14
· 1.00 = 0.048.
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Partitions Defined on Tables

We use information gain to select the best attribute in each step in
expanding the tree.
Denote by [p+, q−] the composition of a set that contains p positive cases
(PlayTennis is YES) and q negative cases (PlayTennis is NO).
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Partitions Defined on Tables

The information gains are:

gain(PlayTennis,Outlook) = 0.246;
gain(PlayTennis,Humidity) = 0.151;
gain(PlayTennis,Wind) = 0.048;
gain(PlayTennis,Tenerature) = 0.029;

The Outlook provides the largest information gain, and so is the best
predictor for PlayTennis.

Outlook is selected as the decision attribute and three branches are
created corresponding to the values sunny, overcast, and rain.
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Partitions Defined on Tables

In the partial decision tree the Overcast node has only positive examples,
so it is a leaf.

Outlook

? ?

Overcast

Rain Sunny

Yes

S = [4+, 0−] S = [2+, 3−]S = [3+, 2−]

gain(Sunny, Humidity) = 0.970;
gain(Sunny, Temperature) = 0.570;
gain(Sunny, Wind) = 0.019;

34 / 40



Partitions Defined on Tables

The final decision tree:

Outlook

Wind Humidity

No Yes No Yes

Yes

Rain

Overcast

Sunny

Strong Weak High Normal
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The rpart Package

We begin by introducing data as a tibble, by loading the package tibble,
and using the function tribble:

> d <- tribble(

~Outlook, ~Temperature, ~Humidity, ~Wind, ~PlayTennis,

"sunny" , "hot" , "high" , "weak" , "no",

"sunny" , "hot" , "high" , "strong" , "no",

"overcast" , "hot" , "high" , "weak" , "yes",

"rain" , "mild" , "high" , "weak" , "yes",

"rain" , "cool" , "normal" , "weak" , "yes",

"rain" , "cool" , "normal" , "strong" , "no",

"overcast" , "cool" , "normal" , "strong" , "yes",

"sunny" , "mild" , "high" ,"weak" , "no",

"sunny" , "cool" , "normal" ,"weak" , "yes",

"rain" , "mild" , "normal" ,"weak" , "yes",

"sunny" , "mild" , "normal" ,"strong" , "yes",

"overcast" , "mild" , "high" ,"strong" , "yes",

"rain" , "hot" , "normal" ,"weak" , "yes",

"rain" , "mild" , "high" , "strong" , "no"
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The rpart Package

The tibble d is converted to a data frame using

> d1 <- data.frame(d)

Then, we need to load the packages rpart and rpart.plot

> library(rpart)

> library(rpart.plot)
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The rpart Package

Finally, we obtain the decision tree using

> fit <- rpart(PlayTennis ~ Outlook + Wind + Humidity,

+ data=d1,

+ control=rpart.control(minsplit=3))

> rpart.plot(fit,type=2)
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The rpart Package

The decision tree can be saved in the directory of your choice as, say, a
pdf file.

Humidity = high

Outlook = sunny Wind = strong

Outlook = rain

yes
0.64

100%

no
0.43
50%

no
0.00
21%

yes
0.75
29%

yes
0.86
50%

yes
0.67
21%

no
0.00
7%

yes
1.00
14%

yes
1.00
29%

yes no
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The rpart Package

Note that the use of the rpart function may result in a decision tree
different from the one we constructed by hand.

The parameter control that we used in the call of the rpart

function prescribes the minimum size of the set of tuples in a node
that may be split; in our case, we will not split nodes that contain
fewer than 3 records;

The order of node splitting may be different; the function rpart

starts with the node Humidity rather than Outlook; both provide
the same gain.
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