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Suppose that (2, &, P) is a probability space, £ is a family of subsets of
known as events, and P is a probability. The elements of Q2 are elementary
events.

If B is an event such that P(B) > 0 one can define the probability of an
event A conditioned on B as

P(AN B)

P(AIB) = =55

Note that if A, B are independent events, then P(A|B) = P(A).



The Characteristic Function of an Event

If Ais an event, then the function 14 : 2{0,1} defined by

1 ifweA,
1a(w) =
Al) {O otherwise,

is a random variable,

0 1
b (1 pea)
Note that E(14) = P(A) and var(14) = P(A)(1 — P(A).



Recapitulation of Conditional Probabilities

@ The product rule or the Bayes theorem:
P(ANA B) = P(A|B)P(B) = P(B|A)P(A).
@ The sum rule:
P(AvV B) = P(A)+ P(B) — P(AA B).
@ The total probability rule: if Ay,..., A, are mutually exclusive and

> 7, P(Ai) =1, then

P(B) = Z P(B|A))P(A).



In ML we are often interested in determining the best hypothesis from
some space H given the observed data S.
“Best” means in this context, the most probable hypothesis given

o the data S, and

@ any initial knowledge of prior probabilities of hypotheses in H.
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@ “Prior probabilities” (or a priori probabilities) mean probabilities of
hypotheses before seeing the data S.

@ "Posterior probabilities” mean probabilities of hypotheses after seeing
the data S.

If no prior knowledge exist all hypotheses have the same probability.
In ML we are interested to compute P(h|S) that h holds given the
observed training data S.



Bayes' Theorem in ML

For a sample S and a hypothesis h we have

P(S[h)P(h)

PIHS) = i

Note that:
@ P(h|S) increases with P(h) and with P(S|h).
o P(h|S) decreases with P(S) because the more probable is that S will
be observed independent of h, the less evidence S provides for h.



Learning Scenario

Consider some set of candidate hypotheses H and seek the most probable
hypothesis given the observed data S.

Any such maximally probabile hypothesis is called a maximum a posteriori
hypothesis, MAP.

hmap is

hwap = argmax,cyP(h|S)

P(S|h)P(h)
P(S)

= argmax,cyP(S|h)P(h)

= argmaxpcy

because P(S) is a constant.



Maximum Likelihood Hypothesis

In some cases we assume that every hypothesis of H is apriori equally
probable, that is, P(h;) = P(hj) for all h;, hj € H.
Now,

hmap = argmax,,cy P(S|h).
P(S|h) is known as the likelihood of S given h.
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Example

A medical diagnosis problem:
The hypothesis space contains two hypotheses:

@ hg: patient has no cancer;
@ hyp: patient has cancer.
An imperfect diagnosis test that has two outcomes; @ and ©.

P(®|h) =0.98 P(®|ho) = 0.03
P(c|h) =0.02 P(&]h) =097 -

Prior knowlege: Only 0.08% of population has cancer; 99.2% does not.
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Example (cont'd)

The test returns @. Should we conclude that the patient has cancer?
The MAP hypothesis is obtained as

hmap = argmax,cy P(S|h)P(h).

P(®|h1)P(h1) = 0.98+0.008 = 0.0078,
P(|ho)P(hy) = 0.03%0.992 = 0.0298.

The MAP hypothesis is hg; the patient has no cancer.
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Bayes Theorem and Concept Learning

Brute-Force Bayes Concept Learning

@ For each hypothesis h € H calculate the posterior probablity:

P(h|S) = ’W

@ Qutput the hypothesis hyap with

hymap = argmax,,cy P(h|S).
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Bayes Theorem and Concept Learning

Assumption for the Brute-Force Bayes Concept Learning:
e Training data is S = {(x1, 1), -, (Xm,¥m)}, where y; = f(x;) for
1 < i< mand it is noise-free.
@ The target hypothesis is contained in H.

@ We have no apriori reason to believe that any hypothesis is more
probable than the other
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Bayes Theorem and Concept Learning

Consequences
e P(h)= ﬁ;
o
P(SIh) = 1 ify,-:.h(x,-) for1<i<m
0 otherwise;

The probability of S given his 1 if S is consistent with h and 0
otherwise.
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Bayes Theorem and Concept Learning

Let VSH s be the subset of hypotheses of H that is consistent with S.

e If S is inconsistent with h then P(h|S) = O,',"zg;) =0.

o If S is consistent with h then

1 L1
Vg 1o 1

P(S) 'VfT”f' ~ [VSusl

P(h|S) =

16/1



Bayes Theorem and Concept Learning

Since the hypotheses are mutually exclusive (that is, P(h; A hj) = 0 if
i # j), by the total probability law:

P(S) = ) P(S|h)P(h;

h;eH
1
- Z ﬁ Z 0 IH| |
hEVSy s hgVSy. s
hGVSHS |H|

Note that under this setting every consistent hypothesis is a MAP
hypothesis.
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