
Clustering - II

Prof. Dan A. Simovici

UMB

1 / 23



Outline

1 Hierarchies

2 Dendrograms

2 / 23



Hierarchies

Definition

Let S be a set. A hierarchy on the set S is a collection of sets H ⊆ P(S)
that satisfies the following conditions:

i the members of H are nonempty sets;

ii S ∈ H;

iii for every x ∈ S , we have {x} ∈ H;

iv if H,H ′ ∈ H and H ∩H ′ 6= ∅, then we have either H ⊆ H ′ or H ′ ⊆ H.
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Hierarchies

Trees and Hierarchies

A standard technique for constructing a hierarchy on a set S starts with a
rooted tree (T , v0) whose nodes are labeled by subsets of the set S . Let V
be the set of vertices of the tree T . The function µ : V −→ P(S), which
gives the label µ(v) of each node v ∈ V , is defined as follows:

i the tree T has |S | leaves, and each leaf v is labeled by a distinct
singleton µ(v) = {x} for x ∈ S ;

ii if an interior vertex v of the tree has the descendants v1, v2, . . . , vn,
then µ(v) =

⋃n
i=1 µ(vi ).
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Hierarchies

The set of labels HT of the rooted tree (T , v0) forms a hierarchy on S .

Each singleton {x} is a label of a leaf.

Every vertex is labeled by the set of labels of the leaves that descend
from that vertex.

The root v0 of the tree is labeled by S .

Suppose that H,H ′ are labels of the nodes u, v of T , respectively. If
H ∩ H ′ 6= ∅, then the vertices u, v have a common descendant. In a tree,
this can take place only if u is a descendant of v or v is a descendant of u;
that is, only if H ⊆ H ′, or H ′ ⊆ H, respectively.
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Hierarchies

Example

Let S = {s, t, u, v ,w , x , y} and let T be a tree. It is easy to verify that the
family of subsets of S that label the nodes of T is a hierarchy on the set S .

H = {{s}, {t}, {u}, {v}, {w}, {x}, {y},
{s, t, u}, {w , x}, {s, t, u, v}, {w , x , y}, {s, t, u, v ,w , x , y}}
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Hierarchies

Chains of partitions defined on a set generate hierarchies, as we show next.

Theorem

Let S be a set and let C = (π1, π2, . . . , πn) be an increasing chain of
partitions (PART(S),6) such that π1 = αS and πn = ωS . Then, the
collection HC =

⋃n
i=1 πi that consists of the blocks of all partitions in the

chain is a hierarchy on S.
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Hierarchies

Proof

The blocks of any of the partitions are nonempty sets, so HC satisfies the
first condition of the Definition on Slide 3.
We have S ∈ HC because S is the unique block of πn = ωS . Also, since
all singletons {x} are blocks of αS = π1, it follows that HC satisfies the
second and the third conditions of Definition on Slide3.
Finally, let H and H ′ be two sets of HC such that H ∩ H ′ 6= ∅. It is clear
that these two sets cannot be blocks of the same partition. Thus, there
exist two partitions πi and πj in the chain such that H ∈ πi and H ′ ∈ πj .
Suppose that i < j . Since every block of πj is a union of blocks of πi , H

′

is a union of blocks of πi and H ∩ H ′ 6= ∅ means that H is one of these
blocks. Thus, H ⊆ H ′.
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Hierarchies

Theorem on Slide 7 can be stated in terms of chains of equivalences; we
give the following alternative formulation for convenience.

Theorem

Let S be a finite set and let (ρ1, . . . , ρn) be a chain of equivalence relations
on S such that ρ1 = ιS and ρn = θS . Then, the collection of blocks of the
equivalence relations ρr (that is, the set

⋃
16r6n S/ρr ) is a hierarchy on S.
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Hierarchies

Define the relation “≺” on a hierarchy H on S by H ≺ K if H,K ∈ H,
H ⊂ K , and there is no set L ∈ H such that H ⊂ L ⊂ K .

Lemma

Let H be a hierarchy on a finite set S and let L ∈ H. The collection
PL = {H ∈ H | H ≺ L} is a partition of the set L.

Proof: We claim that L =
⋃
PL. Indeed, it is clear that

⋃
PL ⊆ L.

Conversely, suppose that z ∈ L but z 6∈
⋃
PL. Since {z} ∈ H and there is

no K ∈ PL such that z ∈ K , it follows that {z} ∈ PL, which contradicts
the assumption that z 6∈

⋃
PL. This means that L =

⋃
PL.

Let K0,K1 ∈ PL be two distinct sets. These sets are disjoint since
otherwise we would have either K0 ⊂ K1 or K1 ⊂ K0, and this would
contradict the definition of PL.
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Hierarchies

Theorem

Let H be a hierarchy on a set S. The graph of the relation ≺ on H is a
tree whose root is S; its leaves are the singletons {x} for every x ∈ S.

Proof.

Since ≺ is an antisymmetric relation on H, it is clear that the graph
(H,≺) is acyclic. Moreover, for each set K ∈ H, there is a unique path
that joins K to S , so the graph is indeed a rooted tree.
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Hierarchies

Definition

Let H be a hierarchy on a set S . A grading function for H is a function
h : H −→ R that satisfies the following conditions:

i h({x}) = 0 for every x ∈ S , and

ii if H,K ∈ H and H ⊂ K , then h(H) < h(K ).

If h is a grading function for a hierarchy H, the pair (H, h) is a graded
hierarchy.
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Hierarchies

Example

For the hierarchy H defined in Example on Slide 6 on the set
S = {s, t, u, v ,w , x , y}, the function h : H −→ R given by

h({s}) = h({t}) = h({u}) = h({v}) = h({w}) = h({x}) = h({y}) = 0,
h({s, t, u}) = 3, h({w , x}) = 4, h({s, t, u, v}) = 5, h({w , x , y}) = 6,
h({s, t, u, v ,w , x , y}) = 7,

is a grading function and the pair (H, h) is a graded hierarchy on S .
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Hierarchies

Theorem

Let S be a finite set and let C = (π1, π2, . . . , πn) be an increasing chain of
partitions (PART(S),6) such that π1 = αS and πn = ωS .
If f : {1, . . . , n} −→ R>0 is a function such that f (1) = 0, then the
function h : HC −→ R>0 given by h(K ) = f (min{j | K ∈ πj}) is a
grading function for the hierarchy HC .

Proof: Since {x} ∈ π1 = αS , it follows that h({x}) = 0.
Suppose that H,K ∈ HC and H ⊂ K . If ` = min{j | H ∈ πj} it is
impossible for K to be a block of a partition that precedes π`. Therefore,
` < min{j | K ∈ πj}, so h(H) < h(K ), and (HC , h) is indeed a graded
hierarchy.

14 / 23



Hierarchies

A graded hierarchy defines an ultrametric, as shown next.

Theorem

Let (H, h) be a graded hierarchy on a finite set S. Define the function
d : S2 −→ R as d(x , y) = min{h(U) | U ∈ H and {x , y} ⊆ U} for
x , y ∈ S. The mapping d is an ultrametric on S.
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Hierarchies

Observe that for every x , y ∈ S there exists a set H ∈ H such that
{x , y} ⊆ H because S ∈ H.
It is immediate that d(x , x) = 0. Conversely, suppose that d(x , y) = 0.
Then, there exists H ∈ H such that {x , y} ⊆ H and h(H) = 0. If x 6= y ,
then {x} ⊂ H, hence 0 = h({x}) < h(H), which contradicts the fact that
h(H) = 0. Thus, x = y .
The symmetry of d is immediate.
To prove the ultrametric inequality, let x , y , z ∈ S , and suppose that
d(x , y) = p, d(x , z) = q, and d(z , y) = r . There exist H,K , L ∈ H such
that {x , y} ⊆ H, h(H) = p, {x , z} ⊆ K , h(K ) = q, and {z , y} ⊆ L,
h(L) = r . Since K ∩ L 6= ∅ (because both sets contain z), we have either
K ⊆ L or L ⊆ K , so K ∪ L equals either K or L and, in either case,
K ∪ L ∈ H. Since {x , y} ⊆ K ∪ L, it follows that

d(x , y) 6 h(K ∪ L) = max{h(K ),H(L)} = max{d(x , z), d(z , y)},

which is the ultrametric inequality.
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Hierarchies

Example

The values of the ultrametric generated by the graded hierarchy (H, h) on
the set S introduced in Example given on Slide 13 are given in the
following table:

d s t u v w x y

s 0 3 3 5 7 7 7
t 3 0 3 5 7 7 7
u 3 3 0 5 7 7 7
v 5 5 5 0 7 7 7
w 7 7 7 7 0 4 6
x 7 7 7 7 4 0 6
y 7 7 7 7 6 6 0
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Hierarchies

Theorem

Let (S , d) be a finite ultrametric space. There exists a graded hierarchy
(H, h) on S such that d is the ultrametric associated to (H, h).
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Hierarchies

Proof

Let H be the collection of equivalence classes of the equivalences
ηr = {(x , y) ∈ S2 | d(x , y) 6 r} defined by the ultrametric d on the finite
set S , where the index r takes its values in the range Rd of the ultrametric
d . Define h(E ) = min{r ∈ Rd | E ∈ S/ηr} for every equivalence class E .
It is clear that h({x}) = 0 because {x} is an η0-equivalence class for every
x ∈ S .
Let [x ]t be the equivalence class of x relative to the equivalence ηt .
Suppose that E and E ′ belong to the hierarchy and E ⊂ E ′. We have
E = [x ]r and E ′ = [x ]s for some x ∈ X . Since E is strictly included in E ′,
there exists z ∈ E ′ − E such that d(x , z) 6 s and d(x , z) > r . This
implies r < s. Therefore,

h(E ) = min{r ∈ Rd | E ∈ S/ηr} ≤ min{s ∈ Rd | E ′ ∈ S/ηs} = h(E ′),

which proves that (H, h) is a graded hierarchy.
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Hierarchies

Proof (cont’d)

The ultrametric e generated by the graded hierarchy (H, h) is given by

e(x , y) = min{h(B) | B ∈ H and {x , y} ⊆ B}
= min{r | (x , y) ∈ ηr} = min{r | d(x , y) 6 r} = d(x , y),

for x , y ∈ S ; in other words, we have e = d .
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Hierarchies

Example

Starting from the ultrametric on the set S = {s, t, u, v ,w , x , y} defined by
the table given in Example on Slide 17, we obtain the following quotient
sets:

Values of r S/ηr
[0, 3) {s}, {t}, {u}, {v}, {w}, {x}, {y}
[3, 4) {s, t, u}, {v}, {w}, {x}, {y}
[4, 5) {s, t, u}, {v}, {w , x}, {y}
[5, 6) {s, t, u, v}, {w , x}, {y}
[6, 7) {s, t, u, v}, {w , x , y}

[7,∞) {s, t, u, v ,w , x , y}
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Dendrograms

We shall draw the tree of a graded hierarchy (H, h) using a special
representation known as a dendrogram.
In a dendrogram, an interior vertex K of the tree is represented by a
horizontal line drawn at the height h(K ). For example, the dendrogram of
the graded hierarchy of Example given on Slide 13 is shown next.
As we saw, the value d(x , y) of the ultrametric d generated by a hierarchy
H is the smallest height of a set of a hierarchy that contains both x and y .
This allows us to “read” the value of the ultrametric generated by H
directly from the dendrogram of the hierarchy.
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Dendrograms
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Dendrogram of graded hierarchy of Example given on Slide 13
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