
Clustering - IV

Prof. Dan A. Simovici

UMB

1 / 56

Outline

1 Introduction

2 Inertia of a Set of Vectors

3 The k-Means Algorithm

4 Matrix Differentiation

5 Matrix Factorization and the k-means Algorithm

2 / 56

Introduction

Partitional clustering algorithms aim to discover partitions of a set of
objects that optimize certain criteria and, generally, do this through
iterative processes.

These algorithms begin with a set of initial centroids as seeds for the
clusters, assign objects to these tentative centers, and recompute
these centroids and their corresponding clusterings as they try to
optimize the clustering criteria.

3 / 56

Inertia of a Set of Vectors

The notion of inertia a finite subset X of Rm relative to a vector z
originates in mechanics of solids.

Definition

Let X = {x1, . . . , xn} be a set of vectors in Rm. The inertia of X relative
to a vector z ∈ Rm is the number

Iz(X) =
n∑

j=1

‖ xj − z ‖2
2 .

4 / 56

Inertia of a Set of Vectors

The special case of the inertia of X relative to the vector

cX =
1

n

n∑
j=1

xj

is referred to as the sum of square errors of X . We denote IcX (X) by
sse(X).
The mean square error of the set X is the number r(X) defined by

r(X) =
sse(X)

|X |
.

5 / 56

Inertia of a Set of Vectors

Theorem

(Huygens’ Inertia Theorem)
Let X = {x1, . . . , xn} be a finite set of vectors in Rm. We have:

Iz(X)− IcX (X) = n ‖ cX − z ‖2
2,

for every z ∈ Rm.

6 / 56

Inertia of a Set of Vectors

Proof

The inertia of X relative to cX is

IcX (X) =
n∑

j=1

‖ xj − cX ‖2
2=

n∑
j=1

(xj − cX)′(xj − cX)

=
n∑

j=1

(x′jxj − c′Xxj − x′jcX + c′XcX).

Similarly, we have

Iz(X) =
n∑

j=1

(x′jxj − z′xj − x′jz + z′z).

7 / 56

Inertia of a Set of Vectors

Proof cont’d

This allows us to write

Iz(X)− IcX (X) =
n∑

j=1

(cX − z)′xj +
n∑

j=1

x′j(cX − z) + z′z− c′XcX

= (cX − z)′
n∑

i=1

xj +

 n∑
j=1

xj

′ (cX − z) + n(z′z− c′XcX)

= n(cX − z)′cX + nc′X (cX − z) + n(z′z− c′XcX)

= n ‖ cX − z ‖2
2,

which is the equality of the theorem.

8 / 56

Inertia of a Set of Vectors

Corollary

Let X = {x1, . . . , xn} be a set of vectors in Rm. The minimal value of the
inertia Iz(X) is achieved for z = cX .

This is an immediate consequence of Huygens Theorem.

9 / 56

Inertia of a Set of Vectors

Corollary

The sum of all squared distances between the members of a set divided by
its cardinality equals the sum of the square errors of that set.

Proof: By Huygens’ Theorem, the inertia of X relative to one of its
members xk is

n∑
i=1

‖ xi − xk ‖2= Ixk (X) = IcX + n ‖ cX − xk ‖2
2 .

Therefore,

n∑
k=1

n∑
i=1

‖ xi − xk ‖2 = 2
∑
{‖ xi − xk ‖2 | 1 6 k < i 6 n}

= nIcX + n
n∑

k=1

‖ cX − xk ‖2
2= 2nIcX ,

which implies the statement of the corollary.
10 / 56

Inertia of a Set of Vectors

Definition

For a set X and a partition π = {U1, . . . ,Uk} of X , the sum of the
squared errors of π is the number sse(π) given by:

sse(π) =
k∑

i=1

sse(Ui) =
k∑

i=1

∑
{‖ x− cUi

‖2 |x ∈ Ui}.

11 / 56

Inertia of a Set of Vectors

Corollary

The sum of square errors of a partition π = {U1, . . . ,Uk} of a finite subset
X of Rm equals the sum over all blocks of mean square errors,

∑k
j=1 r(Uj).

This statement follows immediately.

12 / 56

Inertia of a Set of Vectors

Lemma

Let W be a subset of Rm and let σ = {U,V } be a bipartition of W . We
have:

sse(W) = sse(U) + sse(V) +
|U| |V |
|W |

‖ cU − cV ‖2 .

13 / 56

Inertia of a Set of Vectors

Proof

By applying the definition of the sum of square errors we have:

sse(W)− sse(U)− sse(V)

=
∑
{‖ x− cW ‖2 |x ∈ U ∩ V }

−
∑
{‖ x− cU ‖2 |x ∈ U} −

∑
{‖ x− cV ‖2 |x ∈ V }.

The centroid of W is given by:

cW =
1

|W |
∑
{x|x ∈W } =

|U|
|W |

cU +
|V |
|W |

cV .

14 / 56

Inertia of a Set of Vectors

This allows us to evaluate the variation of the sum of squared errors:

sse(W)− sse(U)− sse(V)

=
∑
{‖ x− cW ‖2 | x ∈ U ∪ V }

−
∑
{‖ x− cU ‖2 | x ∈ U} −

∑
{‖ x− cV ‖2 | x ∈ V }

=
∑
{‖ x− cW ‖2 − ‖ x− cU ‖2 | x ∈ U}

+
∑
{‖ x− cW ‖2 − ‖ x− cV ‖2 | x ∈ V }.

15 / 56

Inertia of a Set of Vectors

Observe that:∑
{‖ x− cW ‖2 − ‖ x− cU ‖2 | x ∈ U}

=
∑
x∈U

(
(x− cW)′(x− cW)− (x− cU)′(x− cU)

)
= |U|(c′W cW − c′UcU) + 2(c′U − c′W)

∑
x∈U

x

= |U|(c′W cW − c′UcU) + 2|U|(c′U − c′W)cU

= |U|(‖ cW ‖2 − ‖ cU ‖2 +2 ‖ cU ‖2 −2c′W cU)

= |U|(‖ cW ‖2 + ‖ cU ‖2 −2c′W cU)

= |U| ‖ cW − cU ‖2 .

16 / 56

Inertia of a Set of Vectors

Using the equality

cW − cU =
|U|
|W |

cU +
|V |
|W |

cV − cU =
|V |
|W |

(cV − cU) ,

we obtain∑
{‖ x− cW ‖2 − ‖ x− cU ‖2 | x ∈ U} =

|U||V |2

|W |2
‖ cV − cU ‖2 .

In a similar manner we have:∑
{‖ x− cW ‖2 − ‖ x− cV ‖2 | x ∈ V } =

|U|2|V |
|W |2

‖ cV − cU ‖2,

so,

sse(W)− sse(U)− sse(V) =
|U||V |
|W |

‖ cV − cU ‖2,

17 / 56

Inertia of a Set of Vectors

Theorem

Let X be a finite set. The function sse : PART(X) −→ R>0 between the
posets (PART(X),6) and (R>0,6) is monotonic.

Proof: It suffices to show that for π, π′ ∈ PART(X), if π ≺ π′, then
sse(π) 6 sse(π′). If two blocks U and V of a partition π are fused into a
new block W to yield a new partition π′ that covers π then, by Lemma on
Slide 13 the variation of the sum of squared errors is given by

sse(π′)− sse(π) = sse(W)− sse(U)− sse(V) =
|U| |V |
|W |

‖ cU − cV ‖2> 0.

18 / 56

The k-Means Algorithm

The k-means algorithm is a partitional algorithm that requires the
specification of the number of clusters k as an input.

The set of objects to be clustered S = {x1, . . . , xn} is a subset of Rm.

19 / 56

The k-Means Algorithm

The Starting Point

The k-means algorithm begins with a randomly chosen collection of k
centroids c1, . . . , ck in Rm.

An initial partition of the set S of objects is computed by assigning
each object xi to its closest centroid cj . Let Uj be the set of points
assigned to the centroid cj .

The assignments of objects to centroids are expressed by a matrix
(bij), where

bij =

{
1 if xi ∈ Uj ,

0 otherwise.

Since each object is assigned to exactly one cluster, we have
∑k

j=1 bij = 1.

Also,
∑n

i=1 bij equals the number of objects assigned to the centroid cj .

20 / 56

The k-Means Algorithm

Recomputing the Centroids

After these assignments, expressed by the matrix (bij), the centroids cj

must be re-computed using the formula:

cj =

∑n
i=1 bijxi∑n
i=1 bij

(1)

for 1 6 j 6 k.
The sum of squared errors of a partition π = {U1, . . . ,Uk} of a set of
objects S was defined as

sse(π) =
k∑

j=1

∑
x∈Uj

d2(x, cj),

where cj is the centroid of Uj for 1 6 j 6 k . The error of such an
assignment is the sum of squared errors of the partition π = {U1, . . . ,Uk}
defined as

sse(π) =
n∑

i=1

k∑
j=1

bij ||xi − cj ||2

=
n∑

i=1

k∑
j=1

bij

m∑
p=1

(
xip − c jp

)2
.

21 / 56

The k-Means Algorithm

The mk necessary conditions for a local minimum of this function,

∂sse(π)

∂c jp
=

n∑
i=1

bij
(
−2(xip − c jp)

)
= 0,

for 1 6 p 6 m and 1 6 j 6 k , can be written as

n∑
i=1

bijx
i
p =

n∑
i=1

bijc
j
p = c jp

n∑
i=1

bij ,

or as

c jp =

∑n
i=1 bijx

i
p∑n

i=1 bij

for 1 6 p 6 m.

22 / 56

The k-Means Algorithm

In vectorial form, these conditions amount to

cj =

∑n
i=1 bijxi∑n
i=1 bij

,

which is exactly the formula that is used to update the centroids. Thus,
the choice of the centroids can be justified by the goal of obtaining local
minima of the sum of squared errors of the clusterings.

23 / 56

The k-Means Algorithm

Since we have new centroids, objects must be reassigned, which means
that the values of bij must be recomputed, which, in turn, affects the
values of the centroids, etc.
The halting criterion of the algorithm depends on particular
implementations and may involve:

performing a certain number of iterations;

lowering the sum of squared errors sse(π) below a certain limit;

the current partition coinciding with the previous partition.

24 / 56

The k-Means Algorithm

Forgy’s Algorithm

Algorithm 1: The k-means Forgy’s Algorithm

Data: the set of objects to be clustered S = {x1, . . . , xn} and the
number of clusters k

Result: collection of k clusters
1 extract a randomly chosen collection of k vectors c1, . . . , ck in Rn;
2 assign each object xi to the closest centroid cj ;

3 let π = {U1, . . . ,Uk} be the partition defined by c1, . . . , ck ;
4 recompute the centroids of the clusters U1, . . . ,Uk ;
5 while halting criterion is not met do
6 compute the new value of the partition π using the current

centroids;
7 recompute the centroids of the blocks of π;

25 / 56

The k-Means Algorithm

Theorem

The function sse(π) does not increase as the k-means through successive
iterations of the Lloyd-Forgy Algorithm.

26 / 56

The k-Means Algorithm

Proof

Let S = {x1, . . . , xn} be the set of objects in Rm to be clustered.
Suppose that the partition π = {C1, . . . ,Cp, . . . ,Cq, . . .Ck} was built at a
certain stage of the algorithm and let π′ = {C ′1, . . . ,C ′p, . . . ,C ′q, . . .C ′k} be
the partition of X obtained by reassigning an object xr from Cp to Cq. We
have:

C ′i =


Ci if i 6∈ {p, q},
Cp − {x} if i = p,

Cq ∪ {x} if i = q.

27 / 56

The k-Means Algorithm

Proof cont’d

This reassignment may take place only if ‖ xr − cp ‖>‖ xr − cq ‖. Since∑
{‖ x− cp ‖2 | x ∈ Cp}+

∑
{‖ x− cq ‖2 | x ∈ Cq}

>
∑
{‖ x− cp ‖2 | x ∈ Cp − {xr}}+

∑
{‖ x− cq ‖2 | x ∈ Cq ∪ {xr}.

28 / 56

The k-Means Algorithm

We have:

sse(π) =
k∑

j=1

∑
{‖ x− cj ‖2 | x ∈ Cj}

=
∑{∑

{‖ x− cj ‖2 | x ∈ Cj}
∣∣∣j ∈ {1, . . . , k} − {p, q}}

+
∑
{‖ x− cp ‖2 | x ∈ Cp}+

∑
{‖ x− cq ‖2 | x ∈ Cq}

>
∑{∑

{‖ x− cj ‖2 | x ∈ Cj} | j ∈ {1, . . . , k} − {p, q}
}

+
∑
{‖ x− cp ‖2 | x ∈ Cp − {xr}}

+
∑
{‖ x− cq ‖2 | x ∈ Cq ∪ {xr}} = sse(π′).

Thus, sse(π) does not increase when xr is reassigned.

29 / 56

The k-Means Algorithm

Example

Consider the set S = {x1, x2, x3, x4} in Rn given by

x1 =

(
0
0

)
, x2 =

(
a
0

)
, x3 =

(
a
1

)
, x4 =

(
0
1

)
shown below.

x2 =

(
a
0

)
x1 =

(
0
0

)

x4 =

(
0
1

)
x3 =

(
a
1

)

30 / 56

The k-Means Algorithm

There are 7 distinct partitions having two blocks on a 4-element set, so
there exist seven modalities to cluster these four objects, shown below:

Clusters centroids sse(π)

C1 C2 c1 c2

{x1} {x2, x3, x4} x1

(
2a/3
2/3

)
2
3 (a2 + 1)

{x2} {x1, x3, x4} x2

(
a/3
2/3

)
2
3 (a2 + 1)

{x3} {x1, x2, x4} x3

(
a/3
1/3

)
2
3 (a2 + 1)

{x4} {x1, x2, x3} x4

(
2a/3
1/3

)
2
3 (a2 + 1)

{x1, x2} {x3, x4}
(
a/2

0

) (
a/2

1

)
a2

{x1, x3} {x2, x4}
(
a/2
1/2

) (
a/2
1/2

)
a2 + 1

{x1, x4} {x2, x3}
(

0
1/2

) (
a

1/2

)
1

31 / 56

The k-Means Algorithm

If a 6 1, the least value of sse(π) is a2; for a > 1, the least value is 1.

If a < 1 and the centroids are

(
0
1
2

)
and

(
a

1/2

)
, then the k-means

algorithm will return the clustering {{x1, x4}, {x2, x3}} whose sse(π)
value is 1 instead of the minimal value a2.

If a > 1 and the centroids are

(
a/2

0

)
and

(
a/2

1

)
, the algorithm

returns the partition {{x1, x2}, {x3, x4}} and the value of sse(π) for
this partition is a2 instead of the least value of 1.

These observations show that we may have gaps between the
sum-of-squares value of the partition returned by the k-means
algorithm and the minimum value of the objective function.

32 / 56

The k-Means Algorithm

The next theorem shows a limitation of the k-means algorithm because
this algorithm produces only clusters whose convex closures may intersect
only at the points of S .

Theorem

Let S = {x1, . . . , xn} ⊆ Rm be a set of n vectors. If C1, . . . ,Ck is the set
of clusters computed by the k-means algorithm in any step, then the
convex closure of each cluster Ci , Kconv(Ci) is included in a polytope Pi

that contains ci for 1 ≤ i ≤ k.

33 / 56

The k-Means Algorithm

Proof:
Suppose that the centroids of the partition {C1, . . . ,Ck} are c1, . . . , ck .
Let mij = 1

2 (ci + cj) be the midpoint of the segment cicj and let Hij be
the hyperplane (ci − cj)

′(x−mij) = 0 that is the perpendicular bisector of
the segment cicj .
Equivalently,

Hij = {x ∈ Rm | (ci − cj)
′x =

1

2
(ci − cj)

′(ci + cj)}.

The halfspaces determined by Hij are described by the inequalities:

H+
ij : (ci − cj)

′x ≤ 1

2
(‖ ci ‖2

2 − ‖ cj ‖2
2)

H−ij : (ci − cj)
′x ≥ 1

2
(‖ ci ‖2

2 − ‖ cj ‖2
2).

34 / 56

The k-Means Algorithm

Proof cont’d

It is easy to see that ci ∈ H+
ij and cj ∈ H−ij .

Moreover, if d2(ci , x) < d2(cj , x), then x ∈ H+
ij , and if d2(ci , x) > d2(cj , x),

then x ∈ H−ij . Indeed, suppose that d2(ci , x) < d2(cj , x), which amounts

to ‖ ci − x ‖2
2<‖ cj − x ‖2

2. This is equivalent to

(ci − x)′(ci − x) < (cj − x)′(cj − x).

The last inequality is equivalent to

‖ ci ‖2
2 −2c′ix <‖ cj ‖2

2 −2c′jx,

which implies that x ∈ H+
ij . In other words, x is located in the same

half-space as the closest centroid of the set {ci , cj}. Note also that if
d2(ci , x) = d2(cj , x), then x is located in H+

ij ∩ H−ij = Hij , that is, on the
hyperplane shared by Pi and Pj .

35 / 56

The k-Means Algorithm

Proof cont’d

Let Pi be the closed polytope defined by

Pi =
⋂
{H+

ij | j ∈ {1, . . . , k} − {i}}

Objects that are closer to ci than to any other centroid cj are located in
the closed polytope Pi . Thus, Ci ⊆ Pi and this implies Kconv(Ci) ⊆ Pi .

36 / 56

Matrix Differentiation

A bit of linear algebra recall:
The Frobenius norm of a matrix A ∈ Cm×n is

‖ A ‖F=

√√√√ n∑
i=1

m∑
j=1

a2
ij .

It is easy to see that for A ∈ Cm×n we have

‖ A ‖2
F= trace(AA′) = trace(A′A)

because

trace(AA′) =
n∑

i=1

(AA′)ii

=
n∑

i=1

m∑
j=1

a2
ij =‖ A ‖2

F .

37 / 56

Matrix Differentiation

Definition

Let f : Rm×n −→ R be a function. The derivative of f with respect to the
matrix X ∈ Rm×n is the function ∂f

∂X : Rm×n −→ Rm×n given by

∂f

∂X
(X) =


∂f
∂x11

∂f
∂x12

· · · ∂f
∂x1n

...
...

...
...

∂f
∂xm1

∂f
∂xm2

· · · ∂f
∂xmn

 .

38 / 56

Matrix Differentiation

Example

Let f : Rm×n −→ R be defined by f (X) = trace(XAX ′), where X ∈ Rm×n

and A ∈ Rn×n. Since

f (X) =
m∑
i=1

n∑
j=1

n∑
k=1

xijajkxik ,

we have:

∂f

∂xpq
=

n∑
k=1

aqkxpk +
n∑

j=1

xpjajq

= (XA′)pq + (XA)pq = (X (A + A′))pq,

which implies
∂f

∂X
= X (A + A′).

39 / 56

Matrix Differentiation

Example

Let f : Rm×m −→ R be the function defined by f (X) = trace(AXB),
where A ∈ Rm×p, X ∈ Rp×n, and B ∈ Rn×m. Note that

f (X) =
m∑
i=1

(AXB)ii =
m∑
i=1

p∑
j=1

n∑
k=1

aijxjkbki ,

hence
∂f

∂xjk
=

n∑
i=m

aijbki = (BA)kj = (A′B ′)jk .

Therefore, ∂
∂X trace(AXB) = A′B ′.

40 / 56

Matrix Differentiation

Example

For g(X) = trace(AX ′B) we have

g(X) =
n∑

i=1

(AX ′B)ii =
n∑

i=1

n∑
j=1

n∑
k=1

aijxkjbki ,

which implies ∂g
∂xkj

= ∂f
∂xjk

. Therefore, we have:

∂trace(AX ′B)

∂X
= (A′B ′)′ = BA.

41 / 56

Matrix Differentiation

Example

Let f : Rn×n −→ R be the function defined by f (X) = trace(B ′X ′XB),
where B,X ∈ Rn×n. Since

(B ′X ′XB)ij =
n∑

p=1

n∑
q=1

n∑
r=1

bpixqpxqrbrj

we have:

trace(B ′X ′XB) =
n∑

i=1

(B ′X ′X ′B)ii

=
n∑

i=1

n∑
p=1

n∑
q=1

n∑
r=1

bpixqpxqrbri .

42 / 56

Matrix Differentiation

Example cont’d

Thus, the partial derivative ∂f
∂xuv

can be written as

∂f

∂xuv
=

n∑
i=1

n∑
r=1

bvixurbri +
n∑

i=1

n∑
p=1

bpixuvbvi

=
n∑

i=1

n∑
r=1

bvixurbri +
n∑

i=1

n∑
p=1

bpixuvbvi

=
n∑

i=1

n∑
r=1

bvixurbri +
n∑

i=1

n∑
r=1

brixuvbvi

(by changing the summation index p in the second sum to r)

=
n∑

i=1

n∑
r=1

(xurbribvi + xuvbvibri).

This allows us to write ∂f
∂X = 2XBB ′.

43 / 56

Matrix Differentiation

Example

Let f : Rm×k be the function f (X) =‖ A− XB ‖2
F , where A ∈ Rm×n,

X ∈ Rm×k , and B ∈ Rk×n. We have:

f (X) = ‖ A− XB ‖2
F= trace((A− XB)′(A− XB))

= trace(A′A)− 2trace(A′XB) + trace(B ′X ′XB).

By Example on Slide 40 we have ∂A′XB
∂X = AB ′; by Example on Slide 42 we

have ∂B′X ′XB
∂X = 2XBB ′, hence

∂f (M)

∂M
= 2(XBB ′ − AB ′).

Thus, to minimize f we must have X = AB ′(BB ′)−1.

44 / 56

Matrix Factorization and the k-means Algorithm

Let S = {x1, . . . , xn}, where S ⊆ Rm be the set of objects to be clustered
by the k-means algorithm, and let C = {c1, . . . , ck} be a subset of Rm.
For 1 6 i 6 define the subset Ci of S as consisting of those members of S
for which the closest point in C is ci (such that ties between distances
d(x, ci) and d(x, cj) are broken arbitrarily). The collection {C1, . . . ,Ck} is
a partition πC of S .

45 / 56

Matrix Factorization and the k-means Algorithm

The k-means algorithm entails choosing the elements of C , to accomplish
the minimization of the objective function

sse(πC) =
k∑

i=1

∑
xj∈Ci

‖ xj − ci ‖2=
k∑

i=1

n∑
j=1

zij ‖ xj − ci ‖2,

where

zij =

{
1 if xj ∈ Ci ,

0 otherwise

are binary variables that indicate whether or not a data point xj belongs to
Ci . Z = (zij) is a binary matrix that belongs to {0, 1}k×n. The first index
i in zij designates the cluster; the second designates the object.

46 / 56

Matrix Factorization and the k-means Algorithm

To express the fact that a given cluster Ci contains ni objects we write∑n
j=1 zij = ni for 1 6 i 6 k. On other hand, every object belongs to

exactly one cluster, so
∑k

i=1 zij = 1 for 1 6 j 6 n. In matrix form these
conditions amount to

Z1n =

n1
...
nk

 ,

and Z ′1k = 1n. The matrix Z describes completely the assignment of
objects to clusters.

47 / 56

Matrix Factorization and the k-means Algorithm

The rows of Z are pairwise orthogonal due to the fact that each object xj
belongs exactly to one cluster. Therefore, for i 6= i ′ we have zi ′jzij = 0 for
every j , 1 6 j 6 n. In turn, this implies that ZZ ′ ∈ Rk×k is a diagonal
matrix where

(ZZ ′)ii ′ =
∑
j

(Z)ij(Z
′)ji ′ =

∑
j

zijzi ′j =

{
ni if i = i ′,

0 otherwise.
(2)

Therefore,

(ZZ ′)−1 =


1
n1

0 0 · · · 0

0 1
n2

0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

nk
.



48 / 56

Matrix Factorization and the k-means Algorithm

Let Y = Z ′(ZZ ′)−1 ∈ Rn×k . The columns of the matrix Y correspond to
the clusters C1, . . . ,Ck and

∑n
j=1 yij = 1 for 1 6 i 6 n. Since

yji =
k∑

`=1

(Z ′)j`((ZZ ′)−1)`i =
k∑

`=1

z`j((ZZ ′)−1)`i = zij
1

ni
,

it follows that
∑n

j=1 yji = 1. In other words, the components of each
column yi of Y are non-negative numbers that sum up to 1, so they can
be regarded as probability distributions.

49 / 56

Matrix Factorization and the k-means Algorithm

Let X = (x1 x2 · · · xn) ∈ Rm×n be a matrix whose columns are the data
points of the set S . The set C is represented by the matrix

M = (c1 c2 · · · ck) ∈ Rm×k .

The Frobenius norm of the matrix X is given by:

‖ X ‖2=
n∑

j=1

‖ xj ‖2=
n∑

j=1

x′jxj =
n∑

j=1

(X ′X)jj = trace(X ′X).

50 / 56

Matrix Factorization and the k-means Algorithm

The next theorem shows that to minimize sse(πC) amounts to minimizing
the norm of the matrix X −MZ , where M ∈ Rm×k and Z ∈ Rk×n, that is,
to find the best approximation of X as product MZ .

Theorem

(Baukhage’s Factorization Theorem) The following equality holds:

k∑
i=1

n∑
j=1

zij ‖ xj − ci ‖2=‖ X −MZ ‖2 .

51 / 56

Matrix Factorization and the k-means Algorithm

Proof

The left-hand member of the equality of the theorem can be written as

k∑
i=1

n∑
j=1

zij ‖ xj − ci ‖2

=
k∑

i=1

n∑
j=1

zij(xj − ci)
′(xj − ci)

=
k∑

i=1

n∑
j=1

zij(x
′
jxj − 2x′jci + c′ici)

= T1 − 2T2 + T3,

where

T1 =
k∑

i=1

n∑
j=1

zijx
′
jxj ,T2 =

k∑
i=1

n∑
j=1

zijx
′
jci ,

and T3 =
∑k

i=1

∑n
j=1 zij(c

′
ici).

52 / 56

Matrix Factorization and the k-means Algorithm

We can further write

T1 =
k∑

i=1

n∑
j=1

zijx
′
jxj =

k∑
i=1

n∑
j=1

zij ‖ xj ‖2=
n∑

j=1

‖ xj ‖2
k∑

i=1

zij

=
n∑

j=1

‖ xj ‖2= trace(X ′X).

Next, we have:

T2 =
k∑

i=1

n∑
j=1

zijx
′
jci

=
k∑

i=1

n∑
j=1

zij

m∑
`=1

x`jc`i =
n∑

j=1

m∑
`=1

x`j

k∑
i=1

zijc`i

=
n∑

j=1

m∑
`=1

x`j(MZ)`j =
n∑

j=1

m∑
`=1

(X ′)j`(MZ)`j

=
n∑

j=1

(X ′MX)jj = trace(X ′MZ).
53 / 56

Matrix Factorization and the k-means Algorithm

Finally,

T3 =
k∑

i=1

n∑
j=1

zijc
′
ici =

k∑
i=1

n∑
j=1

zij ‖ ci ‖2

=
k∑

i=1

‖ ci ‖2
n∑

j=1

zij =
k∑

i=1

‖ ci ‖2 ni ,

where ni = |Ci |.
For the right-hand member of the equality of the theorem we have

‖ X −MZ ‖2 = trace((X −MZ)′(X −MZ))

= trace(X ′X)− 2trace(X ′MZ) + trace(Z ′M ′MZ)

= T1 − 2T2 + T4,

where T4 = trace(Z ′M ′MZ).

54 / 56

Matrix Factorization and the k-means Algorithm

For the right-hand member of the equality of the theorem we have:

‖ X −MZ ‖2 = trace((X −MZ)′(X −MZ))

= trace(X ′X)− 2trace(X ′MZ) + trace(Z ′M ′MZ)

= T1 − 2T2 + T4,

where T4 = trace(Z ′M ′MZ). Now, we have

T4 = trace(Z ′M ′MZ) = trace(M ′MZZ ′)

(due to the cyclic permutation invariance of the trace)

=
k∑

i=1

(M ′MZZ ′)ii =
k∑

i=1

m∑
`=1

(M ′M)i`(ZZ
′)li

=
k∑

i=1

(M ′M)ii (ZZ
′)ii =

k∑
i=1

‖ ci ‖2 ni .

Thus, T4 = T3, and this completes the argument.

55 / 56

Matrix Factorization and the k-means Algorithm

The centroid matrix M = (c1 c2 · · · ck) that minimizes the objective
function

F (M) =‖ X −MZ ‖2

is obtained, by Example on Slide 44 as

M = XZ ′(ZZ ′)−1 = XY ,

where Y is the matrix Y = Z ′(ZZ ′)−1 ∈ Rn×k previously introduced.

56 / 56

	Outline
	Introduction
	Inertia of a Set of Vectors
	The k-Means Algorithm
	Matrix Differentiation
	Matrix Factorization and the k-means Algorithm

