Clustering - V

Prof. Dan A. Simovici

UMB

1/42

@ The Kernelized Version of k-Means
© Kernelized Clustering in R

© The PAM Algorithm

@ Examining a Data Frame in R

© Executing PAM in R

2/42

The Kernelized Version of k-Means

Let X = {x1,...,Xn} be a set of vectors in R™ and let ¢ : R™ — RP be a
function, where RP is a high-dimensional space referred to as the feature
space.

Since RP may have a much higher dimension than m, the computation of
the inner product ¢(x;)'¢(x;) can be costly. Therefore, it is interesting to
examine transformations of the form ¢ : R™ — RP for which there exists
a symmetric function K : R™ x R™ — R such that

o(xi)' p(x;) = K(xi, %))

for x;,x; € X. Thus, a kernel function facilitates the computation of the
inner product ¢(x;)'¢(x;) in the high-dimensional space.

3/42

The Kernelized Version of k-Means

Recall:
Definition

A function K : R™ x R™ — R is a ¢-kernel if ¢(x;)'¢(x;) = K(x;,x;) for
all xj,x; € X.

A function K : R™ x R™ — R is a kernel if there exists a function

¢ : R™ — RP such that K is a ¢-kernel.

4/42

The Kernelized Version of k-Means
Example
Let K : R™ x R™ — R be the function defined as
K(x.y) = (x'y +a)?
for x,y € R™. We can write

K(x,y)
= (le + a)d = (Xl)/1 + -+ XmYm + \/5\/5)d

.. n n
ni4-+nmi1=d miim+1

(¢(x), ¢(y)),

d
> ()X{”y{”-~x,7#y#}~-
m

nm+1
.aq 2

a

nm+1
2

The Kernelized Version of k-Means

Example cont'd

For each monomial that is a component of ¢(x) we have ijjll nj=d
and nj > 0for1<j<m+1

When m = 2 and d = 2 we have

K(x,y) = (xiy1 + xoy2 + a)? = x§yf + a° + 2xay1x0y2 + 2axiy + 2axoy»

where ¢ : R> — RO is defined as

for x € R2.

6/42

The Kernelized Version of k-Means

Example

Let K : R™ x R™ — R be the radial basis function defined as:

lIx—y||?

Klx,y)=e 2°

for x,y € R™.

The linear space ¢2(R) is an infinite-dimensional linear space that consists
of infinite sequences s = (sp, 51, ...) € Seq(R) such that >y s2 is finite.
We shall prove that K corresponds to a feature function ¢ : R™ — EZ(R).)

7/42

Example cont'd

We have:
_ lx=y)i? _ IxIP Iyl —2(x,y)
K(X, y) = e 2052 = e 20
_ lIx)? 2y

(x,y)

xy) j .
Taking into account that e o2 = 5> LY \e can write:

j=0 j1 52
o
) I 1 O 1 (x,yy <2 _ivi?
60'2 e 202 e 202 = - e 2052 e 2052
Z Jlo
Jj=0
22 J
o e 2j<72 e 2j<72
= E 1(X,y)

8/42

The Kernelized Version of k-Means

The function ¢ is given by:

12

|x

NI

672ja2 [
$(x) = (/ > XM
O'J\/ﬁj ny, ..., Nk

In this formula j varies in N and ny + -+ n, = J.

Nk

X

9/42

The Kernelized Version of k-Means

Theorem

Let function ¢ : R™ — RP be a function, c* be the centroid of the set

#(X) C RP, and let sse*(X) be the sum of square errors of ¢p(X) in RP.
We have:

sse”(X) = Z K(xj,x;) — nK(c*,c").
j=1

Furthermore, if o = {C1, ..., Cn} is a partition of X and cj is the centroid
of p(Cx) for 1 < k < m, define the sum of the squared errors of o in RP as

sse*(o) = Zsse*(Cg).
=1

Then, we have:

n

sse’(0) = > _ K(xj, %) = > |ClK(cq, cf)-
/=1

Jj=1

10/42

Proof

The definition of sse* implies;

sse’(X) =) [l o(x)) —c" ||,
j=1

where ¢* = £ 377 | ¢(x;). Therefore,
sse”(X) = zn;(cb(xj-) — ") (6(xj) —)
i
= idw)%(w) -2 z; ¢(x;)'c” + n(c™)'e*
iz =
= Z K(xj,%;) — nK(c*, c*)
=1

11/42

The Kernelized Version of k-Means

Proof cont'd

For the second equality note that

sse”(Co) = > K(xj,%) — |Ci|K(c, €f).

XJ'EC[

This allows us to write

m
Zsse*(Cg)
=1
= 3 (3 Kego) - Gl €)

(=1 XJECZ

n

= Y K(xjx) — S IGIK (e <)
j=1 =1

12/42

The Kernelized Version of k-Means

Theorem

The distance in the feature space between ¢(x;) and the centroid c; of the
set C; can be expressed using the kernel K.

13/42

Proof

We have:
| o(x)) =i 1P = | ¢(x) IIP —26(x;) ci+ || ¢f |12
2
= K(xj,x;) — ﬁ Z d(x;) d(xp)

XpEC,'

+C1, S S K(xpxq)

xp€Ci xq€C;

2
= K(xj,xj) = m Z K(xj,%p)
! xp€C;

tEE L 3 Kltpxg)

XpEC,' XqEC,'

14 /42

The Kernelized Version of k-Means

The theorem shows that the distance from the image of a point to the
centroid of the cluster in the feature space can be computed via the
kernel. The point x; is assigned to the cluster C;, where

I = argmin; H ¢(XJ)_CI ”2
= argmin; [K(x;,x;) — \C| Z K(xj,xp) + e Z Z K(xp,Xq)
xp€C; xp€C xq€C;
) 1
= argmin; GE Z Z +K(xp,Xq) — z (xj,%p) |
" x,eCixgeC xp€C

because the term K(x;,X;) is the same for every i. The kernelized version
of the k-means algorithm proceeds along the same line as the standard
k-means except that the assignment on points to centroids is done in the
feature space rather than the original space.

15/ 42

Kernelized Clustering in R

The kernlab package contains the function kkmeans that implements
kernel k-means using a variety of possible kernels: the radial base kernel,
rbfdot, the polynomial kernel polydot, and many others. After loading
this package using

> library(kernlab)

we can build a clustering of the iris database excluding the attribute
Species using

> c1 <- kkmeans(as.matrix(iris[,-5]),centers=3)

16 /42

This call to function kkmeans is using the rbfdot kernel automatic
estimation of o and results in the clustering c1 described below:

> cl

Spectral Clustering object of class "specc"

Cluster memberships:

232322323222332222222232

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 1.15460641776431

Centers:

[,1] [,2] [,3] [,4]
[1,] 6.262000 2.872000 4.906000 1.6760000
[2,] 5.151351 3.556757 1.502703 0.2594595
[3,] 4.592308 3.061538 1.346154 0.2076923

Cluster size:
[1] 100 37 13

17/42

A better result can be obtained with the polydot kernel:

> c2 <- kkmeans(as.matrix(iris[,-5]),kernel="polydot",
kpar=1list(degree=2),centers=3)

The resulting clustering is

> c2
Spectral Clustering object of class "specc"

Cluster memberships:

333333333333333333333333 ...

Polynomial kernel function.
Hyperparameters : degree = 2 scale = 1 offset = 1

Centers:

[,1] [,2] [,3] [,4]
[1,] 6.853846 3.076923 5.715385 2.053846
[2,] 5.991667 2.795833 4.562500 1.512500
[3,] 5.104762 3.244444 1.933333 0.431746

18/42

Kernelized Clustering in R

Cluster size:
[1] 39 48 63

Within-cluster sum of squares:
[1] 1182.046 1121.498 1566.437

Note that the sizes of the clusters are closer to the sizes of the reference
clusters; also the values of the within-clusters sums of squares are more
balanced.

Similar results can be obtained with the polydot kernel of degree 3.

19/42

The PAM Algorithm

Another algorithm, named PAM (an acronym of “Partition Around
Medoids") developed by Kaufman and Rousseeuw, also requires as an
input parameter the number k of clusters to be extracted.

The k clusters are determined based on a representative object from each
cluster, called the medoid of the cluster. The medoid of a cluster is one of
the objects that have a most central position in the cluster.

20/42

The PAM Algorithm

Objects that are tentatively defined as medoids are placed into a set S of
selected objects. If O is the set of objects then the set U = O — S is the
set of unselected objects.

The goal of the algorithm is to minimize the average dissimilarity of
objects to their closest selected object. Equivalently, we can minimize the
sum of the dissimilarities between object and their closest selected object.

21/42

The PAM Algorithm

The algorithm has two phases:

@ In the first phase, BUILD, a collection of k objects are selected for an
initial set S.

@ In the second phase, SWAP, one tries to improve the quality of the
clustering by exchanging selected objects with unselected objects.

22/42

The PAM Algorithm

For each object p we maintain two numbers:
@ D, the dissimilarity between p and the closest object in S, and
o E,, the dissimilarity between p and the second closest object in S.

These numbers must be updated every time when the sets S and U
change. Note that D; < E; and that we have p € S if and only if D, = 0.

23/42

The PAM Algorithm

PAM begins with a set of objects O, where |O| = n, a dissimilarity n x n
matrix D, and a prescribed number of clusters k. The dj; entry of the
matrix D is the dissimilarity d(o;, 0;) between the objects o; and o;.

24/42

The PAM Algorithm

The algorithm has two phases:
o the building phase, and
@ the swapping phase.

25 /42

The BUILD phase

Q Initialize S by adding to it an object for which the sum of the
distances to all other objects is minimal.

@ Consider an object i € U as a candidate for inclusion into the set of
selected objects.

© For an object j € U compute D;, the dissimilarity between j and the
closest object in S.

Q If D; > d(i,j) object j will contribute to the decision to select object
i (because the quality of the clustering may benefit); let
CJ',' = max{Dj - d(_j, i),O}.
© Compute the total gain obtained by adding i to S as g; = Zjeu Gji.
@ Choose that object i that maximizes gj; let S := S U {i} and
U=uU-—{i}.
These steps are performed until k objects have been selected.

26 /42

The PAM Algorithm

The second phase, SWAP, attempts to improve the the set of selected
objects and, therefore, to improve the quality of the clustering.

This is done by considering all pairs (i, h) € S x U and consists of
computing the effect T;;, on the sum of dissimilarities between objects and
the closest selected object caused by swapping i and h, that is, by
transferring i from S to U and transferring h to from U to S.

The computation of Tj, involves the computation of the contribution Kj,
of each object j € U to the swap of / and h.

27 /42

The PAM Algorithm

Kiin is computed taking into account the following cases:

(a) if d(j,i) > D; and d(j, h) > D; (which means that there is £ € S such
that d(j, h) > d(j,¢)) then Kjj, = 0;

(b) if d(j, i) = Dj, then two cases occur:

(b)-(i) if d(j, h) < Ej, where E;j is the dissimilarity between j and the second
closest selected object, then Kjjy = d(j, h) — d(j, i); note that Kjp can
be either positive or negative.

(b)-(ii) if d(j, h) > Ej, then Kjj, = Ej — Dj; in this case Kji, > 0.

(c) if d(j,i) > Dj and d(j, h) < Dj, then

Kijin = d(j, h) — Dj.

28/42

The PAM Algorithm

Computation of Kjj,

Cases (a) and (b)-(i)
D; di.i) di.h)
x x l Kin =0
D; (a)
| |
d(j,i) = D d(j, h) Kjin = d(j, h) — d(j, 1)
(b)-(i)

29/42

The PAM Algorithm

Computation of Kjj,

Cases (b)-(ii) and (c)

d(i,j) = Dj Ej d(j, h)
1 1 1
b Kjik = Ej — Dj
(b)-(ii)
1 1 1
d(j, h) D d(j,i) Kiin = d(j, h) — D;
(c)

30/42

The PAM Algorithm

@ Compute the total result of the swap as
Tin=> {Kjn | j €U}

o Select a pair (i,h) € S x U that minimizes Tj,.

o If Tj, <0 the swap is carried out, D, and E, are updated for every
object p, and we return at Step 1. If min T;, > 0, the value of the
objective cannot be decreased and the algorithm halts. Of course,
this happends when all values of T;, are positive and this is precisely
the halting condition of the algorithm.

31/42

Examining a Data Frame in R

Specialized Functions

Functions that allow visualization of a data frame:

dim()
str()
summary ()
colnames ()
head ()
tail ()
View()

shows the dimensions of the data frame by row and column
shows the structure of the data frame

provides summary statistics on the columns

shows the name of each column in the data frame

shows the first 6 rows of the data frame

shows the last 6 rows of the data frame

shows a spreadsheet-like display of the entire data frame

32/42

Examining a Data Frame in R

Example

We demonstrate the use of these functions on the data frame USArrests:

> d <- USArrests

> dim(d)

[1] 50 4

> str(d)

’data.frame’: 50 obs. of 4 variables:

$ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
$ Assault : int 236 263 294 190 276 204 110 238 335 211

$ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...

$ Rape :num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 |

33/42

Examining a Data Frame in R

Example

> summary (d)
Murder
Min. : 0.800
1st Qu.: 4.075
Median : 7.250
Mean . 7.788
3rd Qu.:11.250
Max. :17.400
> colnames(d)
[1] "Murder"

Assault

Min.

1st Qu.

Median
Mean

3rd Qu.

Max.

"Assault"

: 45,
:109.
:159.
:170.
1249.
:337.

O O WO O O

UrbanPop
:32
54.
166
165

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max.

7

191

"UrbanPop" "Rape"

.00

50

.00
.54
.75
.00

Min.

1st Qu.

Median
Mean

3rd Qu.

Max.

Rape

7.
:15.
:20.
:21.
:26.
146.

30
07
10
23
18
00

34/42

Examining a Data Frame in R

Example
> head(d)

Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.7

35/42

Examining a Data Frame in R

Example
> tail(d)

Murder Assault UrbanPop Rape
Vermont 2.2 48 32 11.2
Virginia 8.5 156 63 20.7
Washington 4.0 145 73 26.2
West Virginia 5.7 81 39 9.3
Wisconsin 2.6 53 66 10.8
Wyoming 6.8 161 60 15.6

36/42

Executing PAM in R

We need to install the following packages:

cluster
factoextra
ggplot2
ggsignif

37/42

Executing PAM in R

A clustering of states that consists of two clusters can be obtained writing
pam.res <- pam(d,2)

where d is the data frame that contains data from txUSArrests.

38/42

Executing PAM in R

A call to print (pam.res) results in

Medoids:
ID Murder Assault UrbanPop Rape
Michigan 22 12.1 255 74 35.1
Kansas 16 6.0 115 66 18.0
Clustering vector:
Alabama Alaska Arizona
1 1 1
Colorado Connecticut Delaware
1 2 1
Hawaii Idaho Illinois
2 2 1
Kansas Kentucky Louisiana
2 2 1
Massachusetts Michigan Minnesota
2 1 2
Montana Nebraska Nevada
2 2 1
New Mexico New York North Carolina
1 1 1

Oklahoma Oregon Pennsylvania

Arkansas

1

Florida

1

Indiana

2

Maine

2
Mississippi
1

New Hampshire
2

North Dakota
2

Cal

M

New

Rhode Island Sowgh42C

Executing PAM in R

To show the clusters to which the states belong we write:

> dd <- cbind(USArrests, cluster = pam.res$cluster)
> head(dd,n=3)
Murder Assault UrbanPop Rape cluster

Alabama 13.2 236 58 21.2 1
Alaska 10.0 263 48 44.5 1
Arizona 8.1 294 80 31.0 1

> pam.res$medoids

Murder Assault UrbanPop Rape
Michigan 12.1 255 74 35.1
Kansas 6.0 115 66 18.0

40/ 42

Executing PAM in R

The clustering can be visualized using the function fviz_cluster of the
package factoextra invoked as

fviz_cluster(pam.res, geom = "point", ellipse.type = "norm")

The result is presented in the next slide, where states are reprsented as
points using their first two principal components.

41/42

Dim2 (24.7%)

Cluster plot

o

West Virginigrmont

South Dakota
A

North Dak

Montana cluster
A

1
[a] 2

Wyoming MaAme

Idaho
a

New‘ Hampshire

owa

Indiana nepraska A

Missglri, . dklahofikansas a
4 A

Dregon S
A PenhsAy\\/am’gh‘mwt5
Ohio ‘
A

ghsin

Washington
- Connectjéut
A

2 0 2
Dim1 (62%)
42/42

	Outline
	The Kernelized Version of k-Means
	Kernelized Clustering in R
	The PAM Algorithm
	Examining a Data Frame in R
	Executing PAM in R

