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Markov and Chebyshev Inequalities

Markov Inequality

Theorem

Let X be a non-negative random variable. For every a > 0 we have
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Markov and Chebyshev Inequalities

Proof in the discrete case

Suppose that
X X PR X
X 1 2 n ,
pr p2 -+ Pn
where x; < xo < --- < x,. Suppose further that
X1 <Xp < -+ X <aK Xpql <0< Xpe

Then P(X > a) =pks1+ -+ pn-
Since

E(X) x1p1+ -+ XkPk + Xk+1Pk+1 + ** + XnPn

2 Xk+1Pk+1 + -+ Xnpn = a(pk+1_|_..._|_pn)
= aP(X > a),

we obtain Markov Inequality.
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Chebyshev Inequality

Recall that the variance of a random variable X is the number
var(X) = E((X — E(X))?). Equivalently, var(X) = E(X?) — (E(X))?.

Theorem
We have

var(X)'

PX — EX)| > 2) < 25
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Proof

The Markov Inequality applied to the random variable Y = (X — E(X))?

and to a2 is:
E(Y)
22

P(Y > a%) <

This amounts to

PX ~ EX)P > #) < S0
This is equivalent to
X
P(X ~ E(X)| > 2) < 200,

which is the Chebyshev's Inequality.
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Hoeffding's Inequality

Lemma
Let L be the function defined as

L(x) = —xp + log(1 — p + pe).

N

We have L(x) < % for x > 0.
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_|Hoefiding's Inequality |
Proof

We need to show that f(x) = % — L(x) > 0. Since L(0) = 0 we have
f(0) = 0. Note that:

X pe
f! = - -
(x) 4 p+1—p+pex
X p—1
= 2 _p+1
4 Pt +1—p+pex
1 — 1)pe*
fl(x) = ~— (p )pe .
4 (1—p+ pe)
(1—p— pe~)?

Note that f”(x) > 0 and /(0) = 0.
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Proof (cont'd)

Therefore, ' is increasing and f'(x) > 0 for x > 0.

Since f’(x) > 0 and f(0) = 0, it follows that x > 0 implies f(x) > 0,
which we need to prove.
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Hoeffding's Inequality

Lemma

Let X be a random variable that takes values in the interval [a, b] such
that E(X) = 0. Then, for every A > 0 we have

20 2
E(eM) < o
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Proof

Since f(x) = ™ is a convex function, we have that for every t € [0, 1]

and x € [a, b],

f(x) < (1—t)f(a)+ tf(b).
For t =
Applylng the expectatlon we obtain:

b—a

E AX <
(e™) b—a b—a
b aa a

b—at b—at

because E(X) = 0.

we have e < b=x ’\a+’l§ j eb.

b— E(X)eAa+ E(X) - 3 b
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Proof (cont'd)

If h=A(b—a), p= 32 and L(h) = —hp + log(1 — p + pe"), then
—hp=2Xa, 1-p=1+ 3% zb%, and

el = e=mP(1 — p 4 peh)
_ ) b a RNCED)
b—a a-—-b>b
_ b xa  a w
b—a a—b>b
This implies
b a b — ol(h) < eikz(bg_aﬁ

b—ae b—a

because we have shown that L(h) < %2 = M. This gives the desired

inequality.
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Hoeffding's Theorem

Theorem

Let (Zi,...,Zm) be a sequence of iid random variables and let
1
Tm
Assume that y
E(Z)=pand that P(a< Z; < b)=1
for 1 < i< m. Then, for every e > 0 we have

2me?

P(|Z — p| > €) < 2e -7,
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Hoeffding's Inequality

Proof

Let X =Z — E(Z)=2Z —pand X = L7 X,
Note that E£(X;) = 0 for 1 < i < m, which implies £(X) = 0.

Thus,

Z—p

and

- (;Zz,)_u:Z(z,—u)
i=1 i=1

= ;Zm:X,-:X
i—1

ul>e) = P(X|>e¢)

— P()~< >€)+ P()N( < —€).
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Hoeffding's Inequality

Proof (cont'd)

Let € and A be two positive numbers. Note that
P(X > €) = P(eM > ). By Markov Inequality,

E(e>‘)~<)

Since Xi,..., X are independent, we have

E(e)=E (Heknf’) —TIE@™).
i=1 i=1
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Proof (cont'd)

By Lemma 2, for every i we have

AX; A2(b—2a)?
E <eT> <e 8?2 |

Therefore,

b a)2

P()? _’\EHe 8m =

Choosing A = (4'”5)2 yields

2me2

P(X 2¢)<e (a7,

The same arguments applied to —X yield P(X <

A2(b—2a)?

8m

2

_ 2me

—e) < e (b-2?2,
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Hoeffding's Inequality

By applying the union property of probabilities we have

P(X|>¢) = P(X>e) +P(X < —e)
me2
< 2e_(‘2’*a)2.

17/17



	Outline
	Markov and Chebyshev Inequalities
	Hoeffding's Inequality

