Probabilistic Inequalities - I

Prof. Dan A. Simovici

UMB

Markov and Chebyshev Inequalities

2 Hoeffding's Inequality

Markov Inequality

Theorem

Let X be a non-negative random variable. For every $a\geqslant 0$ we have

$$P(X \geqslant a) \leqslant \frac{E(X)}{a}$$
.

Proof in the discrete case

Suppose that

$$X:\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix},$$

where $x_1 < x_2 < \cdots < x_n$. Suppose further that

$$x_1 < x_2 < \cdots x_k < a \leqslant x_{k+1} < \cdots < x_n.$$

Then
$$P(X \geqslant a) = p_{k+1} + \cdots + p_n$$
.

$$E(X) = x_1p_1 + \dots + x_kp_k + x_{k+1}p_{k+1} + \dots + x_np_n \geqslant x_{k+1}p_{k+1} + \dots + x_np_n \geqslant a(p_{k+1} + \dots + p_n) = aP(X \geqslant a),$$

we obtain Markov Inequality.

Chebyshev Inequality

Recall that the variance of a random variable X is the number $var(X) = E((X - E(X))^2)$. Equivalently, $var(X) = E(X^2) - (E(X))^2$.

Theorem

We have

$$P(|X - E(X)| \geqslant a) \leqslant \frac{var(X)}{a^2}.$$

The Markov Inequality applied to the random variable $Y = (X - E(X))^2$ and to a^2 is:

$$P(Y \geqslant a^2) \leqslant \frac{E(Y)}{a^2}.$$

This amounts to

$$P((X - E(X))^2 \geqslant a^2) \leqslant \frac{E((X - E(X))^2)}{a^2}.$$

This is equivalent to

$$P(|X-E(X)|\geqslant a)\leqslant \frac{var(X)}{a^2},$$

which is the Chebyshev's Inequality.

Lemma

Let L be the function defined as

$$L(x) = -xp + \log(1 - p + pe^x).$$

We have
$$L(x) \leqslant \frac{x^2}{8}$$
 for $x \geqslant 0$.

We need to show that $f(x) = \frac{x^2}{8} - L(x) \ge 0$. Since L(0) = 0 we have f(0) = 0. Note that:

$$f'(x) = \frac{x}{4} - p + \frac{pe^{x}}{1 - p + pe^{x}}$$

$$= \frac{x}{4} - p + 1 + \frac{p - 1}{1 - p + pe^{x}}$$

$$f''(x) = \frac{1}{4} - \frac{(p - 1)pe^{x}}{(1 - p + pe^{x})^{2}}$$

$$= \frac{(1 - p - pe^{x})^{2}}{4(1 - p + pe^{x})^{2}}.$$

Note that $f''(x) \ge 0$ and f'(0) = 0.

Therefore, f' is increasing and $f'(x) \ge 0$ for $x \ge 0$. Since $f'(x) \ge 0$ and f(0) = 0, it follows that $x \ge 0$ implies $f(x) \ge 0$, which we need to prove.

Lemma

Let X be a random variable that takes values in the interval [a, b] such that E(X) = 0. Then, for every $\lambda > 0$ we have

$$E(e^{\lambda X}) \leqslant e^{\frac{\lambda^2(b-a)^2}{8}}.$$

Since $f(x) = e^{\lambda x}$ is a convex function, we have that for every $t \in [0,1]$ and $x \in [a,b]$,

$$f(x) \leqslant (1-t)f(a) + tf(b).$$

For $t = \frac{x-a}{b-a} \in [0,1]$ we have $e^{\lambda x} \leqslant \frac{b-x}{b-a} e^{\lambda a} + \frac{x-a}{b-a} e^{\lambda b}$. Applying the expectation we obtain:

$$E(e^{\lambda X}) \leq \frac{b - E(X)}{b - a} e^{\lambda a} + \frac{E(X) - a}{b - a} e^{\lambda b}$$
$$= \frac{b}{b - a} e^{\lambda a} - \frac{a}{b - a} e^{\lambda b},$$

because E(X) = 0.

If
$$h=\lambda(b-a)$$
, $p=\frac{-a}{b-a}$ and $L(h)=-hp+\log(1-p+pe^h)$, then $-hp=\lambda a$, $1-p=1+\frac{a}{b-a}=\frac{b}{b-a}$, and

$$e^{L(h)} = e^{-hp}(1-p+pe^h)$$

$$= e^{\lambda a} \left(\frac{b}{b-a} - \frac{a}{a-b} e^{\lambda(b-a)} \right)$$

$$= \frac{b}{b-a} e^{\lambda a} - \frac{a}{a-b} e^{\lambda b}.$$

This implies

$$\frac{b}{b-a}e^{\lambda a} - \frac{a}{b-a}e^{\lambda b} = e^{L(h)} \leqslant e^{\frac{\lambda^2(b-a)^2}{8}}$$

because we have shown that $L(h) \leqslant \frac{h^2}{8} = \frac{\lambda^2(b-a)^2}{8}$. This gives the desired inequality.

Hoeffding's Theorem

Theorem

Let (Z_1, \ldots, Z_m) be a sequence of iid random variables and let

$$\tilde{Z} = \frac{1}{m} \sum_{i=1}^{m} Z_i.$$

Assume that

$$E(\tilde{Z}) = \mu$$
 and that $P(a \leqslant Z_i \leqslant b) = 1$

for $1 \leqslant i \leqslant m$. Then, for every $\epsilon > 0$ we have

$$P(|\tilde{Z} - \mu| > \epsilon) \leqslant 2e^{-\frac{2m\epsilon^2}{(b-a)^2}}.$$

Let $X_i = Z_i - E(Z_i) = Z_i - \mu$ and $\tilde{X} = \frac{1}{m} \sum_{i=1}^m X_i$. Note that $E(X_i) = 0$ for $1 \le i \le m$, which implies $E(\tilde{X}) = 0$. Thus,

$$\tilde{Z} - \mu = \left(\frac{1}{m} \sum_{i=1}^{m} Z_i\right) - \mu = \frac{1}{m} \sum_{i=1}^{m} (Z_i - \mu)$$
$$= \frac{1}{m} \sum_{i=1}^{m} X_i = \tilde{X}$$

and

$$P(|\tilde{Z} - \mu| > \epsilon) = P(|\tilde{X}| > \epsilon)$$

= $P(\tilde{X} > \epsilon) + P(\tilde{X} < -\epsilon)$.

Let ϵ and λ be two positive numbers. Note that $P(\tilde{X} \geqslant \epsilon) = P(e^{\lambda \tilde{X}} \geqslant e^{\lambda \epsilon})$. By Markov Inequality,

$$P(e^{\lambda \tilde{X}} \geqslant e^{\lambda \epsilon}) \leqslant \frac{E(e^{\lambda X})}{e^{\lambda \epsilon}}.$$

Since X_1, \ldots, X_m are independent, we have

$$E(e^{\lambda \tilde{X}}) = E\left(\prod_{i=1}^m e^{\frac{\lambda X_i}{m}}\right) = \prod_{i=1}^m E(e^{\frac{\lambda X_i}{m}}).$$

By Lemma 2, for every *i* we have

$$E\left(e^{\frac{\lambda X_i}{m}}\right) \leqslant e^{\frac{\lambda^2(b-a)^2}{8m^2}}.$$

Therefore,

$$P(\tilde{X} \geqslant \epsilon) \leqslant e^{-\lambda \epsilon} \prod_{i=1}^{m} e^{\frac{\lambda^2 (b-a)^2}{8m^2}} = e^{-\lambda \epsilon} e^{\frac{\lambda^2 (b-a)^2}{8m}}.$$

Choosing $\lambda = \frac{4m\epsilon}{(b-a)^2}$ yields

$$P(\tilde{X} \geqslant \epsilon) \leqslant e^{-\frac{2m\epsilon^2}{(b-a)^2}}.$$

The same arguments applied to $-\tilde{X}$ yield $P(\tilde{X} \leqslant -\epsilon) \leqslant e^{-\frac{2m\epsilon^2}{(b-a)^2}}$.

By applying the union property of probabilities we have

$$P(|\tilde{X}| > \epsilon) = P(\tilde{X} > \epsilon) + P(\tilde{X} < -\epsilon)$$

$$\leq 2e^{-\frac{2m\epsilon^2}{(b-a)^2}}.$$