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Preliminaries

Reminder

o If K is event such that P(K) = p, 1 is a random variable

{1 if K takes place
1 =

o If P(K) = p, then

0 otherwise.
0 1
e <1 —p P>
and E(1x) = p.
o If X is a random variable

X:<X1 xn>’
pL =t pPn

then X = "7 ; xilx—x,, where

0 1
Ly - (1 — pi Pi) '
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Preliminaries

First Lemma

Lemma

Let Z be a random variable that takes values in [0,1] such that E[Z] = p.
Then, for every a € (0,1) we have

(1 — _
P(Z>1—a)>u(aa)andP(Z>a)>/f_:>u—a.

Proof: The random variable Y = 1 — Z is non-negative with
E(Y)=1-E(Z) =1— u. By Markov's inequality:

P(Z<1-a)=PA-Z>a=P(y>a< ) _1=on

Therefore,

1- 1 u-(1-
P(Z>1-2a)>1— a“—”’é _n-(1-2a)
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Proof (cont'd)

By replacing a by 1 — a we have:

=
9]

P(Z>a)> > u—a.

1—a
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Preliminaries

Second Lemma

Lemma
Let O be a random variable that ranges in the interval [0, 1] such that

E(0) > . We have
1 1
PlOo>=)>=.
( >8> 7

Proof: From the second inequality of the previous lemma it follows that

E(0)—a
P(0 > —
(6> 2) 1—-a
By substituting a = % we obtain:
1, _+-% 1
PO>2-)>4+-8 =",
(>8) 1-1 7
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The No-Free-Lunch Theorem

@ A learning task is defined by an unknown probability distribution D
over X x ).

@ The goal of the learner is to find (to learn) a hypothesis h: X — )
such that its risk Lp(h) is sufficiently small.

@ The choice of a hypothesis class H reflects some prior knowlege that
the learner has about the task: a belief that a member of H is a
low-error model for the task.

@ Fundamental Question: There exist a universal learner A and a
training set size m such that for every distribution D, if A receives m
iid examples from D, there is a high probability that A will produce h
with a low risk?
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The No-Free-Lunch Theorem

@ The No-Free-Lunch (NFL) Theorem stipulates that a universal learner
(for every distribution) does not exist!

@ A learner fails if, upon receiving a sequence of iid examples from a
distribution D, its output hypothesis is likely to have a large loss (say,
larger than 0.3), whereas for the same distribution there exists
another learner that will output a hypothesis with a small risk.

@ More precise statment: for every binary prediction task and learner,
there exists a distribution D for which the learning task fails.

@ No learner can succeed on all learning tasks: every learner has tasks
on which it fails whereas other learners succeed.
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Recall 0/1 Loss Function

The loss function is the 0/1-loss function ¢p_1:

0 if h(x) =y,

loa(h, (xy)) = {1 if h(x) # y.
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The NFL Theorem

For a learning algorithm A denote by A(S) the hypothesis returned by the
algorithm upon receiving the training sequence S.

Theorem
Let A be any learning algorithm for the task of binary classification with
respect to the 0/1-loss function over a domain X. Let m < ‘%' be a
number representing a training set size.
There exists a distribution D over X x {0,1} such that:

o there exists a function f : X — {0,1} with Lp(f) =0;

e with probability at least 1/7 over the choice of a sample S ~ D™ (of
size m) we have that Lp(A(S)) > 1/8.
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Interpretation of the NFL Theorem

For every learner, there us a task for which it fails, even though the task
can be succcessfully learned by another learner.
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Proof

Let C be a subset of X of size 2m; this set exist because we assume that
m < 121

Intuition of the proof: any algorithm that observes only half of the
instances of C has no information of what should be the labels of the
other half. Therefore, there exists a target function f which would

contradict the labels that A(S) predicts on the unobserved instances of C.
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The No-Free-Lunch Theorem

@ There are T = 22™ possible functions from C to {0,1}: f,..., fr.

@ For each f; let D; be the distribution over

Cx {0, 1} = {(X]_, 0), (X17 1), ey (Xgm, 0), (Xgm, 1)}

given by

0 otherwise.

Di({(xy)}} = {é ity =filx)

The probability to choose a pair (x, y) is Ii(lfl if y is the true label
according to f; and 0, otherwise (if y # fi(x)). Clearly Lp,(f;) = 0.
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The No-Free-Lunch Theorem

Intuition

Let m =3, C = {x1, x2, X3, X4, X5, X6 } -

Suppose that
filx1) =1 fi(xx) =0 fi(x3)=1
fila) =1 fi(xs) =1 fi(x)=0,

The distribution D; is:

(x1,0) (%,0) (x3,0) (x4,0) (x5,0) (xg,0)

0 i 0 0 0 &
(X17 1) (X27 1) (X37 1) (X47 1) (X57 1) (Xﬁv 1)

1 1 1 1

5 0 5 3 5 0.

Clearly, we have:

Lp,(f)) = P({(x,y) | f(x) #y}) =0.
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The No-Free-Lunch Theorem

Claim (*):
For every algorithm A that receives a training set of m examples from
C x {0,1} and returns a function A(S) : C — {0,1} we have:

max EsNDm(LD;(A(S))) > .

1<i<| T 4

This means that for every A’ that receives a training set of m examples
from X x {0,1} there exists f : X — {0,1} and a distribution D over
X x {0,1} such that Lp(f) =0 and Espm(Lp(A'(S))) > 3.
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The No-Free-Lunch Theorem

@ There are k = (2m)™ possible sequences Sq, ..., Sk of m examples
from C.
o If Sj = (x1,...,xm), the sequence labeled by a function f; is denoted

by S/ = ((x1, fi(x1)), - - -, (xm, fi(xm)))-

o If the distribution is D;, then the possible training sets that A can
receive are SJ ..., SL and all these training sets have the same
probability of being sampled. Therefore,

Es~pn(Lp,(A(S)) = 7 D Lp,(A(S))).
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The No-Free-Lunch Theorem

Recall that there are T = 22™ possible functions from C to {0,1}:
fi,...,fr,s0 1 <i < T, where i the superscript of SJf reflecting the

labeling function f;.
We have:

\Y4
3
5
| —
'\
S
P
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Fix some j and let S; = {x1,...
that do not appear in ;. Clearly p > m. Therefore, for each
h: C — {0,1} and every i we have:

Lo(h) = =

2m

XGC

,Xm}. Let vq,...

1 P
5 2 L0200 2 5 Z: Ln(u)#(v)

1
= ? Z: (vr)#fi(vr)-

Hence,

WV

WV

2,00 T Z La(siyv)#f(w)-

, Vp be the examples in C
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The No-Free-Lunch Theorem

Fix some r, 1 < r < p. We can partition all functions in {f1,...,f,} into
T /2 disjoint sets {f;, fi } such that we have

fi(c) # fu(c) if and only if ¢ = v,.
Since for a set {f;, fr} we must have Sj = Sf’, it follows that

Laspwnzaen + Lash s ) = b
which implies
1

1 T
T > LaGsiu)n(n) = 5
i=1
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The No-Free-Lunch Theorem

Since
L
T Z Lp,(A($)) = 5 min = Z La(siywhw)

and ;

1 1

T z_; Lasi#ew) = 30
we have

1 < 1
i=1
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The No-Free-Lunch Theorem

Thus,
1 & . 1
— ! > H = 1
max_ o Z; Lo (A(S])) = min > Lo (A(S)
Jj= i=
implies
1& 1
5 K 2 Lo (A(5))) = 4
J:
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The No-Free-Lunch Theorem

We combined

-
1 ; 1
T z_: LDi(A(Sj)) > 2 12‘2,; T Z 1A(S Y(ve)#fi(vr)
k
1 .
T ; ) > il
12‘3ng P Z} Lp,(A(S})) = 12/|2k = Z Lp,(A
J:

k
Esoon(Ln(A(S)) = 7 Ln(A(S
j=1

N

T Z Laeshw#hi(w)

to obtain:
max ESND"'(LD (A(S)) =

1<i<T

ENI
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The No-Free-Lunch Theorem

Thus, the Claim (*) is justified.

This means that for every algorithm A’ that receives a training set of m
examples from X x {0,1} there exists a function f : X — {0,1} and a
distribution D over X’ x {0,1} such that Lp(f) =0 and

ENg-

Es~pm(Lp(A'(S))) =

By the second Lemma this implies:

~N| =

P (LD(A’(S)) > é) >
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