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Preliminaries

Reminder

If K is event such that P(K ) = p, 1K is a random variable

1K =

{
1 if K takes place

0 otherwise.

If P(K ) = p, then

1K :

(
0 1

1− p p

)
and E (1K ) = p.

If X is a random variable

X :

(
x1 · · · xn
p1 · · · pn

)
,

then X =
∑n

i=1 xi1X=xi , where

1X=xi :

(
0 1

1− pi pi

)
.
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Preliminaries

First Lemma

Lemma

Let Z be a random variable that takes values in [0, 1] such that E [Z ] = µ.
Then, for every a ∈ (0, 1) we have

P(Z > 1− a) >
µ− (1− a)

a
and P(Z > a) >

µ− a

1− a
> µ− a.

Proof: The random variable Y = 1− Z is non-negative with
E (Y ) = 1− E (Z ) = 1− µ. By Markov’s inequality:

P(Z 6 1− a) = P(1− Z > a) = P(Y > a) 6
E (Y )

a
=

1− µ
a

.

Therefore,

P(Z > 1− a) > 1− 1− µ
a

=
a + µ− 1

a
=
µ− (1− a)

a
.
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Preliminaries

Proof (cont’d)

By replacing a by 1− a we have:

P(Z > a) >
µ− a

1− a
> µ− a.
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Preliminaries

Second Lemma

Lemma

Let θ be a random variable that ranges in the interval [0, 1] such that
E (θ) > 1

4 . We have

P

(
θ >

1

8

)
>

1

7
.

Proof: From the second inequality of the previous lemma it follows that

P(θ > a) >
E (θ)− a

1− a
.

By substituting a = 1
8 we obtain:

P(θ >
1

8
) >

1
4 −

1
8

1− 1
8

=
1

7
.
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The No-Free-Lunch Theorem

A learning task is defined by an unknown probability distribution D
over X × Y.

The goal of the learner is to find (to learn) a hypothesis h : X −→ Y
such that its risk LD(h) is sufficiently small.

The choice of a hypothesis class H reflects some prior knowlege that
the learner has about the task: a belief that a member of H is a
low-error model for the task.

Fundamental Question: There exist a universal learner A and a
training set size m such that for every distribution D, if A receives m
iid examples from D, there is a high probability that A will produce h
with a low risk?
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The No-Free-Lunch Theorem

The No-Free-Lunch (NFL) Theorem stipulates that a universal learner
(for every distribution) does not exist!

A learner fails if, upon receiving a sequence of iid examples from a
distribution D, its output hypothesis is likely to have a large loss (say,
larger than 0.3), whereas for the same distribution there exists
another learner that will output a hypothesis with a small risk.

More precise statment: for every binary prediction task and learner,
there exists a distribution D for which the learning task fails.

No learner can succeed on all learning tasks: every learner has tasks
on which it fails whereas other learners succeed.
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The No-Free-Lunch Theorem

Recall 0/1 Loss Function

The loss function is the 0/1-loss function `0−1:

`0−1(h, (x , y)) =

{
0 if h(x) = y ,

1 if h(x) 6= y .
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The No-Free-Lunch Theorem

The NFL Theorem

For a learning algorithm A denote by A(S) the hypothesis returned by the
algorithm upon receiving the training sequence S .

Theorem

Let A be any learning algorithm for the task of binary classification with
respect to the 0/1-loss function over a domain X . Let m < |X |

2 be a
number representing a training set size.
There exists a distribution D over X × {0, 1} such that:

there exists a function f : X −→ {0, 1} with LD(f ) = 0;

with probability at least 1/7 over the choice of a sample S ∼ Dm (of
size m) we have that LD(A(S)) > 1/8.
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The No-Free-Lunch Theorem

Interpretation of the NFL Theorem

For every learner, there us a task for which it fails, even though the task
can be succcessfully learned by another learner.
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The No-Free-Lunch Theorem

Proof

Let C be a subset of X of size 2m; this set exist because we assume that
m < |X |

2 .
Intuition of the proof: any algorithm that observes only half of the
instances of C has no information of what should be the labels of the
other half. Therefore, there exists a target function f which would
contradict the labels that A(S) predicts on the unobserved instances of C .
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The No-Free-Lunch Theorem

There are T = 22m possible functions from C to {0, 1}: f1, . . . , fT .

For each fi let Di be the distribution over

C × {0, 1} = {(x1, 0), (x1, 1), . . . , (x2m, 0), (x2m, 1)}

given by

Di ({(x , y)}} =

{
1
|C | if y = fi (x)

0 otherwise.

The probability to choose a pair (x , y) is 1
|C | if y is the true label

according to fi and 0, otherwise (if y 6= fi (x)). Clearly LDi
(fi ) = 0.

13 / 23



The No-Free-Lunch Theorem

Intuition

Let m = 3, C = {x1, x2, x3, x4, x5, x6}.
Suppose that

fi (x1) = 1 fi (x2) = 0 fi (x3) = 1
fi (x4) = 1 fi (x5) = 1 fi (x6) = 0,

The distribution Di is:

(x1, 0) (x2, 0) (x3, 0) (x4, 0) (x5, 0) (x6, 0)
0 1

6 0 0 0 1
6

(x1, 1) (x2, 1) (x3, 1) (x4, 1) (x5, 1) (x6, 1)
1
6 0 1

6
1
6

1
6 0.

Clearly, we have:

LDi
(fi ) = P({(x , y) | f (x) 6= y}) = 0.
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The No-Free-Lunch Theorem

Claim (*):
For every algorithm A that receives a training set of m examples from
C × {0, 1} and returns a function A(S) : C −→ {0, 1} we have:

max
16i6|T |

ES∼Dm(LDi
(A(S))) >

1

4
.

This means that for every A′ that receives a training set of m examples
from X × {0, 1} there exists f : X −→ {0, 1} and a distribution D over
X × {0, 1} such that LD(f ) = 0 and ES∼Dm(LD(A′(S))) > 1

4 .
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The No-Free-Lunch Theorem

There are k = (2m)m possible sequences S1, . . . ,Sk of m examples
from C .

If Sj = (x1, . . . , xm), the sequence labeled by a function fi is denoted
by S i

j = ((x1, fi (x1)), . . . , (xm, fi (xm))).

If the distribution is Di , then the possible training sets that A can
receive are S i

1, . . . ,S
i
k and all these training sets have the same

probability of being sampled. Therefore,

ES∼Dm(LDi
(A(S)) =

1

k

k∑
j=1

LDi
(A(S i

j )).
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The No-Free-Lunch Theorem

Recall that there are T = 22m possible functions from C to {0, 1}:
f1, . . . , fT , so 1 6 i 6 T , where i the superscript of S i

j reflecting the
labeling function fi .
We have:

max
16i6T

1

k

k∑
j=1

LDi
(A(S i

j ))

>
1

T

T∑
i=1

1

k

k∑
j=1

LDi
(A(S i

j ))

=
1

k

k∑
j=1

1

T

T∑
i=1

LDi
(A(S i

j ))

> min
16j6k

1

T

T∑
i=1

LDi
(A(S i

j )).
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The No-Free-Lunch Theorem

Fix some j and let Sj = {x1, . . . , xm}. Let v1, . . . , vp be the examples in C
that do not appear in Sj . Clearly p > m. Therefore, for each
h : C −→ {0, 1} and every i we have:

LDi
(h) =

1

2m

∑
x∈C

1h(x) 6=fi (x) >
1

2m

p∑
r=1

1h(vr )6=fi (vr )

>
1

2p

p∑
r=1

1h(vr )6=fi (vr ).

Hence,

1

T

T∑
i=1

LDi
(A(S i

j ) >
1

T

T∑
i=1

1

2p

p∑
r=1

1A(S i
j )(vr )6=fi (vr )

=
1

2p

p∑
r=1

1

T

T∑
i=1

1A(S i
j )(vr )6=fi (vr )

>
1

2
min

16t6p

1

T

T∑
i=1

1A(S i
j )(vr )6=fi (vr )

.
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The No-Free-Lunch Theorem

Fix some r , 1 6 r 6 p. We can partition all functions in {f1, . . . , fp} into
T/2 disjoint sets {fi , fi ′} such that we have

fi (c) 6= fi ′(c) if and only if c = vr .

Since for a set {fi , fi ′} we must have S i
j = S i ′

j , it follows that

1A(S i
j )(vr ) 6=fi (vr )

+ 1A(S i′
j )(vr ) 6=fi′ (vr )

= 1,

which implies

1

T

T∑
i=1

1A(S i
j (vr ) 6=fi (vr )

=
1

2
.
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The No-Free-Lunch Theorem

Since

1

T

T∑
i=1

LDi
(A(S i

j )) >
1

2
min

16t6p

1

T

T∑
i=1

1A(S i
j )(vr )6=fi (vr )

and

1

T

T∑
i=1

1A(S i
j (vr ) 6=fi (vr )

=
1

2
,

we have

1

T

T∑
i=1

LDi
(A(S i

j ) >
1

4
.
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The No-Free-Lunch Theorem

Thus,

max
16i6T

1

k

k∑
j=1

LDi
(A(S i

j )) > min
16j6k

1

T

T∑
i=1

LDi
(A(S i

j ))

implies

max
16i6T

1

k

k∑
j=1

LDi
(A(S i

j )) >
1

4
.
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The No-Free-Lunch Theorem

We combined

1

T

T∑
i=1

LDi
(A(S i

j )) >
1

2
min

16t6p

1

T

T∑
i=1

1A(S i
j )(vr ) 6=fi (vr )

max
16i6T

1

k

k∑
j=1

LDi
(A(S i

j )) > min
16j6k

1

T

T∑
i=1

LDi
(A(S i

j ))

ES∼Dm(LDi
(A(S))) =

1

k

k∑
j=1

LDi
(A(S i

j ))

1

T

T∑
i=1

1A(S i
j )(vr )6=fi (vr )

=
1

2

to obtain:

max
16i6T

ES∼Dm
i

(LDi
(A(S)) >

1

4
.
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The No-Free-Lunch Theorem

Thus, the Claim (*) is justified.
This means that for every algorithm A′ that receives a training set of m
examples from X × {0, 1} there exists a function f : X −→ {0, 1} and a
distribution D over X × {0, 1} such that LD(f ) = 0 and

ES∼Dm(LD(A′(S))) >
1

4
.

By the second Lemma this implies:

P

(
LD(A′(S)) >

1

8

)
>

1

7
.
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