Homework 1

posted February 1, 2020 due March 2, 2020 Reminders:

- Solutions whould include the statements of the problems.
- The preferred format is LaTeX.
- Solution must be your own; homework must be handed in class and on time.
- 1. Let $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{Y} = \{0,1\}$. The set of hypothesis \mathcal{H} is the class of concentric circles in \mathbb{R}^2 : namely, the hypothesis h_r is the circle defined by $x^2 + y^2 \leq r^2$. A labeling function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ defined a point P as a positive example if f(P) = 1 and a negative example if f(P) = 0. The realizability assumption means that a circle of radius r^* exists that contains all positive example.
 - (a) Suppose that an ERM algorithm returns for a training sequence $S = \{(P_i, y_i) \mid 1 \leq i \leq m\}$ a circle h of radius \bar{r} . Prove that the error of this prediction rule is bounded above by the probability that no point in S belongs to the set $E = \{\mathbf{x} \in \mathbb{R}^2 \mid \bar{r} \leq ||\mathbf{x}|| \leq r^*\}$.
 - (b) Prove the inequality $(1 \epsilon)^m \leq e^{-\epsilon m}$.
 - (c) Prove that \mathcal{H} is PAC-learnable and its sample complexity is bounded by

$$m_{\mathcal{H}}(\epsilon, \delta) \leqslant \left| \frac{\log \frac{1}{\delta}}{\epsilon} \right|.$$

2. Consider the hypothesis class \mathcal{H} of all Boolean conjunctions of d variables. Define $\mathcal{X} = \{0,1\}^d$ and $\mathcal{Y} = \{0,1\}$. A literal over the variables x_1, \ldots, x_d is a Boolean function such that $f(\mathbf{x}) = x_i$ or $f(x) = \overline{x_i}$ for some $i, 1 \leq i \leq d$, where $\mathbf{x} = (x_1, \ldots, x_d)$. A conjunction is any product of literals (e.g. $h(\mathbf{x}) = x_1\overline{x_2}$, where $\mathbf{x} = (x_1, x_2)$.

Consider the hypothesis class of all conjunctions of literals over d variables. The empty conjunction is interpreted as the all-positive hypothesis $(h(\mathbf{x}) = 1 \text{ for all } \mathbf{x})$. Any conjunction which contains a variable

and its negation (like $x_i \overline{x_i} x_j$, etc.) is interpreted as the all-negative hypothesis.

We assume realizability, which in this context, means that there exists a Boolean conjunction that generates the labels. Thus, each example $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$ consists of an assignment to the d Boolean variables and its truth value. For example, for d = 3 and the true hypothesis $f(\mathbf{x}) = x_1 \overline{x_2}$, the training set S may contain

$$((1,1,1),0),((1,0,1),1),((0,1,0),0),((1,0,0),1).$$

- (a) Prove that $|\mathcal{H}| = 3^d + 1$;
- (b) Prove that the hypothesis class of all conjunctions over d variable is PAC learnable and bound its sample complexity $m_{\mathcal{H}}(\epsilon, \delta)$.
- (c) Design an algorithm that implements the ERM rule and whose time is polynomial in dm.