Homework 1

Posted: Monday, February 5, 2024

Due: Wednesday, February 21, 2024 at or before 4:00pm

- 1. List all partitions of the set $\{a, b, c, d\}$ and draw the Hesse diagram of the poset of these partitions.
- 2. Each of the following sets is not a subspace of the specified linear space. For each set explain why it is not a subspace.

Set	Lin. Sp.
$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid x_1 \geqslant 0, x_2 \geqslant 0 \right\}$	\mathbb{R}^2
$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid x_1 + 4x_2 = 5 \right\}$	\mathbb{R}^2
the set P_k of polynomials of degree exactly k	lin.sp.of polynomials

- 3. Let S be a subspace of a linear space L. Define the relation \sim_S on L as containing those pairs $(\boldsymbol{x},\boldsymbol{y})$ of elements of L such that $\boldsymbol{x}-\boldsymbol{y}\in S$. Prove that \sim_S is an equivalence on L. Describe, the best you can the equivalence classes of \sim_S .
- 4. Prove that the set of vectors in \mathbb{R}^3

$$U = \left\{ \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ -8 \\ 1 \end{pmatrix}, \right\}$$

is not a basis in \mathbb{R}^3 .

5. Let P be the linear space $\mathbb{R}[x]$ of polynomials. Is the set $\{1+x+x^2,1-x,1-x^3\}$ linearly independent? Jusify your answer.