Homework 2

Posted: February 21, 2024 Due: March 6, 2024

- Let S^{n×n} be the set of n×n symmetric matrices in ℝ^{n×n}. Prove that S^{n×n} is a subspace of ℝ^{n×n} and dim(S^{n×n}) = n(n+1)/2.
 Let A, B ∈ ℂ^{n×n} be two matrices. Prove that if AB = BA, then we
- 2. Let $A, B \in \mathbb{C}^{n \times n}$ be two matrices. Prove that if AB = BA, then we have the following equality known as *Newton's binomial*:

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^{n-k} B^k.$$

Give an example of matrices $A, B \in \mathbb{C}^{2 \times 2}$ such that $AB \neq BA$ for which the above formula does not hold.

3. Let $M \in \mathbb{R}^{n \times n}$ be a partitioned matrix,

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where $A \in \mathbb{R}^{m \times m}$ and m < n. Prove that, if all inverse matrices mentioned next exist and $Q = (A - BD^{-1}C)^{-1}$, then

$$M^{-1} = \begin{pmatrix} Q & -QBD^{-1} \\ -D^{-1}CQ & D^{-1} + D^{-1}CQBD^{-1} \end{pmatrix}.$$

- 4. Prove or disprove:
 - (a) If $\mathbf{0} \in W$, where $W = \{ \boldsymbol{w}_1, \dots, \boldsymbol{w}_n \}$, then W is linearly independent.
 - (b) If $W = \{ \boldsymbol{w}_1, \ldots, \boldsymbol{w}_n \}$ is linearly independent and \boldsymbol{w} is not a linear combination of the vectors of W, then $W \cup \{ \boldsymbol{w} \}$ is linearly independent.

- (c) If $W = \{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n\}$ is linearly dependent, then any of \boldsymbol{w}_i is a linear combination of the others.
- (d) If \boldsymbol{y} is not a linear combination of $\{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n\}$, then $\{\boldsymbol{y}, \boldsymbol{w}_1, \ldots, \boldsymbol{w}_n\}$ is linearly independent.
- (e) If any n-1 vectors of the set $W = \{w_1, \ldots, w_n\}$ are linearly dependent, then W is linearly independent.
- 5. An *involutive matrix* is a matrix $A \in \mathbb{C}^{n \times n}$ such that $A^2 = I_n$. An *idempotent matrix* is a matrix $B \in \mathbb{C}^{n \times n}$ such that $B^2 = B$. Prove that if $B \in \mathbb{C}^{n \times n}$ is an idempotent matrix, then $A = 2B - I_n$ is an involutive matrix.