Homework 5

Posted: April 17, 2024 Due: May 1, 2024

1. Let $a, b \in \mathbb{R}^m$ be two vectors and let ax = b be an one-indeterminate linear system. (the indeterminate is of course the scalar x). The system is, in general incompatible, if m > 1. Prove that the best approximation of the solution (which minimizes

Prove that the best approximation of the solution (which minimizes $\sum_{i=1}^{m} (a_i x - b_i)^2$) is:

$$x = \frac{(\boldsymbol{a}, \boldsymbol{b})}{\parallel \boldsymbol{a} \parallel_2^2}.$$

- 2. Let $X \in \mathbb{R}^{m \times n}$ be a centered data sample matrix whose covariance matrix is $cov(X) = aI_n + bJ_{n,n}$. Prove that $a \ge 0$ and $b \ge 0$.
- 3. Let $X \in \mathbb{R}^{m \times n}$ be a centered data sample matrix and let $p, q \in \mathbb{N}$ be such that p + q = n and X = (U V), where $U \in \mathbb{R}^{m \times p}$ and $V \in \mathbb{R}^{m \times q}$. Define the *mixed covariance* of U and V as $cov(U, V) = \frac{1}{m-1}U'V \in \mathbb{R}^{p \times q}$. Prove that

$$cov(X) = \begin{pmatrix} cov(U) & cov(U,V) \\ cov(U,V)' & cov(V) \end{pmatrix}.$$

- 4. Let $X \in \mathbb{R}^{m \times n}$ be a data matrix involving m experiments and n variables, $X = (\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n)$. The result of each experiment is capured by a vector $\boldsymbol{y} \in \mathbb{R}^m$ and we to express these results as a linear combination of the columns of X. In other words, we seek the best approximation of \boldsymbol{y} as a linear combination of the columns of X, that is, $X\boldsymbol{w}$. Thus $\boldsymbol{y} X\boldsymbol{w}$ is orthogonal to all vectors in X. Prove that:
 - (a) the optimal linear combination $X\boldsymbol{w}$ of the columns of X is obtained taking $\boldsymbol{w} = (X'X)^{-1}X'\boldsymbol{y}$; thus, this linear combination is $X\boldsymbol{w} = X(X'X)^{-1}X'\boldsymbol{y}$;
 - (b) if $G = X(X'X)^{-1}X'$, the matrix G is symmetric and idempotent.