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What is Clustering and Why It is so Difficult?

@ Clustering is the process of grouping a set of object into subsets
referred to as clusters according to some dissimilarity measure defined
on pairs of objects.

@ The goal is to group together similar objects, and to ensure that
objects places in distinct groups are dissimilar.
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What is Clustering and Why It is so Difficult?

@ Clustering belongs to the area of unsupervised machine learning
defined as the task of discovering hidden structure from "unlabelled"
data. Data items are not pre-categorized or labelled, which makes the
evaluation of unsupervised learning algorithm difficult.

@ In contrast, supervised machine learning makes use of labelled data
and creates a model of the data that allows to predict the label for an
yet unseen piece of data.
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What is Clustering and Why It is so Difficult?

@ Many clustering algorithms require the number of clusters to be
provided as an input parameter, which forces these algorithms to
combine of split natural clusters, or produce clusters that do not exist
naturally in data.

@ The pursuit of clusterings with a prescribed number of clusters is an
ill-posed problem because a set of points can be clustered in many
ways. Even if a data set has no meaningful structure, a clustering
algorithm will find some partition of the data.
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What is Clustering and Why It is so Difficult?

Starting from the data set shown below which consist of 16 points without
any particular natural clustering structure, a clustering algorithm that
starts with a prescribed number k = 2 cluster may split this data into two
arbitrary clusters defined by the separating line £.
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What is Clustering and Why It is so Difficult?

Starting from the data set shown below which consist of 16 points without
any particular natural clustering structure, a clustering algorithm that
starts with a prescribed number k = 2 cluster may split this data into two
arbitrary clusters defined by the separating line £.
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What is Clustering and Why It is so Difficult?

A clustering algorithm acting on the data set shown below may find two
clusters or three clusters depending on the decision to fuse or not the two
leftmost point groupings (which are very close).

%

UMASS
BOSTON

Clustering Axiomatization lasi, June 2019 8 /105



What is Clustering and Why It is so Difficult?

Clustering Stability

A clustering should be a structure on the data set that is stable. Stability
is study in a statistical context.

The intuitive idea: if a clustering is applied to several data
sets from the same data generating process or the same un-

derlying model, a good clustering algorithm should deliver
similar results.

In this approach it does not matter how clusterings look but they can be
constructed in a stable manner.
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What is Clustering and Why It is so D

O O
O O

Suppose that we have a data model that has four underlying clusters.
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What is Clustering and Why It is so Difficult?

Suppose that we cluster this data with k = 2 clusters. Then, depending on
a particular sample we may obtain any of the following two clusterings:

If a clustering algorithm with k = 2 is applied repeatedly to samples of the
same distribution, we can obtain occasionally the horizontal separation and
other times the vertical separation. This means that the clustering is not
stable!
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What is Clustering and Why It is so D

Similar effects take place when we choose k = 5.
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What is Clustering and Why It is so Difficult?

Advantages of clustering stability

stability avoids to define what a good clustering is;

it is a meta-principle that can be applied to any clustering algorithm;
solutions that are completely unstable should not be considered;

it does not require any particular clustering model.

e 6 6 ¢
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Clustering Functions

Dissimilarity Space

Definition

A dissimilarity space is a pair (S, d), where S is a set and

d: S5 xS — Ryg is a function that satisfies the following conditions:
e d(x,y) >0, and d(x,x) = 0;
o d(x,y) =d(y,x)

for every x,y € S.

If d(x,y) =0 implies x = y, then d is a definite dissimilarity.
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Clustering Functions

Special dissimilarities

o If d is a definite dissimilarity on S and
d(x,y) < d(x,z) + d(z,y)

for all x,y,z € S, then d is a metric on S.
o If d is a definite dissimilarity on S and

d(x,y) < maxd(x,z),d(z,y)

for all x,y,z € S, then d is an ultrametric on S.
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Clustering Functions

What is a partition of a set?

Let S be a non-empty set.

Definition
A partition on S is a non-empty collection of subsets of S,
m={B; | i € I}, such that

e Bi#(foriel;

e if i #£ j, then B;ﬂBj:@;

° Uie/Bi=S.

The set of partitions of S is denoted by PART(S).
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Clustering Functions

The Order of Partitions

For m,0 € PART(S) we write m < o if for every block B € 7 there exists a
block C € o such that B C C.

Let as be the partition whose blocks consist of singletons and let ws be
the partition that consists of a single block, the set S itself.
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Clustering Functions

Partial Order on Partitions

For m,0 € PART(S) we write 7 < o if every block B € 7 is included in a
block C of 0.
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Equivalence Defined by a Partition

If o € PART(S) we write x = y(0) if x, y reside in the same block of &

and x # y(o) otherwise. Then - = -(0) is an equivalence on S.
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Clustering Functions

Partial Order on Partitions

For m,0 € PART(S) we write 7 < o if every block B € 7 is included in a
block C of 0.

msuchthat m <o
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Clustering Functions

For m,0 € PART(S) define the partition ™ A ¢ as the partition that
consists of the non-empty intersections of blocks of 7 and o.
Note that:
e as < m < wg for every partition m € PART(S);
@ The partition m A ¢ is the largest partition that is less than both 7
and o, so it their greatest common lower bound.
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Clustering Functions

The set of partitions of S = {1,2,3}:
{{1,2,3}}

{{1.3}, {2}}

{1}, {2}, {3}}

%

UMASS
BOSTON

Clustering Axiomatization lasi, June 2019

22 / 105



Clustering Functions

The number of partitions of a set with n elements is the Bell number B,,.
The first 10 values of Bell numbers are:

n||1]2|3| 4| 5 6 7 8 9 10
By||1]2|5]15 |52 |203 | 877 | 4140 | 21147 | 115975

For n = 4 there exist 7 partitions having two blocks, one partition with one
block and one partition with 4 blocks. It is easy to see that there are 6
partitions with 3 blocks, so By =1+4+7+6+4+1 = 15.
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Clustering Functions

The diagram of (PART({1,2,3,4}), <):
{{1,2,3,4}}

{1}, {2,3,4}} . . {{1, 3}, {2,4}}

{1}, {23, {3}, {43}
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Clustering Functions

What is a clustering function?

Definition
Let Dg the set of dissimilarities that can be defined on a set S.
A clustering function on S is a function f : Ds — PART(S).

In general, every clustering algorithm defines a family of clustering
functions.

%

UMASS
BOSTON

Clustering Axiomatization lasi, June 2019 25 / 105



Two Basic Clustering Algorithms

We discuss two very different types of clusterings:

@ the single-link hierarchical algorithm;
@ the partitional k-means algorithm.
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Two Basic Clustering Algorithms

Kruskal’s Algorithm:

Data: A weighted graph G = (V, E, ¢);

Result: A minimum spanning tree T = (V, E’, ) of G;

initialize the set of edges U as U + 0);

insert in U successive edges in the order of increasing weight provided that
the insertion does not create a cycle; if it does, skip the edge;

stop when all nodes are connected

return: T = (V,U,c1y)
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Two Basic Clustering Algorithms

Let G =({vi | 1 <i <6}, E, c) be the weighted graph shown below.

Vi 5 V2 6 v3
List of edges and their weights:

(vi,v2)  (vi,va)  (v2,v3)  (v2,va) (v2,vs) (v3,v5) (va,ve)
5 7 6 1 3 2

Note that the weights are distinct.
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Two Basic Clustering Algorithms

The successive values of the set U are:

0

{{vo, va}}

{{V2> V4}7 {V4> V6}}

H{ve, va}, {va, v6}, {vo, vs}}

{{V2’ V4}7 {V47 V6}a {V27 V5}’ {V5’ V3}}

{H{vo, vat, {va, v6}, {v2, v}, {v5, v3}, {va, v } }

The weight of the minimum spanning tree shown is 15.
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Single-link Clustering Algorithm

Single-link clustering is essentially constructing a minimum spanning tree
on the weighted graph of the objects, where the weight of an edge is the
dissimilarity between the endpoints of the edge.
Data: A dissimilarity space (S, d);
Result: A single-link clustering;
initialize T < {{x} | x € S};
while {stopping condition is not met}{

seek a pair of clusters C, C' € 7 such that

d(C,C") =min{d(x,y) | x€ C,y € C'} is minimal;

fuse the clusters C and C’ into the cluster CU C’, that is,

T+ m—{C,C'}u{Ccul},

}

return 7
The most common stopping condition, which we adopt unlm specified
otherwise is that m = wg, that is, only one cluster exists. umass
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Two Basic Clustering Algorithms

The single-link algorithm can be presented from the perspective of a
minimum spanning tree of the weighted complete graph G, whose vertex
set is S and for which the weight of edge {i, } is d(i,J).

@ List edges in increasing order of their weight.

@ Start with the partition of S that consists of singletons and from an
MST T of the graph Gs 4 labelled by these singletons.

@ At each step the algorithm replaces edges in the tree by blocks
obtained by fusing the extremities of the edges that have the lowest
weight, until a single block partition is obtained.

@ As before, the most common stopping condition, which we adopt
unless specified otherwise is that m = wg, that is, only one cluster
exists.
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Two Basic Clustering Algorithms

Consider the graph

The list of edges in increasing order of the weight:

{v,v2} v, vs}  {va, v} {vi,vu} {v2,w3} {wv,v} {wv,vw} {w, v}
2 2 2 3 3 3 3 3
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Two Basic Clustering Algorithms

The construction of the single-link clustering proceeds along the by adding
the edges whose endpoints are fused in the same cluster (indicated by bold
lines).
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Two Basic Clustering Algorithms

Vi 2 V2 3 v3
The list of edges in increasing order of the weight:

{v,w} {w,vs} {va, v} {vi,vu} {w,w} {w,vw} {w,vw} {w, v}
2 2 2 3 3 3 3 3

c J

2 - - ,—\ 77777777777777777
T %
vi Vo va Ve v3 Vs Uniags
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Clustering Axiomatization lasi, June 2019 34 /105



Two Basic Clustering Algorithms

Vi 2 V2 3 v3
The list of edges in increasing order of the weight:

{v1,w} {w,vs} {va, v} {vi,vu} {w,w} {w,vw} {w,vw} {wn, v}
2 2 2 3 3 3 3 3
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Two Basic Clustering Algorithms

Vi 2 V2 3 v3
The list of edges in increasing order of the weight:

{v1,w} {w,vs} {va, v} {vi,vu} {w,w} {w,vw} {w,vw} {wn, v}
2 2 2 3 3 3 3

c J
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Two Basic Clustering Algorithms

Vi 2 V2 3 v3
The list of edges in increasing order of the weight:

{v1,w} {w,vs} {va, v} {vi,vu} {w,w} {w,vw} {w,vw} {wn, v}
2 2 2 3 3 3 3
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Two Basic Clustering Algorithms

41 2 V2 3 V3
The list of edges in increasing order of the weight:

{vi,v2} {w,vs}  {v, v} {vi,vu} {w,w} {wv,v} {w,vw} {w, v}
2 2 2 3 3 3 3 3

3 —-===- - -

- ___J ‘l___\‘ _
S B S T B 7
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The Sum of Squared Errors

If U is a finite set in R" its centroid is the point cy defined as

cCy = ‘(])’Z{U S U}

The sum of square errors for U is

sse(U)=> {lu—c|?| ue U}
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Two Basic Clustering Algorithms

Definition

For a set X and a partition 7 = {Uj, ..., U} of X, the sum of the

squared errors of 7 is the number

k k
sse(m) =Y sse(Ui) =Y > {lx—cy, |I” [x € Ui},
i=1 i=1

where c; is the centroid of cluster U; defined by

1
c;:mZ{x | x € U}

Clustering Axiomatization lasi, June 2019
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Two Basic Clustering Algorithms

k-means: a different type of clustering

@ The k-means algorithm is one of the best known clustering algorithms
and has been in existence for a long time and is considered by some
authors to be among the top ten algorithms in data mining.

@ The term “k-means” was introduced by J. B. MacQueen. The
best-known variant of the algorithm was proposed by S. Lloyd in 1957
as a technique for pulse-code modulation, and it was published
outside of Bell Labs 25 years later.

o E. W. Forgy published essentially the same method, known today as
Lloyd-Forgy algorithm. Due to its simplicity and to its many
implementations it is a very popular algorithm despite this
requirement.
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Two Basic Clustering Algorithms

The specification of the number k of clusters k is an input. A k-block
partition of a finite set of points in R” is computed such that the objects
that belong to the same block have a high degree of similarity, and the
objects that belong to distinct blocks are dissimilar.

@ The k-means algorithm begins with a randomly chosen set of k points
Ci,...,Ck in R" called centroids.

@ An initial partition of the set S of objects is computed by assigning
each object u; to its closest centroid ¢; and adopting a rule for
breaking ties when there are several centroids that are equally
distanced from u;.

@ The algorithm alternates between between assigning cluster
membership for each object and computing the center of each cluster.
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The k-means Lloyd-Forgy Algorithm

Data: the set of objects to be clustered S = {x1,...,x,} and the number
of clusters k;

Result: a collection of k clusters;

generate a randomly chosen collection of k vectors c1,...,ck in R”,
assign each object x; to the closest centroid c; breaking ties in some
arbitrary manner;

let m = {Ui,..., Ux} be the partition defined by cy, ..., cx;
Repeat{
recompute €y, ..., Cx as the centroids of the clusters U, ..., Ug;

ForEach (x; € X) do
{
if (x; is reassigned to a closer c;)
then obj_reassigned++;
}
} %
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until (obj_reassigned == 0)
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Two Basic Clustering Algorithms

Theorem

The function sse(m) does not increase as the k-means through successive
iterations of the Lloyd-Forgy Algorithm.
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Two Basic Clustering Algorithms

Example

Consider the set S = {x1,x2,X3,X4} in R” given by

- (o (e

shown next:

OIG

()
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Two Basic Clustering Algorithms

There are 7 distinct partitions having two blocks on a 4-element set, so

there exist seven modalities to cluster these four objects:

Clusters centroids sse()
Cy [ <1 €2
2a/3
{x1} {x2:x3,xa} | x1 23/3) 3@ +1)
3
o} | Do} | e J3) | 3@+
3
{x3} {x1,%2,%} | x3 33 2% +1)
2a/3
TS S I R O 5) | 3@+
(o) | (xax) YSRRCR N
2 2
G} | (ox) 73) 1 (35) |
0
{x1, %} | {x2,%3} 12 12 1

It is easy to see that if a < 1, the least value of sse(7) is a?; for a > 1, the
least value is 1.

Clustering Axiomatization lasi, June 2019
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Two Basic Clustering Algorithms

2
algorithm will return the clustering {{x1,Xa}, {x2,x3}} whose sse(r) value

is 1 instead of the minimal value a.

a/2 and a/2

0 1

returns the partition {{x1,x2}, {x3,xa}} and the value of sse(r) for this
partition is a2 instead of the least value of 1.
We may have gaps between the sum-of-squares value of the partition
returned by the k-means algorithm and the minimum value of the
objective function.

If a < 1 and the centroids are (?) and (1j2>, then the k-means

Similarly, if a > 1 and the centroids are , the algorithm
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Clustering Functions

Definition

Let m € PART(S) be a partition of the set S. Define the relation <, on
Dsasd <, d if

e x = y(n) implies d'(x,y) < d(x,y), and

e x # y(m) implies d'(x,y) = d(x, y)
for x,y € S.

v

If d <, d’" we say that d’ is a m-transformation of d and we write d <, d’.
y
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Clustering Functions

Dissimilarity d’ is a w-transformation of dissimilarity d.

d(u,v) > d(u,v)

d'(x,y) < d(x,y)
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Clustering Functions

Theorem

The relation < is a partial order on Dp.

Proof: It is immediate that <, is reflexive.
If we have both d <, d’ and d’ <, d, then

x=y(r) implies d'(x,y)<d(x,y),
x # y(m) implies d'(x,y) > d(x,y),
x=y(r) implies d(x,y)<d(x,y),
xZy(n) implies d(x,y) > d'(x,y),

hence d(x,y) = d’(x,y) in all cases. This shows that <, is antisymmetric.
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Clustering Functions

Proof cont'd

Finally, if d <, d’ and d’ <, d”, then

x=y(r) implies d'(x,y) <d(x,y),
and d"(x,y) < d(x,y),

x # y(m) implies d'(x,y) > d(x,y),
and  d"(x,y) = d'(x,y).

Thus, x = y(r) implies d”(x, y) < d(x,y) and x # y(m) implies
d’(x,y) > d(x,y), hence < is transitive.
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Clustering Functions

Theorem

The partial ordered set (Dp, <) is a lattice.

Clustering Axiomatization lasi, June 2019
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Proof

Let di,d> € Dp such that di <, d’ and d> <, d’. We have:

x=y(r) implies d'(x,y) < di(x,y),
and  d'(x,y) < da(x,y),
x Z y(n) implies d'(x,y) = di(x,y),
and  d'(x,y) > da(x, y).

This means that x = y() implies d’(x,y) < min{di(x, y), d2(x, y)} and
x # t(m) implies d'(x,y) = max{di(x,y), d2(x,y)}. Thus, by defining
d € Dp as

dx.y) = {min{dl(x,y), d(x,y)} if x = y(x),
’ max{di(x,y), da(x,y)} if x # y(7),

we have d <, d’, which shows that d is the infimum of cy [l d> in the
partial ordered set (Dp, <). BosToN
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Clustering Functions

Proof cont'd

Similarly, d € Dp defined as

- _Jmax{di(x,y), d2(x, y)}
d( ,)/) N {min{dl(X,y),d2(XaY)}

for x,y € S is the supremum of {di, d>}

Clustering Axiomatization lasi, June 2019
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Clustering Functions

Let m € PART(S) and let a, b be two non-negative numbers such that
a < b. Define the mapping (5§’b 15 xS — Ry as

0 ifx=y,
p(xsy)=<a ifx=y(n)and x #y,
b if x # y(m).

It is easy to verify that 07 , is an ultrametric on S.
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Clustering Functions

Definition

Let a, b be two non-negative numbers and let 7 € PART(S). A
dissimilarity d € Dp is said to (a, b)-conform to m if d < 47 .

In other words, a dissimilarity d € Dp is said to (a, b)-conform to 7 if
o if x =, y then d(x,y) < a, and
o if x #Z, y then d(x,y) > b.

for all x,y € S.
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Clustering Functions

Observe that d is (a, b)-conform to m if

M(m) = max{d(x,y) | x = y(m)
m(m) = min{d(x,y) | x # y(r)

Note that if d is (a, b)-conform to 7 and e <, d, then e is also
(a, b)-conform to .
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Clustering Functions

Definition

A pair of positive real numbers (a, b) is w-forcing relative to a clustering
function f if for all d € Dp that are (a, b)-conform to 7 we have f(d) = .

Equivalently, (a, b) is a m-forcing pair relative to f if

d <z 03, implies f(d) = .
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Clustering Functions

SYNOPSIS

e dis (a, b)-conforms to 7 if d < 67 .

e (a, b) is m-forcing relative to f if when d <, o7, (thatis, d
(a, b)-conforms to ) then f(d) = . ’

o fis consistent if d <f(q) d’ implies f(d") = f(d).
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Kleinberg’s Impossibility Result

Kleinberg considers three desirable and natural properties of clustering
functions: scale-invariance, richness, and consistency.
Namely, a clustering function f is:
@ scale-invariant, if for any dissimilarity function d we have
f(ad) = f(d) if a>0;
@ rich, if it is surjective, that is, for any partition m € PART(S) there
exists d € Dp such that f(d) = ;
o consistent, if d <¢(q) d’ then f(d) = f(d").
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Kleinberg’s Impossibility Result

Variants of single-link clustering
Besides the common halting condition for the single-link algorithm
(m = ws) there are several alternatives:

@ k-cluster stopping condition: Stop adding edges when the
partition first consists of k blocks. (This condition is well-defined
when the number of points is at least k.)

o dissimilarity-r stopping condition: Fuse clusters C, C’ only
if d(C,C") < r;

@ scale-a stopping condition: Let o € (0,1) and let d* denote
the maximum pairwise dissimilarity; i.e.

d* = max{d(x,y) | x,y € V}. Then, fuse clusters C, C’ only if
d(C,C") < ad*.
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Kleinberg’s Impossibility Result

@ By choosing a stopping condition for the single-link procedure, one
obtains a clustering function, which maps the dissimilarity function to
the set of connected components that results at the end of the
procedure.

@ For any two of the three properties considered above one can choose
a single-link stopping condition so that the resulting clustering
function satisfies exactly these two properties.

%

UMASS
BOSTON

Clustering Axiomatization lasi, June 2019 62 / 105



Kleinberg’s Impossibility Result

Theorem

@ Forany k > 1, and n > k, single-link with the k-cluster stopping
condition satisfies scale-invariance and consistency but fails richness.

@ For any r >0, and any n > 2, single-link with the dissimilarity-r
stopping condition satisfies richness and consistency but fails
scale-invariance.

e For any positive o < 1, and any n > 3, single-link with the scale
«a-stopping condition satisfies scale-invariance and richness but fails
consistency.
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Kleinberg’s Impossibility Result
Proof

Single-link with the k-cluster stopping condition satisfies scale-invariance
and consistency but fails richness.

This function fails the richness condition because not every partition has
k-clusters.

It is immediate that f is scale invariant.

To prove that f it is consistent suppose that f(d) = m and that d <, d’.
If x,y belong to the same cluster of 7, that is, if x = y(), then

d'(x,y) < d(x,y), which means that x = y(n’) because the unordered
pair {x,y} is added to the MST that corresponds to d’ before the same
edge is added to the MST that corresponds to d.
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Kleinberg’s Impossibility Result

Proof cont'd

For any r > 0, and any n > 2, single-link with the dissimilarity-r stopping
condition satisfies richness and consistency but fails scale-invariance.
Scale invariance is not satisfied because by multiplying the dissimilarity by
an appropriate constant we obtain the clustering that consists only of
singletons. The stopping condition means that x = y(f(d)) implies
d(x,y) <r.

Richness follows from the fact that the constant r and the dissimilarity d
can be chosen such that f(m) equals any partition on the set of objects.
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Kleinberg’s Impossibility Result

Proof cont'd

Let d, d’ be dissimilarities such that d <f(4) d’. We need to prove that
f(d") = f(d), or equivalently, that x = y(f(d)) if and only if x = y(f(d")).
Since both partitions f(d) and f(d’) are obtained by the application of the
single-link with the dissimilarity-r stopping condition it follows that

x = y(f(d)) implies d(x,y) < r and x = y(f(d")) implies d’(x,y) < r

If x = y(f(d)) we have d’'(x,y) < d(x,y) < rsox = y(f(d")).
Suppose now that x = y(f(d’)) but x # y(f(d)). Since d <f(gy d’, we
have d’'(x,y) > d(x,y) and r > d'(x,y). Thus, r > d(x, y), which
contradicts the fact that x # y(f(d)). Therefore, x = y(f(d")) implies

x = y(f(d)), hence f(d) = f(d").
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Kleinberg’s Impossibility Result

Proof cont'd

For any 0 < a < 1, and any n > 3, single-link with the scale a-stopping
condition satisfies scale-invariance and richness but fails consistency.
Recall that clusters are fused when d(C, C') < amax{d(x,y) | x,y € V}.
Scale-invariance is immediate since both the values of the dissimilarities
and the values of the threshold are multiplied at the same rate. Richness is
also immediate.

However, consistency fails.
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Kleinberg’s Impossibility Result

Let V = {x1,x2,x3} and let d be defined by
d(x1,x) = a,d(x2,x3) = b, d(x1,x3) = c,

where a < b < ¢. Thus, the maximum dissimilarity is c.
Choose a such that a < ac < b, or 2 <a < %. The resulting partition is

m=f(d) = {{x1, %}, {x3}}.
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Kleinberg’s Impossibility Result

If d" is such that d <, d’ then

d'(x1,x) < d(a,x)=a,
d'(x2,x3) = d(x2,x3) = b,
d'(x1,x3) > d(x1,x3) =c.

There conditions are satisfied by d’ defined as
d'(x1,x2) = a,d'(x2,x3) = b, d'(x1,x3) = kc.

Choose k such that b < akc. We have f(d') = {{x1,x2, x3}}. Since
d <, d' but f(d") # f(d), consistency fails.
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Antichains of Partitions and An Impossibility Result

Lemma

Let f be a consistent clustering function on a dissimilarity space (S, d).
For any m € Ran(f) there exist positive numbers a, b such that the pair
(a, b) is m-forcing relative to f.
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Antichains of Partitions and An Impossibility Result

Proof

Since m € Ran(f) there exists d such that f(d) = 7. Let

!/

a = min{d(x,y) | x=y(m)},
p = max{d(x,y) | x # y(m)},

and let a, b be two numbers such that a < a’ < b’ < b. Since d’
(a, b)-conforms to m = f(d), we have f(d’) = 7 by the consistency
property. It follows that the pair (a, b) is m-forcing relative to f.
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Antichains of Partitions and An Impossibility Result

Theorem

If a clustering function f : Dp — PART(S) is scale-invariant and
consistent, then its range is an antichain in the partially ordered set of
partitions of S.

%

UMASS
BOSTON

Clustering Axiomatization lasi, June 2019 72 /105



Antichains of Partitions and An Impossibility Result

Proof

Suppose that f is scale-invariant and that exist distinct partitions
7o, M1 € Ran(f) such that 7 is a refinement of 71, that is, mp < 1.
Let (ao, bo) be a mp forcing pair and let (a1, b1) be a 71 forcing pair
relative to f, where ag < by and a; < by.
Let a» be such that a» < a1, and let € such that 0 < e < "Ob—‘gz.
Since mg < 71 define a dissimilarity d € Dp such that:

e if x = y(mp), then d(x,y) < ¢

e if x = y(m) but x # y(mp), then ax < d(x,y) < a1;

o if x # y(m) then d(x,y) = b;.
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Antichains of Partitions and An Impossibility Result

Proof cont'd

The dissimilarity d (a1, b1)-conforms to 71 and so f(d) = 7.

Set v = 20 and define d’ = ad. By scale invariance we have

f(d') = f(d) = 7.

For x = y(mo) we have d’(x,y) < % < ap, while for x # y(m) we have

d'(x,y) = axboay* = by.

Thus, d’ (ap, by) conforms to 7y and so we have f(d") = m. Since
o # 1. this is a contradiction.
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Antichains of Partitions and An Impossibility Result

Theorem

For every antichain of partitions A, there is a clustering function that is
scale-invariant and consistent such that Ran(f) = A.
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Antichains of Partitions and An Impossibility Result

Proof

Let A be an antichain of partitions of the set S. An A-sum-of-pairs
clustering function f is defined as f(d) = m, where 7 is the partition that
minimizes the sum

dg(m) = {d(x,y) | x=y(n)}

over partitions 7 in A.
Since ®,4(m) = a®y(7) it is clear that f is scale-invariant.
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Antichains of Partitions and An Impossibility Result

For m € A let d be the dissimilarity on the set S with |S| = n having the
following properties:

o d(x,y) < & for x = y(m);

e d(x,y) > 1 for x # y(m).
We have ®4(7) < 1; moreover, ®,(7") < 1 only for partitions 7’ such that
7w’ < . Since A is an antichain, m minimizes ®4 over all partitions in A,

hence f(d) = .
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Antichains of Partitions and An Impossibility Result

To prove consistency suppose that f(d) = m and let d’ be such that

d <, d'. For any partition 7’ let A(7") = ®4(7) — ®g(7'). It suffices to
show that for any 7’ € A we have A(7) > A(7').
Note that

A(r) = Y {d(xy) = d'(xy) | x=y(m)},

A(r) = > {dlxy)—d'(xy) | x=y(x')}

< D {dxy)—d'(xy) | x=y(rAr)}

< A(m),

where both inequalities follow from d <, d’ (for the first, only terms that
correspond to pairs in the same cluster of 7 are non-negative; for the
second, every term corresponding to a pair in the same cluster of 7 is
non-negative). This concludes the argument. o
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Antichains of Partitions and An Impossibility Result

Kleinberg’'s Main Result

Corollary

For each n > 2, there is no clustering function that satisfies
scale-invariance, richness and consistency.

Proof: Suppose that f : Dp — PART(S) is a clustering function that
satisfies scale-invariance and consistency. By a previous theorem, the
range of f is an antichain in (PART(S), <), so f cannot be a surjective.
Therefore, f fails the richness property, which contradicts the initial
assumption.
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Centroid-based clustering and consistency

In centroid-based clustering k input points are selected as tentative
centroids followed by the definition of clusters by assigning each point in S
to its nearest centroid.

The aim is to choose centroids such that each point in S is close to at
least one of them.

Example

A choice is to select centroids such that the sum of dissimilarities to its
assigned points is minimal (Fermat points or k-median).

An alternative, used in the case of k-means is to seek centroids such that
the sum of the squares of dissimilarities to its assigned points is minimal.
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Centroid-based clustering and consistency

J. Kleinberg proved that for a general class of centroid-based clustering
functions, including k-means and k-median, none of the functions in the
class satisfies the consistency property. This contrasts with with the results
for single-link and sum-of-pairs.

For k € N, k > 2 and any continuous, non-decreasing, and unbounded
function g : R>9 — Rxo, define the (k, g)-centroid clustering function as
follows.
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Centroid-based clustering and consistency

Choose the subset T of S consisting of k centroid for which the objective
function X§(T) = >, .5 &(d(x, T)) is minimized. (Here
d(x, T) = minceT d(x,c)). Then, define a partition of S into k clusters
by assigning each point to the element of T closest to it.
@ the k-median function is obtained by setting g to be the identity
function;
@ the objective function underlying k-means clustering is obtained by
setting g(d) = d°.

%

UMASS
BOSTON

Clustering Axiomatization lasi, June 2019 82 / 105



Centroid-based clustering and consistency

Theorem

For every k > 2 and every function g chosen as above, and for n

sufficiently large relative to k, the (k, g)-centroid clustering function fails
the consistency property.
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Centroid-based clustering and consistency

Suppose that k = 2; the argument for k > 2 is similar. Let

y ={X, Y} € PART(S), where |X| = m and |Y| = ym for v > 0.
Assume that the dissimilarity between points in X is r, the dissimilarities
between points in Y are equal to €, where € < r, and the dissimilarity
between x in X and y in Y is r + 9, for some § > 0.
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Centroid-based clustering and consistency

Proof cont'd

By choosing v, r, € and § appropriately, the optimal choice of 2 centroids
will consist of one point from X and one from Y, and the resulting
partition 7 will have clusters X and Y.

Suppose we partition X into sets Xy and Xi of equal size, and reduce the
dissimilarities between points in the same X; to be r' < r (keeping all
other dissimilarities the same). This yields the dissimilarity d’.
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Centroid-based clustering and consistency

Proof cont'd

This can be done, for r’ small enough, so that the optimal choice of two
centroids will now consist of one point from each X;, yielding a different
partition of S.

As our second dissimilarity is a 7w-transformation of the first, this violates

consistency. 7/
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Partitioning Functions

The notion of partitioning function, a modification of the notion of
clustering function is considered.

Definition
A partitioning function on a definite dissimilarity space is a function

f:Dp x{1,...,|S|} — PART(S) such that f(d, k) is a partition of S
having k blocks.
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Partitioning Functions

One could consider properties of partitioning functions similar to the ones
previously introduced by Kleinberg for clustering functions.
Namely, a partitioning function f is:
@ scale-invariant, if for any dissimilarity d € Dp and number of clusters
k (such that 1 < k < |S]) we have f(ad, k) = f(d, k) if a> 0;
@ rich, if for any number of clusters k such that 1 < k < |S],
Ran(f(-, k)) equals the set of all partitions that have k blocks;
@ order-consistent, if for any d, d’ and k the order of edges of G is
identical for d and d’, then f(d, k) = f(d’, k);
Order-consistency means that the only way that the partition function uses
edge weights is by comparing them against each other. Note that
order-consistency implies scale invariance.
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Partitioning Functions

Definition

A partitioning function f : Dp x {1,...,|S|} — PART(S) is consistent if
f(d, k) =m and d <, d' implies f(d', k) = .

The main result discussed here is that the four properties enumerated
above: scale invariance, k-richness, order-consistency, and consistency are
satisfiable. To present this result we shall revisit the single-link clustering.
The single-link algorithm on a dissimilarity space (S, d) can be discussed
in the context of a complete weighted graph G = (S, E, d), where the
weight of an edge {x,y} is d(x,y). If S = {x1,...,x,}, the dissimilarity d
is specified by a list Ly of numbers in non-decreasing order

Ly =(d1,do,..., d(;,)),

of the weights of the edges of G. 7
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Partitioning Functions

An edge {x,y} is redundant if x and y are connected via a path whose
edges have smaller weight than d({x,y}). The following algorithm
constructs the single-link clustering «, where C is the cluster that contain
X.
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Partitioning Functions

Data: A dissimilarity space (S, d), given by the list Ly and a number k,
where 1 < k < |S|.

Result: A single-link clustering that consists of no more than k clusters.
T {{a} [ 1<i<[S]]

i+ 1;
while {|7| > k}{
let e = {x, y};

let Cx € 7 such that x € C;
let C, € w such that y € C;
if{Ce # G H
merge C, and C;
T+ n1—{C,CU{CUGC}
}
[+ i+1;
} return 7
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artitioning Functions

Theorem

The partitioning function computed by the previous single-link algorithm is

scale invariant, k-rich, order-consistent, and consistent.
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Proof

Single-link is order-consistent because if its decisions are based on
comparing two edges to determine which dissimilarities are smaller or
larger. Scale-invariance follows from order-consistency.

To obtain a k-partition 7 it suffices to set intra-block dissimilarities to 1
and the inter-block dissimilarities to 2 to have the algorithm return 7.
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Partitioning Functions

To show the consistency of the algorithm, let f(d, k) = w. An edge

e = {x,y} is an inner edge if x = y(7) and an outer edge if x # y(7).
To construct 7 the algorithm sorts all edges of the graph and then
examines every edge. While there are more than k clusters, the algorithm
transforms the smallest outer edge into an inner edge (thereby reducing
the number of clusters by 1). An inner edge that is larger than any outer
edge is referred to as a redundant inner edge. Such an edge is not
considered for merging; however, it becomes an inner edge by transitivity.
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Partitioning Functions

If the edges of the graph are listed as e = (e, ey, .. ., e(n)) in ascending
2

order of the corresponding dissimilarities, each of these edges may be an
outer edge, a non-redundant inner edge, or a redundant inner edge. By the
definition of the algorithm there is a prefix p of e which consists of inner
edges and suffices to define w. If k = n, p will be empty as there are no
inner edges.

Consider now the m-transformations of d. If we shrink a non-redundant
inner edge of d, then p will not change and the algorithm will still produce
m. If we shrink a redundant inner edge, p may change to p’, but the
clustering produced will not change as a result of transitivity. Finally, if we
expand an outer edge, again p will not change leaving 7 intact. Thus, for
all possible m-transformations d’ of d we will obtain the same clustering.
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An Axiomatization of Clustering Quality Measures

An axiomatization of measures of clustering quality was developed by M.
Ackerman and S. Ben-David.

This is an alternative approach in the attempt to axiomatize clustering and
leads to a consistent system of axioms.
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An Axiomatization of Clustering Quality Measures

Definition

A clustering quality measure is a function m(S, d, ) ranging over Ry,
where (S, d) form a dissimilarity spaces and m € PART(S).
The quality measure m is
e scale invariant if for every A > 0 we have m(S,\d,w) = m(S, d, r);
o consistent if d <7, d" implies m(S,d", 7) < m(S,d, 7);
o rich if for every mo E PART(S) with mp & {as,ws} there exists a
dissimilarity d such that mo = arg max, m(S, d, ).
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An Axiomatization of Clustering Quality Measures

For center-based clustering it is possible to formulate a quality measure
that satisfies all requirements of the previous definition. We assume that
the dissimilarity distance is a metric and thus, it is possible to define
cluster centers (either as medians or as means). This makes centers
invariant to scaling.

Definition

Let (S, d) be a dissimilarity space and let 7 = {Cy, ..., Cc} € PART(S)
be a clustering.

A subset K is a representative set for 7 if KN C; contains a unique element

¢; for each block C; of w and K is invariant under scaling. It is clear that
|K| = k. Denote by REP(7) the set of possible representative sets for .
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An Axiomatization of Clustering Quality Measures

Define the point margin of x € S relative to K as

Pomn,d(X) = mv

where ¢, € K is the closest representative to x, and e, is the second
closest representative to x.

The smaller the value of the point margin, the better the clustering is.
The relative margin of a clustering 7 is the number relm(7) defined as

relm(S,d, 7) = KegﬁEig(ﬂ) avg.es—kPOMy 4(x).
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An Axiomatization of Clustering Quality Measures

Theorem

The relative margin relm is scale-invariant, consistent and rich.
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An Axiomatization of Clustering Quality Measures

Proof

The scale-invariance of relm(S, d, ) follows from the fact that K is
invariant under scaling.

Let d’ be a m-transformation of d, that is, d <7, d’. Since x and ¢
belong to the same cluster of 7 and x, e, beIoné to two distinct clusters,
we have d’'(x, ¢x) < d(x, ¢) and d(x, ex) < d'(x, &), which implies

d'(x, cx) o d(x, c)

pomy ¢/ (x) = d'(x,e)  d(x,ex) = POMyg(x).

This implies relm(S, d’, 7) < relm(S, d, ), so relm is consistent.
Starting with a non-trivial clustering m on S consider the ultrametric 97 ,
where a < b. Then 7 = relm(S, 67 ,, 7). Thus, relm is rich.
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An Axiomatization of Clustering Quality Measures

Previous theorem shows that the system of axioms introduced is consistent
(which means that the set of objects that satisfies this system is non-void).
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An Axiomatization of Clustering Quality Measures

Definition

Let (S, d) be a dissimilarity space. The clusterings m,0 € PART(S) are
isomorphic if there is a bijection h: S — S such that x = y(r) if and
only if h(x) = h(y)(o). This is denoted by m ~4 0.

A clustering quality measure m is isomorphic invariant if if all

7,0 € PART(S) such that m ~4 o we have m(S,d,7) = m(S,d, o).

If we add isomorphic invariance to the system of axioms introduced
previously, the system remains consistent because it is easily seen that
relm satisfies this extra axiom.
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An Axiomatization of Clustering Quality Measures

An example of clustering quality measure that satisfies scale invariance,
consistency, richness and isomorphic invariance.

Definition

Let (S, d) be a dissimilarity space and let G = (S, P2(S), d) be the
weighted graph of (S, d). For m € PART(S), a cluster C € 7 consider the
subgraph G¢ and the set of paths pathsc in Gc.

Let x,y € C. The weakest point link of C is the number

wlp,(x,y) = dg.(x,y), where dg, is the ultrametric earlier defined.
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An Axiomatization of Clustering Quality Measures

In other words, wlp is the least maximum value of dissimilarity
encountered on a path in C that joins x to y.

Definition

The weakest link of the clustering 7 is the number wl(7) given by

wi(r) = max{wlp,.(x,y) | x = y(7)}
min{d(x,y) | x # y(7)}

wl satisfies all axioms.

%

UMASS
BOSTON

Clustering Axiomatization lasi, June 2019 105 / 105



	What is Clustering and Why It is so Difficult?
	Clustering Functions
	Two Basic Clustering Algorithms
	Clustering Functions
	Kleinberg's Impossibility Result
	Antichains of Partitions and An Impossibility Result
	Centroid-based clustering and consistency
	Partitioning Functions
	An Axiomatization of Clustering Quality Measures

