CS724: Topics in Algorithms Problem Set 1

Prof. Dan A. Simovici

Problem 1:

The set of polynomials over a field $\mathbb{F}, \mathbb{F}[x]$, consists of all functions $f: \mathbb{F} \longrightarrow \mathbb{F}$ of the form $f(x)=c_{0}+c_{2} x+\cdots+c_{n} x^{n}$, where $c-0, c_{1}, \ldots, c_{n}$ are fixed scalars from \mathbb{F}. Prove that the set $\left\{x, x^{2}\right\}$ is linearly independent in $\mathbb{R}[x]$.

Solution 1:

Suppose that $a x+b x^{2}=\mathbf{0}$ for $x \in \mathbb{R}$, where $\mathbf{0}(x)=0$ for $x \in r r$. This holds for every a and b, so we can write

$$
\begin{aligned}
a+b & =0(\text { by taking } x=1) \\
-a+b & =0(\text { by taking } x=-1)
\end{aligned}
$$

which implies $a=b=0$.

Problem 2:

Prove that the set of complex numbers \mathbb{C} can be regarded as a linear space over the field \mathbb{R} of real numbers.

Solution 2: Let $u=a+i b$ and $v=c+i d$ be two complex numbers. Their sum is $u+v=(a+c)+i(b+d)$; for $\alpha \in \mathbb{R}$, the product αu is $\alpha u=\alpha a+i \alpha b$. The addition and multiplication of complex numbers satisfy the definition of a complex space over \mathbb{R}.

Problem 3:

Let W_{1}, W_{2} be subspaces of a real linear space V such that the set union $W_{1} \cup W_{2}$ is also a subspace. Prove that one of the subspaces W_{i} is included in the other.

Solution 3:

Suppose that $W_{1} \cup W_{2}$ is a subspace but neither subspace is contained in the other. Then, there exist $x \in W_{1}-W_{2}$ and $y \in W_{2}-W_{1}$. We claim that $x+y$ cannot be in either subspace, hence it cannot be in their union $W_{1} \cup W_{2}$, which is a contradiction.
If $x+y \in W_{1}$, then $(x+y)-x \in W_{1}$, but this is y and we have a contradiction. Similarly, $x+y$ cannot belong to W_{2}.

Problem 4

Let V be the vector space of all functions from \mathbb{R} to \mathbb{R}; let $V_{\text {even }}$ be the subset of all even functions, $f(x)=f(-x)$; let $V_{\text {odd }}$ be the subset of all odd functions, $f(-x)=-f(x)$.
Prove that:

- $V_{\text {even }}$ and $V_{\text {odd }}$ are subspaces of V;
- $V_{\text {even }}+V_{\text {odd }}=V$;
- $V_{\text {even }} \cap V_{\text {odd }}=\{0\}$.

Solution 4

Suppose that $f, \operatorname{gin} V_{\text {even }}$, that is $f(x)=f(-x)$ and $g(x)=g(-x)$. Then

$$
(f+g)(x)=f(x)+g(x)=f(-x)+g(-x)=(f+g)(-x)
$$

so $f+g$ is even. Also, $(a f)(x)=a f(x)=a f(-x)$, so $V_{\text {even }}$ is a subspace. A similar argument works for $V_{\text {odd }}$.

Solution 4 cont'd

If $h \in V$ we can write h as

$$
h(x)=\frac{h(x)+h(-x)}{2}+\frac{h(x)-h(-x)}{2}
$$

The first function is even, and the second is odd, so $V_{\text {even }}+V_{\text {odd }}=V$. If $f \in V_{\text {even }} \cap V_{\text {odd }}$ we have both $f(x)=f(-x)$ and $f(-x)=-f(x)$. Therefore, $f(x)=0$, and f is 0 .

Problem 5

Let W_{1} and W_{2} be subspaces of a vector space V such that

$$
W_{1}+W_{2}=\left\{u+v \mid u \in W_{1}, v \in W_{2}\right\}=V,
$$

and $W_{1} \cap W_{2}=\{0\}$. Prove that each vector v in V can be uniquely written as a sum $v=w_{1}+w_{2}$, where $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$.

Solution 5

By the definition of $W_{1}+W_{2}$ it is clear that each vector v in V can be written as a sum $v=w_{1}+w_{2}$, where $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. What needs to be shown is the uniqueness part.
Suppose that v can be written as:

$$
v=w_{1}+w_{2}=\tilde{w}_{1}+\tilde{w}_{2},
$$

where $w_{1}, \tilde{w}_{1} \in W_{1}$ and $w_{2}, \tilde{w}_{2} \in W_{2}$.
Since $w_{1}-\tilde{w}_{1}=\tilde{w}_{2}-w_{2}, w_{1}-\tilde{w}_{1} \in W_{1}, \tilde{w}_{2}-w_{2} \in W_{2}$ it follows that these vector differences belong to $W_{1} \cap W_{2}=\{0\}$, which means that $w_{1}-\tilde{w}_{1}=\mathbf{0}$ and $\tilde{w}_{2}-w_{2}=\mathbf{0}$. Thus, $w_{1}=\tilde{w}_{1}$ and $\tilde{w}_{2}=w_{2}$, which proves the uniqueness.

Things to remember when you do homework:

- name your file as "hw1-John.Doe.pdf"; this would allow me to recognize your file in the mail;
- write neatly, using latex;
- use clear and correct English;
- do not use the expression "it is easy to see"; fully justify your statements.

