CS724: Topics in Algorithms Problem Set 1

Prof. Dan A. Simovici

< ∃⇒

Prof. Dan A. Simovici

Problem 1:

The set of polynomials over a field \mathbb{F} , $\mathbb{F}[x]$, consists of all functions $f : \mathbb{F} \longrightarrow \mathbb{F}$ of the form $f(x) = c_0 + c_2x + \cdots + c_nx^n$, where $c - 0, c_1, \ldots, c_n$ are fixed scalars from \mathbb{F} . Prove that the set $\{x, x^2\}$ is linearly independent in $\mathbb{R}[x]$.

Solution 1:

Suppose that $ax + bx^2 = \mathbf{0}$ for $x \in \mathbb{R}$, where $\mathbf{0}(x) = 0$ for $x \in rr$. This holds for every *a* and *b*, so we can write

$$a+b = 0$$
(by taking $x = 1$)
 $-a+b = 0$ (by taking $x = -1$),

which implies a = b = 0.

Problem 2:

Prove that the set of complex numbers $\mathbb C$ can be regarded as a linear space over the field $\mathbb R$ of real numbers.

Solution 2: Let u = a + ib and v = c + id be two complex numbers. Their sum is u + v = (a + c) + i(b + d); for $\alpha \in \mathbb{R}$, the product αu is $\alpha u = \alpha a + i\alpha b$. The addition and multiplication of complex numbers satisfy the definition of a complex space over \mathbb{R} .

Let W_1, W_2 be subspaces of a real linear space V such that the set union $W_1 \cup W_2$ is also a subspace. Prove that one of the subspaces W_i is included in the other.

Suppose that $W_1 \cup W_2$ is a subspace but neither subspace is contained in the other. Then, there exist $x \in W_1 - W_2$ and $y \in W_2 - W_1$. We claim that x + y cannot be in either subspace, hence it cannot be in their union $W_1 \cup W_2$, which is a contradiction.

If $x + y \in W_1$, then $(x + y) - x \in W_1$, but this is y and we have a contradiction. Similarly, x + y cannot belong to W_2 .

Problem 4

Let V be the vector space of all functions from \mathbb{R} to \mathbb{R} ; let V_{even} be the subset of all even functions, f(x) = f(-x); let V_{odd} be the subset of all odd functions, f(-x) = -f(x).

Prove that:

- V_{even} and V_{odd} are subspaces of V;
- $V_{even} + V_{odd} = V;$
- $V_{even} \cap V_{odd} = \{0\}.$

< = > < = > -

Solution 4

Suppose that $f, ginV_{even}$, that is f(x) = f(-x) and g(x) = g(-x). Then

$$(f+g)(x) = f(x) + g(x) = f(-x) + g(-x) = (f+g)(-x)$$

so f + g is even. Also, (af)(x) = af(x) = af(-x), so V_{even} is a subspace. A similar argument works for V_{odd} .

If $h \in V$ we can write h as

$$h(x) = \frac{h(x) + h(-x)}{2} + \frac{h(x) - h(-x)}{2}$$

The first function is even, and the second is odd, so $V_{even} + V_{odd} = V$. If $f \in V_{even} \cap V_{odd}$ we have both f(x) = f(-x) and f(-x) = -f(x). Therefore, f(x) = 0, and f is 0.

→ < ∃→

Let W_1 and W_2 be subspaces of a vector space V such that

$$W_1 + W_2 = \{u + v \mid u \in W_1, v \in W_2\} = V,$$

and $W_1 \cap W_2 = \{\mathbf{0}\}$. Prove that each vector v in V can be *uniquely* written as a sum $v = w_1 + w_2$, where $w_1 \in W_1$ and $w_2 \in W_2$.

< 3 > < 3 >

Solution 5

By the definition of $W_1 + W_2$ it is clear that each vector v in V can be written as a sum $v = w_1 + w_2$, where $w_1 \in W_1$ and $w_2 \in W_2$. What needs to be shown is the uniqueness part.

Suppose that v can be written as:

$$\mathbf{v}=\mathbf{w}_1+\mathbf{w}_2=\tilde{\mathbf{w}}_1+\tilde{\mathbf{w}}_2,$$

where $w_1, \tilde{w}_1 \in W_1$ and $w_2, \tilde{w}_2 \in W_2$. Since $w_1 - \tilde{w}_1 = \tilde{w}_2 - w_2$, $w_1 - \tilde{w}_1 \in W_1$, $\tilde{w}_2 - w_2 \in W_2$ it follows that these vector differences belong to $W_1 \cap W_2 = \{\mathbf{0}\}$, which means that $w_1 - \tilde{w}_1 = \mathbf{0}$ and $\tilde{w}_2 - w_2 = \mathbf{0}$. Thus, $w_1 = \tilde{w}_1$ and $\tilde{w}_2 = w_2$, which proves the uniqueness.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Things to remember when you do homework:

- name your file as "hw1-John.Doe.pdf"; this would allow me to recognize your file in the mail;
- write neatly, using latex;
- use clear and correct English;
- do not use the expression "it is easy to see"; fully justify your statements.

