CS724: Topics in Algorithms Problem Set 2

Prof. Dan A. Simovici

< ∃⇒

Prof. Dan A. Simovici

Problem 1:

Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}$ be two conformant matrices. Prove that:

- computing the matrix G = AB using standard matrix multiplication requires *mnp* number multiplications;
- if C ∈ C^{p×q} the computation of the matrix D = (AB)C = A(BC) by the standard method, the first modality D = (AB)C requires mp(n + q) multiplications, while the second, D = A(BC) requires nq(m + p) multiplications.

Solution 1:

Each element g_{ij} of $G \in \mathbb{C}^{mp}$ requires *n* multiplications because

$$g_{ij} = \sum_{k=1}^n a_{ik} \cdot b_{kj}.$$

Since there are *mp* such elements, the total number of multiplications is *mpn*.

Note that $AB \in \mathbb{R}^{m \times p}$ and $BC \in \mathbb{R}^{n \times q}$. Therefore, (AB)C requires mp(n+q) multiplications, and A(BC) requires nq(m+p) multiplications. A judicious organization of computations would compare these numbers. If mp(n+q) < nq(m+p), then (AB)C is preferable to A(BC) because it would involve fewer multiplications.

Let A, B be two matrices in $\mathbb{C}^{n \times n}$. Suppose that B = C + D, where C is a Hermitian matrix and D is a skew-Hermitian matrix. Prove that if A is Hermitian and AB = BA, then AC = CA and AD = DA.

Solution 2:

Since *C* is Hermitian we have $C^{H} = C$. Since *D* is skew-Hermitian, $D^{H} = -D$. Let *A* be such that $A^{H} = A$ and AB = BA. AB = BA is equivalent to A(C + D) = (C + D)A. Also, AB = BA implies $B^{H}A = AB^{H}$ because *A* is Hermitian. Since $B^{H} = C^{H} + D^{H} = C - D$, this amounts to A(C - D) = (C - D)A. Since we also have A(C + D) = (C + D)A be adding the last two equalities we obtain 2AC = 2CA and, by subtracting then, we have 2AD = 2DA, which yield the conclusion.

Problem 3:

Recall that $J_{n,n} \in \mathbb{R}^{n \times n}$ is the complete $n \times n$ matrix, that is the matrix having all components equal to 1. Prove that for every number $m \in \mathbb{N}$ and $m \ge 1$ we have

$$J_{n,n}^m = n^{m-1} J_{n,n}.$$

Solution 3:

Observe that $J_{n,n}^2 = nJ_{n,n}$. The proof is by induction on m. The base step, m = 1 is immediate. Suppose this holds for m. Then

$$J_{n,n}^{m+1} = J_{n,n}J_{n,n}^m = J_{n,n} \cdot n^{m-1}J_{n,n}$$

= (by inductive hypothesis)
= $n^m J_{n,n}$.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

э

Problem 4:

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ be two matrices. Prove that if AB is invertible, then both A and B are invertible.

< □ > < / >

э

Solution 4:

Since AB is invertible we have $AB(AB)^{-1} = I_n$. Thus, A is invertible and $A^{-1} = B(AB)^{-1}$. Similarly, since $(AB)^{-1}AB = I_n$ it follows that B is invertible and $B^{-1} = (AB)^{-1}A$.

Let $A = (a_{ij})$ be an $(m \times n)$ -matrix of real numbers. Prove that $\max_{j} \min_{i} a_{ij} \leqslant \min_{i} \max_{j} a_{ij}$

(the *minimax inequality*).

Solution 5:

Observe that $a_{ij_0} \leq \max_j a_{ij}$ for every i and j_0 , so $\min_i a_{ij_0} \leq \min_i \max_j a_{ij}$, again for every j_0 . Thus, $\max_j \min_i a_{ij} \leq \min_i \max_j a_{ij}$.

< ∃ > < ∃ >

Problem 6:

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ be two vectors such that $\mathbf{x}'\mathbf{y} \neq 0$ and $\mathbf{x}\mathbf{y}' \neq O_{n,n}$. Prove that both matrices $\mathbf{x}'\mathbf{y}$ and $\mathbf{x}\mathbf{y}'$ have rank 1. Note that if $\mathbf{x} \in \mathbb{R}^m$ (or $\mathbb{R}^{m \times 1}$) and $\mathbf{y} \in \mathbb{R}^n$ (or $\mathbb{R}^{n \times 1}$) and $m \neq n$ the multiplication $\mathbf{x}'\mathbf{y}$ can not be performed, but $\mathbf{x}\mathbf{y}'$ is feasible and the result is the same (matrix $\mathbf{x}\mathbf{y}'$ has rank 1).

Solution 6:

Note that x'y is a number:

$$\mathbf{x}'\mathbf{y} = x_1y_1 + \cdots + x_ny_n,$$

and therefore has rank 1. On other hand,

$$\mathbf{x}\mathbf{y}' = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mathbf{y}' = \begin{pmatrix} x_1\mathbf{y}' \\ \vdots \\ x_n\mathbf{y}' \end{pmatrix},$$

which implies that xy' also has rank 1 because every row of this matrix is a multiple of y'.

< ∃⇒