CS724: Topics in Algorithms Problem Set 2

Prof. Dan A. Simovici

Problem 1:

Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}$ be two conformant matrices. Prove that:

- computing the matrix $G=A B$ using standard matrix multiplication requires mnp number multiplications;
- if $C \in \mathbb{C}^{p \times q}$ the computation of the matrix $D=(A B) C=A(B C)$ by the standard method, the first modality $D=(A B) C$ requires $m p(n+q)$ multiplications, while the second, $D=A(B C)$ requires $n q(m+p)$ multiplications.

Solution 1:

Each element $g_{i j}$ of $G \in \mathbb{C}^{m p}$ requires n multiplications because

$$
g_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
$$

Since there are $m p$ such elements, the total number of multiplications is mpn.
Note that $A B \in \mathbb{R}^{m \times p}$ and $B C \in \mathbb{R}^{n \times q}$. Therefore, $(A B) C$ requires $m p(n+q)$ multiplications, and $A(B C)$ requires $n q(m+p)$ multiplications. A judicious organization of computations would compare these numbers. If $m p(n+q)<n q(m+p)$, then $(A B) C$ is preferable to $A(B C)$ because it would involve fewer multiplications.

Problem 2:

Let A, B be two matrices in $\mathbb{C}^{n \times n}$. Suppose that $B=C+D$, where C is a Hermitian matrix and D is a skew-Hermitian matrix. Prove that if A is Hermitian and $A B=B A$, then $A C=C A$ and $A D=D A$.

Solution 2:

Since C is Hermitian we have $C^{H}=C$. Since D is skew-Hermitian, $D^{\mathrm{H}}=-D$. Let A be such that $A^{\mathrm{H}}=A$ and $A B=B A$.
$A B=B A$ is equivalent to $A(C+D)=(C+D) A$.
Also, $A B=B A$ implies $B^{H} A=A B^{H}$ because A is Hermitian. Since $B^{\mathrm{H}}=C^{\mathrm{H}}+D^{\mathrm{H}}=C-D$, this amounts to $A(C-D)=(C-D) A$. Since we also have $A(C+D)=(C+D) A$ be adding the last two equalities we obtain $2 A C=2 C A$ and, by subtracting then, we have $2 A D=2 D A$, which yield the conclusion.

Problem 3:

Recall that $J_{n, n} \in \mathbb{R}^{n \times n}$ is the complete $n \times n$ matrix, that is the matrix having all components equal to 1 . Prove that for every number $m \in \mathbb{N}$ and $m \geqslant 1$ we have

$$
J_{n, n}^{m}=n^{m-1} J_{n, n} .
$$

Solution 3:

Observe that $J_{n, n}^{2}=n J_{n, n}$.
The proof is by induction on m. The base step, $m=1$ is immediate. Suppose this holds for m. Then

$$
\begin{aligned}
J_{n, n}^{m+1} & =J_{n, n} J_{n, n}^{m}=J_{n, n} \cdot n^{m-1} J_{n, n} \\
& =\text { (by inductive hypothesis) } \\
& =n^{m} J_{n, n} .
\end{aligned}
$$

Problem 4:

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ be two matrices. Prove that if $A B$ is invertible, then both A and B are invertible.

Solution 4:

Since $A B$ is invertible we have $A B(A B)^{-1}=I_{n}$. Thus, A is invertible and $A^{-1}=B(A B)^{-1}$. Similarly, since $(A B)^{-1} A B=I_{n}$ it follows that B is invertible and $B^{-1}=(A B)^{-1} A$.

Problem 5:

Let $A=\left(a_{i j}\right)$ be an $(m \times n)$-matrix of real numbers. Prove that

$$
\max _{j} \min _{i} a_{i j} \leqslant \min _{i} \max _{j} a_{i j}
$$

(the minimax inequality).

Solution 5:

Observe that $a_{i j_{0}} \leqslant \max _{j} a_{i j}$ for every i and j_{0}, so $\min _{i} a_{i j_{0}} \leqslant \min _{i} \max _{j} a_{i j}$, again for every j_{0}. Thus, $\max _{j} \min _{i} a_{i j} \leqslant \min _{i} \max _{j} a_{i j}$.

Problem 6:

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ be two vectors such that $\boldsymbol{x}^{\prime} \boldsymbol{y} \neq 0$ and $\boldsymbol{x} \boldsymbol{y}^{\prime} \neq O_{n, n}$. Prove that both matrices $\boldsymbol{x}^{\prime} \boldsymbol{y}$ and $\boldsymbol{x} \boldsymbol{y}^{\prime}$ have rank 1 . Note that if $\boldsymbol{x} \in \mathbb{R}^{m}\left(\right.$ or $\left.\mathbb{R}^{m \times 1}\right)$ and $\boldsymbol{y} \in \mathbb{R}^{n}$ (or $\mathbb{R}^{n \times 1}$) and $m \neq n$ the multiplication $\boldsymbol{x}^{\prime} \boldsymbol{y}$ can not be performed, but $\boldsymbol{x} \boldsymbol{y}^{\prime}$ is feasible and the result is the same (matrix $\boldsymbol{x} \boldsymbol{y}^{\prime}$ has rank 1).

Solution 6:

Note that $\boldsymbol{x}^{\prime} \boldsymbol{y}$ is a number:

$$
\boldsymbol{x}^{\prime} \boldsymbol{y}=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

and therefore has rank 1.
On other hand,

$$
\boldsymbol{x} \boldsymbol{y}^{\prime}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \boldsymbol{y}^{\prime}=\left(\begin{array}{c}
x_{1} \boldsymbol{y}^{\prime} \\
\vdots \\
x_{n} \boldsymbol{y}^{\prime}
\end{array}\right)
$$

which implies that $\boldsymbol{x} \boldsymbol{y}^{\prime}$ also has rank 1 because every row of this matrix is a multiple of \boldsymbol{y}^{\prime}.

