CS724: Topics in Algorithms Problem Set 4

Prof. Dan A. Simovici

Problem 1:

Let ν be a norm on \mathbb{C}^n . Prove that there exists a number $k \in \mathbb{R}$ such that for any vector $\mathbf{x} \in \mathbb{C}^n$ we have $\nu(\mathbf{x}) \leqslant k \sum_{i=1}^n |x_i|$.

Solution 1:

Starting from the equality $\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i$ we have $\nu(\mathbf{x}) \leqslant \sum_{i=1}^{n} \nu(x_i \mathbf{e}_i) = \sum_{i=1}^{n} |x_i| \nu(\mathbf{e}_i) \leqslant k \sum_{i=1}^{n} |x_i|$, where $k = \max\{\nu(\mathbf{e}_i) \mid 1 \leqslant i \leqslant n\}$.

Problem 2:

If $T \subseteq V$, then the set T^{\perp} is defined by:

$$T^{\perp} = \{ \boldsymbol{v} \in V \mid \boldsymbol{v} \perp \boldsymbol{t} \text{ for every } \boldsymbol{t} \in T \}$$

Note that $T \subseteq U$ implies $U^{\perp} \subseteq T^{\perp}$.

If S, T are two subspaces of an inner product space, then S and T are orthogonal if $\mathbf{s} \perp \mathbf{t}$ for every $\mathbf{s} \in S$ and every $\mathbf{t} \in T$. This is denoted as $S \perp T$.

Let V be an inner product space and let $T \subseteq V$. The set T^{\perp} is a subspace of V. Furthermore, $\langle T \rangle^{\perp} = T^{\perp}$.

Solution 2:

Let x and y be two members of T. We have (x, t) = (y, t) = 0 for every $t \in T$. Therefore, for every $a, b \in F$, by the linearity of the inner product we have

$$(a\mathbf{x}+b\mathbf{y},\mathbf{t})=a(\mathbf{x},\mathbf{t})+b(\mathbf{y},\mathbf{t})=0,$$

for $t \in T$, so $ax + bt \in T^{\perp}$. Thus, T^{\perp} is a subspace of V.

By a previous observation, since $T \subseteq \langle T \rangle$, we have $\langle T \rangle^{\perp} \subseteq T^{\perp}$. To prove the converse inclusion, let $\mathbf{z} \in T^{\perp}$.

If $y \in \langle T \rangle$, y is a linear combination of vectors of T,

$$\mathbf{y} = a_1 \mathbf{t}_1 + \cdots + a_m \mathbf{t}_m$$
, so $(\mathbf{y}, \mathbf{z}) = a_1 (\mathbf{t}_1, \mathbf{z}) + \cdots + a_m (\mathbf{t}_m, \mathbf{z}) = 0$.

Therefore, $\mathbf{z} \perp \mathbf{y}$, which implies $\mathbf{z} \in \langle T \rangle^{\perp}$. This allows us to conclude that $\langle T \rangle^{\perp} = T^{\perp}$.

Problem 3:

Let $\mathbf{x} \in \mathbb{R}^n$. Prove that for every $\epsilon > 0$ there exists $\mathbf{y} \in \mathbb{R}^n$ such that the components of the vector $\mathbf{x} + \mathbf{y}$ are distinct and $\|\mathbf{y}\|_2 < \epsilon$.

Solution 3:

Partition the set $\{1,\ldots,n\}$ into the blocks B_1,\ldots,B_k such that all components of ${\bf x}$ that have an index in B_j have a common value c_j . Suppose that $|B_j|=p_j$. Then, $\sum_{j=1}^k p_j=n$ and the numbers $\{c_1,c_2,\ldots,c_k\}$ are pairwise distinct. Let $d=\min_{i,j}|c_i-c_j|$. The vector ${\bf y}$ can be defined as follows. If $B_j=\{i_1,\ldots,i_{p_j}\}$, then

$$y_{i_1} = \eta \cdot 2^{-1}, y_{i_2} = \eta \cdot 2^{-2}, \dots, y_{i_{p_j}} = \eta \cdot 2^{-p},$$

where $\eta>0$, which makes the numbers $c_j+y_{i_1},c_j+y_{i_2},\ldots,c_j+y_{i_{p_j}}$ pairwise distinct. It suffices to take $\eta< d$ to ensure that the components of ${\pmb x}+{\pmb y}$ are pairwise distinct. Also, note that $\|{\pmb y}\|_2^2\leqslant \sum_{j=1}^k p_j \frac{\eta^2}{4}=\frac{n\eta^2}{4}$. It suffices to choose η such that $\eta<\min\{d,\frac{2\epsilon}{n}\}$ to ensure that $\|{\pmb y}\|_2<\epsilon$.

Problem 4:

Let $L = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a sequence of vectors, where $n \ge 2$. Prove that the volume \mathcal{V}_n of the parallelepiped constructed on these vectors equals to the square root of the Gramian of the sequence $(\mathbf{v}_1, \dots, \mathbf{v}_n)$.

Solution 4:

For the base case n=2 the area A of the parallelogram is given by $A=\parallel \pmb{u}\parallel_2 \parallel \pmb{v}\parallel_2 \sin\alpha$, where $\alpha=\angle(\pmb{u},\pmb{v})$. In another words,

$$det(G_{\boldsymbol{u},\boldsymbol{v}}) = det\begin{pmatrix} (\boldsymbol{u},\boldsymbol{u}) & (\boldsymbol{u},\boldsymbol{v}) \\ (\boldsymbol{u},\boldsymbol{v}) & (\boldsymbol{v},\boldsymbol{v}) \end{pmatrix}$$
$$= \|\boldsymbol{u}\|_{2}^{2}\|\boldsymbol{v}\|_{2}^{2} - \|\boldsymbol{u}\|_{2}^{2}\|\boldsymbol{v}\|_{2}^{2}\cos^{2}\alpha$$
$$= \|\boldsymbol{u}\|_{2}^{2}\|\boldsymbol{v}\|_{2}^{2}\sin^{2}\alpha = \mathcal{V}_{2}^{2}.$$

Sol.cont'd

Suppose that the statement holds for sequences of n vectors and let $L = (\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{v}_{n+1})$ be a sequence of n+1 vectors. Let $\mathbf{v}_{n+1} = \mathbf{x} + \mathbf{y}$ be the orthogonal decomposition of \mathbf{v}_{n+1} on the subspace $U_n = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$, where $\mathbf{x} \in U_n$ and $\mathbf{y} \perp U_n$. Since $\mathbf{x} \in U_n$ there exist $a_1, \dots, a_n \in \mathbb{R}$ such that $\mathbf{x} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$. Let

$$\det(G_L) = \begin{vmatrix} (\mathbf{v}_1, \mathbf{v}_1) & (\mathbf{v}_1, \mathbf{v}_2) & \cdots & (\mathbf{v}_1, \mathbf{v}_n) & (\mathbf{v}_1, \mathbf{v}_{n+1}) \\ (\mathbf{v}_2, \mathbf{v}_1) & (\mathbf{v}_2, \mathbf{v}_2) & \cdots & (\mathbf{v}_2, \mathbf{v}_n) & (\mathbf{v}_2, \mathbf{v}_{n+1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\mathbf{v}_n, \mathbf{v}_1) & (\mathbf{v}_n, \mathbf{v}_2) & \cdots & (\mathbf{v}_n, \mathbf{v}_n) & (\mathbf{v}_n, \mathbf{v}_{n+1}) \\ (\mathbf{v}_{n+1}, \mathbf{v}_1) & (\mathbf{v}_{n+1}, \mathbf{v}_2) & \cdots & (\mathbf{v}_{n+1}, \mathbf{v}_n) & (\mathbf{v}_{n+1}, \mathbf{v}_{n+1}) \end{vmatrix}.$$

Sol. cont'd

By subtracting from the last row the first row multiplied by a_1 , the second row multiplied by a_2 , etc., the value of the determinant remains the same and we obtain

$$\det(G_L) = \begin{vmatrix} (\mathbf{v}_1, \mathbf{v}_1) & (\mathbf{v}_1, \mathbf{v}_2) & \cdots & (\mathbf{v}_1, \mathbf{v}_n) & (\mathbf{v}_1, \mathbf{v}_{n+1}) \\ (\mathbf{v}_2, \mathbf{v}_1) & (\mathbf{v}_2, \mathbf{v}_2) & \cdots & (\mathbf{v}_2, \mathbf{v}_n) & (\mathbf{v}_2, \mathbf{v}_{n+1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\mathbf{v}_n, \mathbf{v}_1) & (\mathbf{v}_n, \mathbf{v}_2) & \cdots & (\mathbf{v}_n, \mathbf{v}_n) & (\mathbf{v}_n, \mathbf{v}_{n+1}) \\ (\mathbf{y}, \mathbf{v}_1) & (\mathbf{y}, \mathbf{v}_2) & \cdots & (\mathbf{y}, \mathbf{v}_n) & (\mathbf{y}, \mathbf{v}_{n+1}) \end{vmatrix}.$$

Sol. cont'd

Note that $(\mathbf{y}, \mathbf{v}_1) = (\mathbf{y}, \mathbf{v}_2) = \cdots = (\mathbf{y}, \mathbf{v}_n) = 0$ because $\mathbf{y} \perp U_n$ and $(\mathbf{y}, \mathbf{v}_{n+1}) = (\mathbf{y}, \mathbf{x} + \mathbf{y}) = ||\mathbf{y}||_2^2$, which allows us to further write

$$\det(G_L) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_1) & (\mathbf{v}_1, \mathbf{v}_2) & \cdots & (\mathbf{v}_1, \mathbf{v}_n) & (\mathbf{v}_1, \mathbf{v}_{n+1}) \\ (\mathbf{v}_2, \mathbf{v}_1) & (\mathbf{v}_2, \mathbf{v}_2) & \cdots & (\mathbf{v}_2, \mathbf{v}_n) & (\mathbf{v}_2, \mathbf{v}_{n+1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\mathbf{v}_n, \mathbf{v}_1) & (\mathbf{v}_n, \mathbf{v}_2) & \cdots & (\mathbf{v}_n, \mathbf{v}_n) & (\mathbf{v}_n, \mathbf{v}_{n+1}) \\ 0 & 0 & \cdots & 0 & \parallel \mathbf{y} \parallel_2^2 \end{cases}$$

$$= \mathcal{V}_n^2 \parallel \mathbf{y} \parallel_2^2 = \mathcal{V}_{n+1}^2.$$

