CS724: Topics in Algorithms Problem Set 5

Prof. Dan A. Simovici

Problem 1:

Consider the linear system:

$$x_1 + 2x_2 = 4,$$

 $2x_1 + 3.999x_2 = 7$

Is this system well-conditioned?

Solution 1:

The answer is negative. In matrix form this is $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3.999 \end{pmatrix}$$
 and $\boldsymbol{b} = \begin{pmatrix} 4 \\ 7.999 \end{pmatrix}$

Solving this in MATLAB with yields:

Solution 1 cont'd:

A small change to the \boldsymbol{b} as in

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3.999 \end{pmatrix}$$
 and $\boldsymbol{b} = \begin{pmatrix} 4.001 \\ 7.998 \end{pmatrix}$

yields the solution

Thus, we get a huge variation!

Solution 1 cont'd:

Similarly, a small change in the components of A causes a big variation in the solution. Suppose that

$$A = \begin{pmatrix} 1.001 & 2.001 \\ 2.001 & 3.998 \end{pmatrix}$$
 and $\boldsymbol{b} = \begin{pmatrix} 4 \\ 7.999 \end{pmatrix}$

yields

$$-1.4973$$

Solution 1 cont'd:

Thus, the system is ill-conditioned. This can be seen in the condition number of A:

```
>> A = [1 2; 2 3.999]
A =
   1.0000
          2.0000
   2.0000
             3.9990
>> cond(A)
```

ans = 2.4992e+04

which is quite large!

Note that the columns of A are almost proportional! This is bad for conditioning.

Problem 2:

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ be two matrices. Prove that if AB is invertible, then both A and B are invertible.

Solution 2:

Since AB is invertible we have $AB(AB)^{-1} = I_n$. Thus, A is invertible and $A^{-1} = B(AB)^{-1}$. Similarly, since $(AB)^{-1}AB = I_n$ it follows that B is invertible and $B^{-1} = (AB)^{-1}A$.

Problem 3:

Let A and B be two matrices in $\mathbb{C}^{p\times q}$. Prove that $\operatorname{rank}(A+B)\leqslant \operatorname{rank}(AB)\leqslant \operatorname{rank}(A)+\operatorname{rank}(B)$.

Solution 3:

We have $\operatorname{rank}(A B) = \operatorname{rank}(A A + B) \geqslant \operatorname{rank}(A + B)$ because adding the first q columns of the matrix (A B) to the last q columns does not change the rank of a matrix, and the rank of a submatrix is not larger than the rank of the matrix.

On another hand, $\operatorname{rank}(A B) = \operatorname{rank}((A O_{p,q}) + (O_{p,q} B)) \leqslant \operatorname{rank}(A O_{p,q}) + \operatorname{rank}(O_{p,q} B) = \operatorname{rank}(A) + \operatorname{rank}(B).$

Problem 4:

Let $A \in \mathbb{C}^{n \times n}$. Prove that A is Hermitian if and only if $(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A\mathbf{y})$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

Solution 4:

We have $(Ax, y) = (Ax)^H y = x^H A^H y$ and $(x, Ay) = x^H Ay$. If A is Hermitian, $(Ax, y) = (Ax)^H y = x^H A^H y = x^H Ay$, hence (Ax, y) = (x, Ay) for $x, y \in \mathbb{C}^n$. Conversely, suppose that (Ax, y) = (x, Ay) for $x, y \in \mathbb{C}^n$. Choosing $x = e_i$ and $y = e_j$ we have

$$(A\mathbf{e}_i, \mathbf{e}_j) = (A\mathbf{e}_i)^H \mathbf{e}_j = \overline{a_{ji}},$$

 $(\mathbf{e}_i, A\mathbf{e}_j) = \mathbf{e}_i^H A\mathbf{e}_j = a_{ij},$

hence $a_{ij} = \overline{a_{ji}}$. Thus, A is Hermitian.

Problem 5:

Let $U \in \mathbb{C}^{n \times n}$ be a matrix whose set of columns is orthonormal and let $V \in \mathbb{C}^{n \times n}$ be a matrix whose set of rows is orthonormal. Prove that $\| UA \|_2 = \|AV\|_2 = \|A\|_2$ and, therefore, $\| UAV \|_2 = \|A\|_2$.

Solution 5:

By hypothesis, we have $U^{\mathsf{H}}U = I_n$ and $VV^{\mathsf{H}} = 1$. Therefore, $\|UA\|_2^2 = \max\{\|UA\mathbf{x}\|_2^2 | \|\mathbf{x}\|_2 = 1\} = \max\{\mathbf{x}^{\mathsf{H}}A^{\mathsf{H}}U^{\mathsf{H}}UA\mathbf{x} | \|\mathbf{x}\|_2 = 1\} = \max\{\mathbf{x}^{\mathsf{H}}A^{\mathsf{H}}A\mathbf{x} | \|\mathbf{x}\|_2 = 1\} = \max\{\|A\mathbf{x}\|_2^2 | \|\mathbf{x}\|_2 = 1\} = \|A\|_2^2$. This allows us to conclude that $\|UA\|_2 = \|A\|_2$.

The second equality follows immediately from the first.

