
THEORY OF COMPUTATION Preliminaries - 1

THEORY OF COMPUTATION
Preliminaries - 1

Prof. Dan A. Simovici

UMB

1 / 45

THEORY OF COMPUTATION Preliminaries - 1

Outline

1 The Object of This Course

2 Sets and n-tuples

3 Functions

4 Alphabets and Words

5 Predicates

6 Quantifiers

7 Alphabets and Words

8 Proof Techniques

2 / 45

THEORY OF COMPUTATION Preliminaries - 1

Outline

These slides follow loosely the reference “Computability,
Complexity and Languages” by M. D. Davis, R. Sigal, and E.
Weyuker, published by Academic Press.

3 / 45

THEORY OF COMPUTATION Preliminaries - 1

The Object of This Course

The main themes of this course are:

the formalization of the notion of computable function;

the study of important classes of computable function;

the limits of the computability.

4 / 45

THEORY OF COMPUTATION Preliminaries - 1

Sets and n-tuples

Basic notations

The set of natural numbers is

N = {0, 1, . . . , n, . . .}.

a ∈ S means that a is an element of a set S .

If R and S the equality R = S is equivalent with the
inclusions R ⊆ S and S ⊆ R.

Note that ∅ ⊆ S and S ⊆ S , where ∅ is the emptyset, and S is an
arbitrary set.

5 / 45

THEORY OF COMPUTATION Preliminaries - 1

Sets and n-tuples

Set-Theoretical Operations

Let R,S be two sets.

Definition

The union of R and S is the set R ∪ S of all x that belong to
R or to S .

The intersection of R and S is the set R ∩ S of all x that
belong to both R and S .

The difference of R and S is the set R − S of all x that
belong to R but not to S .

6 / 45

THEORY OF COMPUTATION Preliminaries - 1

Sets and n-tuples

Complements of Sets

In certain context we work with sets that are all subsets of a set D.
If S is such a subset, the set D − S is the complement of S and is
denoted as S .
We have De Morgan Laws:

R ∪ S = R ∩ S ,

R ∩ S = R ∪ S .

7 / 45

THEORY OF COMPUTATION Preliminaries - 1

Sets and n-tuples

Finite Sets

A set consisting of a1, . . . , an is denoted as S = {a1, . . . , an}. Sets
that can be written in this manner, or the empty set, are said to be
finite and we write n = |S |.

Sets that are not finite are said to be infinite.

Note the difference between a singleton {x} and an element x .

We can write either x ∈ S , or {x} ⊆ S .

8 / 45

THEORY OF COMPUTATION Preliminaries - 1

Sets and n-tuples

Definition

A set S is finite only if it can be written as

S = {x1, . . . , xn}.

Sets that are not finite (e.g. N, the set of natural numbers) are
said to be infinite.

9 / 45

THEORY OF COMPUTATION Preliminaries - 1

Sets and n-tuples

Note that a and {a} are different things.
In particular, a ∈ S is true if {a} ⊆ S .
Since two sets are equal if and only if they have the same
members, it follows that

{a, b, c} = {b, a, c} = {c , b, a}.

10 / 45

THEORY OF COMPUTATION Preliminaries - 1

Sets and n-tuples

When the order is important we use n-tuples or lists written as

(a1, a2, . . . , an).

Lists may contain duplicate entries; sets may not.

Example

` = (6, 1, 6, 2) is a list.

Note that
(a1, a2, . . . , an) = (b1, b2, . . . , bn)

is equivalent to a1 = b1, a2 = b2, . . . , an = bn.

11 / 45

THEORY OF COMPUTATION Preliminaries - 1

Sets and n-tuples

The set of subsets of a set S is denoted by P(S).

Example

If S = {a, b, c}, the set P(S) consists of the sets:

∅,
{a}, {b}, {c},
{a, b}, {a, c}, {b, c},
{a, b, c}.

12 / 45

THEORY OF COMPUTATION Preliminaries - 1

Sets and n-tuples

A subset T of a finite set S = {x1, . . . , xn} can be represented as
an array having n components.

Example

Let S = {x1, x2, x3, x4, x5} and T = {x2, x3, x5} ⊆ S . The array
representing T is

x1 x2 x3 x4 x5

0 1 1 0 1

Since there are two choices (0 or 1) for each of the n entries of the
array, there exists 2n subsets of S .

13 / 45

THEORY OF COMPUTATION Preliminaries - 1

Functions

Definition

A function is a set f whose members are ordered pairs and that
has the special property

(a, b) ∈ f and (a, c) ∈ f implies b = c .

14 / 45

THEORY OF COMPUTATION Preliminaries - 1

Functions

Intuitively, one writes f (a) = b if (a, b) ∈ f .

The set of all as such that (a, b) ∈ f for some b is called the
domain of f .

The set of all f (a) for a in the domain of f is the range of f .

If A is the domain of f and B is the range of f we write

f : A −→ B.

15 / 45

THEORY OF COMPUTATION Preliminaries - 1

Functions

Example

Let f the set of ordered pairs (n, n2) for n ∈ N. For each n,
f (n) = n2. The domain of f is N. The range of f is the set of all
perfect squares.

16 / 45

THEORY OF COMPUTATION Preliminaries - 1

Functions

Definition

A partial function on a set S is a function whose domain is a
subset of S .

Example

Let g be defined by g(n) =
√
n. The domain of g is the set of all

perfect squares.

If f is a partial function on S and a ∈ Dom(f) we write f (a) ↓ to
indicate that a is in the domain of f and we say that f (a) is
defined. If f is not defined on a we write f (a) ↑ .

17 / 45

THEORY OF COMPUTATION Preliminaries - 1

Functions

Let A and B be two finite sets such that |A| = m and |B| = n.
How many functions exist of the form f : A −→ B?
To describe functions of the form f : A −→ B imagine a table with
m positions indexed by the elements of A:

a1 a2 · · · am−1 am

b? b? · · · b? b?

For each box we have |B| choices, so there are |B||A| functions.

18 / 45

THEORY OF COMPUTATION Preliminaries - 1

Functions

The empty set ∅ is itself a function that is nowhere defined.

For a partial function on a Cartesian product
S1 × S2 × · · · × Sn we write f (a1, . . . , an) rather than
f ((a1, . . . , an)).

A partial function of a set Sn is called an n-ary partial
function on S .

When n = 1 we use the term unary function for f : S −→ S ;
when n = 2 we use the term binary function for
f : S × S −→ S .

19 / 45

THEORY OF COMPUTATION Preliminaries - 1

Functions

A function f : A −→ B is

one-to-one or an injection if f (a) = f (a′) implies a = a′;

onto or a surjection if for each b ∈ B there exists a ∈ A such
that f (a) = b;

a bijection if it is both one-to-one and onto.

20 / 45

THEORY OF COMPUTATION Preliminaries - 1

Predicates

Definition

A predicate on a set S is a total function

P : S −→ {TRUE ,FALSE},

where TRUE and FALSE are truth values.

We say that P(a) is true if P(a) = TRUE and P(a) is false if
P(a) = FALSE .
An alternative notation identifies TRUE with 1 and FALSE with 0,
which allows us to identify predicates as function with values in the
set {0, 1}.

21 / 45

THEORY OF COMPUTATION Preliminaries - 1

Predicates

Predicates are usually specified as by expressions that may become
true or false.

Example

The expression x < 5 specifies a predicate P on N defined by

P(n) =

{
1 if x = 0, 1, 2, 3, 4,

0 otherwise.

22 / 45

THEORY OF COMPUTATION Preliminaries - 1

Predicates

Operations on Truth Values

Starting from two predicates P and Q on a set S define the
predicates ∼ P, P&Q, and P ∨ Q by the following tables:

P ∼ P

0 1
1 0

P Q P&Q P ∨ Q

1 1 1 1
0 1 0 1
1 0 0 1
0 0 0 0

23 / 45

THEORY OF COMPUTATION Preliminaries - 1

Predicates

Given a predicate P on a set S there is subset R of S defined
as

R = {a ∈ S | P(a) = 1}.

Conversely, given a subset R of S , the characteristic function
of R is the predicate P defined by

P(x) =

{
1 if x ∈ R,

0 if x 6∈ R.

24 / 45

THEORY OF COMPUTATION Preliminaries - 1

Predicates

The Connection between Sets and Predicates

{x ∈ S | P(x)&Q(x)} = {x ∈ S | P(x)} ∩ {x ∈ S | Q(x)},
{x ∈ S | P(x) ∨ Q(x)} = {x ∈ S | P(x)} ∪ {x ∈ S | Q(x)},
{x ∈ S | ∼ P(x)} = S − {x ∈ S | P(x)}.

25 / 45

THEORY OF COMPUTATION Preliminaries - 1

Predicates

To indicate that two expressions containing variables define the
same predicate we place the symbol ⇔ between them.

Example

Consider the equivalent expressions

x < 5⇔ x = 0 ∨ x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4.

26 / 45

THEORY OF COMPUTATION Preliminaries - 1

Predicates

The following equalities are known as the De Morgan identities:

P(x)&Q(x) ⇔ ∼ (∼ P(x)∨ ∼ Q(x)),

P(x) ∨ Q(x) ⇔ ∼ (∼ P(x)& ∼ Q(x)).

27 / 45

THEORY OF COMPUTATION Preliminaries - 1

Quantifiers

We assume here that predicates have the form P : Nm −→ {0, 1}
and, therefore we omit “on N”.

Definition

Let P(t, x1, . . . , xn) be an (n + 1)-ary predicate. The predicate
Q(y , x1, . . . , xn) defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn) ∨ P(1, x1, . . . , xn)

∨ · · · ∨ P(y , x1, . . . , xn)

is true if and only if there is t 6 y such that P(t, x1, . . . , xn) is true.
We write Q as (∃t)6yP(t, x1, . . . , xn). The expression (∃t)6y is
called a bounded existential quantifier.

28 / 45

THEORY OF COMPUTATION Preliminaries - 1

Quantifiers

Definition

Let P(t, x1, . . . , xn) be an (n + 1)-ary predicate. The predicate
Q(y , x1, . . . , xn) defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn)&P(1, x1, . . . , xn)

& · · ·&P(y , x1, . . . , xn)

is true if and only if for every t, t 6 y Q(t, x1, . . . , xn) is true.
We write Q as (∀t)6yP(t, x1, . . . , xn). The expression (∀t)6y is
called a bounded universal quantifier.

29 / 45

THEORY OF COMPUTATION Preliminaries - 1

Quantifiers

Example

The predicate
P(x , z) = (∃y)6z(x + y = 4)

is equivalent to the predicate

(x + z > 4)&(x 6 4).

30 / 45

THEORY OF COMPUTATION Preliminaries - 1

Quantifiers

Definition

We write
Q(x1, . . . , xn)⇔ (∃t)P(t, x1, . . . , xn)

for the predicate which is true if there exists some t ∈ N for which
P(t, x1, . . . , xn) is true.
Similarly, (∀t)P(t, x1, . . . , xn) is true if P(t, x1, . . . , xn) is true for
all t ∈ N.

31 / 45

THEORY OF COMPUTATION Preliminaries - 1

Quantifiers

Example

We have:

(∃y)(x + y = 4)⇔ x 6 4
(∃y)(x + y = 4)⇔ (∃y)64(x + y = 4).

32 / 45

THEORY OF COMPUTATION Preliminaries - 1

Alphabets and Words

An alphabet is a finite non-empty set of symbols.

A word is an n-tuple of symbols w = (a1, a2, . . . , an) written
as a1a2 · · · an. Here n is the length of w denoted by n = |w |.
If |A| = m, there are mn words of length n.

There is a unique word of length 0 denoted as λ or just 0.

33 / 45

THEORY OF COMPUTATION Preliminaries - 1

Alphabets and Words

The set of words over the alphabet A is denoted by A∗.

A language over the alphabet A is any subset of A∗.

We do not distinguish between the symbol a and the word a.

If u, v are words, we write uv for the word obtained by
placing v after u.

34 / 45

THEORY OF COMPUTATION Preliminaries - 1

Alphabets and Words

Example

If A = {a, b, c}, u = bab, v = caba, then

uv = babcaba and vu = cababab.

We have u0 = 0u = u for every u ∈ A∗.

35 / 45

THEORY OF COMPUTATION Preliminaries - 1

Alphabets and Words

Word product is associative, that is,

u(vw) = (uv)w

for u, v ,w ∈ A∗.
If either uv = uw or vu = wu, then v = w .

36 / 45

THEORY OF COMPUTATION Preliminaries - 1

Alphabets and Words

If u is a word and n > 0 we write

un = uu · · · u︸ ︷︷ ︸
n

and u0 = λ.

37 / 45

THEORY OF COMPUTATION Preliminaries - 1

Proof Techniques

Proof by Contradiction

Claim: the equation (
p

q

)2

= 2

has no solution for p, q ∈ N.
Suppose that there is a solution (p, q) with p, q ∈ N. Then, it has
a solution in which p and q are not both even numbers (because if
both p and q are even we can repeatedly cancel 2 until at least one
of the numbers is odd).
If (p, q) is a solution with the property mentioned above, then
p2 = 2q2, so p is even, say p = 2k . This implies that q2 = 2k2, so
q2 is even, so q is even. This contradicts the previous assumption
(in red).

38 / 45

THEORY OF COMPUTATION Preliminaries - 1

Proof Techniques

Mathematical Induction

Mathematical induction is a proof technique that allows us to
prove statements of the form

(∀n)P(n),

where P is a predicate on N.
Variants of mathematical induction:

simple induction;

strong induction;

course-of value induction,

and many others.
Recommended: Mathematical Foundation of Computer Science by
P. Fejer and D. Simovici, Springer

39 / 45

THEORY OF COMPUTATION Preliminaries - 1

Proof Techniques

Simple Induction

To prove (∀n)P(n) we need to prove:

P(0) (the basic step);

(∀n)(if P(n) then P(n + 1)) (the induction step).

This simplifies the proof because frequently is easier to show that
(∀n)(if P(n) then P(n + 1) instead of proving (∀n)P(n).

40 / 45

THEORY OF COMPUTATION Preliminaries - 1

Proof Techniques

Example

Let’s prove that
∑n

i=1(2i + 1) = (n + 1)2 for all n ∈ N.

The basic step: for n = 0 the statement amounts to 1 = 12,
which is clearly true.

The induction step: Suppose the statement holds for k , that
is,
∑k

i=1(2i + 1) = (k + 1)2 (this supposition is called the
inductive hypothesis). Then, we have

k+1∑
i=1

(2i + 1) =
k∑

i=1

(2i + 1) + 2(k + 1) + 1

= (k + 1)2 + 2(k + 1) + 1

(by the inductive hypotheis)

= (k + 2)2.

41 / 45

THEORY OF COMPUTATION Preliminaries - 1

Proof Techniques

Strong Induction

Principle of Strong Induction: Let n0 be an integer and let P be
a property of the integers that are at least equal to n0. Suppose
that

1 P(n0) is true, and

2 for all k ≥ n0, if P(j) is true for every j with n0 6 j 6 k , then
P(k + 1) is true.

Then, P(n) is true for every integer greater or equal to n0.

42 / 45

THEORY OF COMPUTATION Preliminaries - 1

Proof Techniques

Example

We show that every integer greater or equal to 2 has a prime
factorization (i.e., it can be obtained as the product of one or more
prime numbers).
The basic step is for n0 = 2. This is immediate since 2 is itself
prime.
Suppose that k > 2, and that every natural number j with
2 6 j 6 k has a prime factorization. We must show that k + 1 has
a prime factorization.
If k + 1 is prime, then this is certainly true. If k + 1 is not prime,
then k + 1 must be evenly divisible by some number r bigger than
1 and less than k + 1, say, k + 1 = rs. Then, we have 2 6 r , s 6 k ,
so by the induction hypothesis, both r and s can be written as
products of primes. Combining these prime factorizations, we get a
prime factorization for k + 1.

43 / 45

THEORY OF COMPUTATION Preliminaries - 1

Proof Techniques

Course-of-Values Induction

In the course-of-value induction we prove a single statement:

(∀n)[if (∀m)m<nP(m)then P(n)].

Apparently, there is no initial statement P(0). But in fact, this
statement is implied by the previous statement because the case
n = 0 is

if(∀m)m<0P(m)then P(0).

and the part (∀m)m<0P(m) is entirely vacuous because there is no
m ∈ N with m < 0.

44 / 45

THEORY OF COMPUTATION Preliminaries - 1

Proof Techniques

Example

Let P(n) be the property that n is the product of one or more
prime numbers. We use course-of-value induction with n0 = 2 to
show that P(n) is true for all n > 2. Suppose that k > 2 and that
P(j) is true for all j with 2 6 j < k . If k is prime, then P(k) is
obviously true. If not, then we can write k = rs, where
2 ≤ r , s < k , and we can use the inductive hypothesis to finish the
proof, as we did before.

45 / 45

	Outline
	The Object of This Course
	Sets and n-tuples
	Functions
	Alphabets and Words
	Predicates
	Quantifiers
	Alphabets and Words
	Proof Techniques

