THEORY OF COMPUTATION Programs and Computable Functions - 2

Prof. Dan A. Simovici

UMB

Outline

1 A Programming Language

2 Working Informally with Programs

The Language ${\cal S}$

We introduce a "programming language" $\mathcal S$ that will help us formalize the notion of computable function. Main features of $\mathcal S$ are:

- $lue{}$ variables assume only non-negative integer values $0,1,2,\ldots$;
- the letters X_1, X_2, \ldots denote *input variables*;
- the letter *Y* is the *output variable*;
- the letters Z_1, Z_2, \ldots denote *local variables*.

We will often write X and Z instead of X_1 and Z_1 , respectively. Unlike proper programming languages there is no upper limit on the values these variables may assume.

A program is a list of instructions that may or may not be labeled. The beauty of S is that it consists only of four types of instructions:

$V \leftarrow V + 1$	increase by 1 the value of \emph{V}
$V \leftarrow V - 1$	decrease by 1 the value of V
	if this value is positive; if the
	value is 0 leave it unchanged
$V \leftarrow V$	do nothing instruction
IF $V \neq 0$ GOTO L	if value of V
	is nonzero perform the instruction
	with label L ; otherwise proceed with
	next instruction

A very simple program is

$$X \leftarrow X + 1$$

 $X \leftarrow X + 1$

The effect of this program is to increase the value of X by 2.

Labels and Variables

The labels of instructions in ${\mathcal S}$ can be chosen among

$$A_1, B_1, C_1, D_1, E_1, A_2, B_2, C_2, D_2, E_2, A_3, \dots$$

and the subscript 1 may be omitted.

Instructions may or may not have labels. Label is written to the left of the instruction in square brackets:

[B]
$$Z \leftarrow Z - 1$$

The output variable Y and the local variables Z_i have the value 0 initially.

Value of a variable X_i will be denoted by x_i .

The program

[A]
$$X \leftarrow X - 1$$

 $Y \leftarrow Y + 1$
IF $X \neq 0$ GOTO A

computes the function defined by

$$f(x) = \begin{cases} 1 & \text{if } x = 0, \\ x & \text{otherwise.} \end{cases}$$

In a program like

$$[A]$$
 \cdots \vdots $Z \leftarrow Z + 1$ $\exists F Z \neq 0 \ \mathsf{GOTO} \ A$ \vdots

the effect is equivalent to an unconditional jump to the statement labeled by A. The effect of these two lines involving Z is the same as an unconditional jump GOTO A.

Note that GOTO A is not among the four types of instruction of S. We shall use GOTO A as an abbreviated form of the following fragment code:

$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO A

The label E is the exit label. Therefore, GOTO E triggers the end of the program.

The next program copies the value of X into Y:

[A] IF
$$X \neq 0$$
 GOTO B
 $Z \leftarrow Z + 1$
IF $Z \neq 0$ GOTO E
[B] $X \leftarrow X - 1$
 $Y \leftarrow Y + 1$
 $Z \leftarrow Z + 1$
IF $Z \neq 0$ GOTO A

This program computes the function f(x) = x.

The previous program "destroys" the value of X. A variant that preserves this value is given next.

[A] IF
$$X \neq 0$$
 GOTO B
GOTO C
[B] $X \leftarrow X - 1$
 $Y \leftarrow Y + 1$
 $Z \leftarrow Z + 1$
GOTO A
[C] IF $Z \neq 0$ GOTO D
GOTO E
[D] $Z \leftarrow Z - 1$
 $X \leftarrow X + 1$
GOTO C

Note that:

- in the first loop the program copies the value of X in both Y and X;
- in the second loop the value of X is restored;
- when the program ends both X and Y contain the original value of X and Z=0;

This program justifies the introduction of the macro $V \leftarrow V'$.

The program

[L]
$$V \leftarrow V - 1$$

IF $V \neq 0$ GOTO L

sets the value of V to 0. It is abbreviated as the macro

$$V \leftarrow 0$$

If we want to expand the macro $v \leftarrow 0$, we need to take care that the label L is different from any other label in the main program.

A program that computes the function $f(x_1, x_2) = x_1 + x_2$ is

$$Y \leftarrow X_1$$
 $Z \leftarrow X_2$
[B] IF $Z \neq 0$ GOTO A
GOTO E
[A] $Z \leftarrow Z - 1$
 $Y \leftarrow Y + 1$
GOTO B

Note that Z is used to preserve the value of X_2 .

A program that multiplies

The next program computes the function $f(x_1, x_2) = x_1x_2$:

$$Z_2 \leftarrow X_2$$
[B] IF $Z_2 \neq 0$ GOTO A
GOTO E
[A] $Z_2 \leftarrow Z_2 - 1$
 $Z_1 \leftarrow X_1 + Y$
 $Y \leftarrow Z_1$
GOTO B

Note that $Z_1 \leftarrow X_1 + Y$ is not permitted in S; this means that this instruction must be replaced by a program that computes it. This is called macro expansion.

Macro expansion of $Z_1 \leftarrow X_1 + Y$

$$Z_2 \leftarrow X_2$$
[B] IF $Z_2 \neq 0$ GOTO A
GOTO E
[A] $Z_2 \leftarrow Z_2 - 1$
 $Z_1 \leftarrow X_1$
 $X_3 \leftarrow Y$
[B₂] IF $Z_3 \neq 0$ GOTO A₂
GOTO E₂
 $Z_3 \leftarrow Z_3 - 1$
 $Z_1 \leftarrow Z_1 + 1$
GOTO B₂
[E₂] $Y \leftarrow Z_1$
GOTO B

Note that

- The local variable Z_1 in the addition program on Slide 14 was replaced by Z_3 because Z_1 is also used as a local variable in the multiplication program.
- The labels A, B, E are used in the multiplication program and, therefore, cannot be used in the macro expansion. Instead, we used A_2, B_2, C_2 .
- GOTO E_2 terminates the addition. Hence it is necessary that the instruction immediately following the macro expansion be labeled E_2 .

The next program computes a partial function, namely

$$g(x_1, x_2) = \begin{cases} x_1 - x_2 & \text{if } x_1 \geqslant x_2, \\ \uparrow & \text{if } x_1 < x_2, \end{cases}$$

The symbol " \uparrow " means that the function is not defined (when $x_1 < x_2$).

$$Y \leftarrow X_1$$

 $Z \leftarrow X_2$
[C] IF $Z \neq 0$ GOTO A
GOTO E
[A] IF $Y \neq 0$ GOTO B
GOTO A
[B] $Y \leftarrow Y - 1$
 $Z \leftarrow Z - 1$
GOTO C

$$Y \leftarrow X_1$$

 $Z \leftarrow X_2$
[C] IF $Z \neq 0$ GOTO A
GOTO E
[A] IF $Y \neq 0$ GOTO B
GOTO A
[B] $Y \leftarrow Y - 1$
 $Z \leftarrow Z - 1$

GOTO C

start with
$$X_1 = 5$$
, $X_2 = 2$,
set $Y = 5$ and $Z = 2$,
then $Y = 4$ and $Z = 1$,
then $Y = 3$ and $Z = 0$,
computation ends with $Y = 3 = 5 - 2$
if $X_1 = m$ and $X_2 = n$, $m < n$
then Y becomes 0 and
program never terminates.