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Theorem
Let P(t,xi1,...,x,) be a predicate that belongs to some PRC class
C. Define the function f(y,x1,...,%n) as having the least value t

such that t < y for which P(t,x1,...,xn) is TRUE, if such a value
exists. Otherwise, this value is 0. The function f belongs to the
same PRC class C.

The function f is denoted as

f(y,x1,...,%n) =min P(t,x1,...,Xp)
t<y

and the construction of f is bounded minimalization.
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Let g(y, x1,-..,%n) be the function defined by:

gly,x1,...,xn) = ZH&(P(t,xl, ey Xn))-

u=0t=0

This function belongs to C by a previous theorem.
We claim that g(y, x1, ..., Xn) is the least value of t for which
P(t,x1,...,xn) =1 (that'is, P(t,x1,...,x,) = 1 is TRUE).
Indeed, suppose that for some value of ty < y we have:

m P(t,x,...,xp) =0 for t < tp, and

m P(to,x1,...,%p) = 1.
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Proof cont'd

Proof.

In other words, ty is the the least value of t < y for which
P(t,x1,...,xn) is TRUE.

Note that

- 1 if i

[ToP(txa, o)) =4 . LU=

t—0 0 ifu>t.
Therefore,

gy, x1,...,%xn) = Z 1=ty
u<tp

hence g(y, x1,...,Xn) is the least value of t for which
P(t,x1,...,xn) is TRUE. O
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Proof cont'd

Now we define

ey Xp) if (Ft)<, P(t, X1, ..., Xp
min P(t, x1,...,X,) = gy, x1, ..., xn) i ( )<y (t,x Xn)
<y 0 otherwise.

This shows that mins<, P(t, x1,...,Xp) belongs to C. O
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The bounded minimalization allows the definition of further
primitive recursive functions.

|x/y| is the integer part of the quotient x/y. For example,
|7/2] =3 and [3/3] = 0. We also define the “special case”
|x/0] = 0.

This function is primitive recursive because

[x/y) = minl(c+1) -y > x].
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Example

The remainder of the division of x by y, R(x,y): Note that
R(x,0) = x.
Since

. R(x,y)

<X

we can write R(x,y) = x = (y - [x/y]), so R is primitive recursive.
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The n*™ prime number is denoted by p,. For example,
po = 0 (special case) ,p1 =2,p2o =3,p3=05,...

The function p, is primitive recursive.
Begin by verifying the inequality

Pn+1 < (pn)! + 1.

Note that for 0 < i < n we have

I+1 1
pn! + — K4 -,
pi Pi

where K is an integer. Therefore, p,! + 1 is not divisible by any of
the primes pi,..., ps. So, either p,! 4+ 1 is a prime itself, or it is
divisible by a prime greater than p,. In either case, there is a prime
g such that p, < g < pp! + 1, which implies p,11 < (pa)! + 1.
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Example

The function p, is primitive recursive.
Consider the primitive recursive function

h(y,z) = rtn<in[Prime(t)&t >yl

Then, we define k(x) = h(x, x! 4+ 1), which is again primitive
recursive. This allows us to define p, as

po = 0,
Pn+1 = k(pn),

SO pp Is primitive recursive.
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Definition

Let P(x1,...,Xn,y) be a predicate. The least value of y for which
the predicate P(xi,...,xn,y) is TRUE is denoted by

miny, P(x1,...,Xn,y) if such a value exists. If there is no value for
which P(xi,...,Xpn,y) is TRUE, then min, P(x1,...,xn,y) is
undefined.

The unbounded minimalization defines a partial function
y =f(x1,...,xn) = miny, P(x1,...,Xn, y).
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Note that

X —y =mingly + z = x]

This is a partial function that is undefined if x < y.
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If P(x1,...,%n,y) is a computable predicate and if

f(x1,...,xp) =min P(x1,...,Xn,¥),
y

then f is a partially computable function.
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The following program obviously computes f:

[A] IF P(X1,...,X,, Y) GOTO E
Y+~ Y+1
GOTO A
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Bounded minimalization begins with a primitive recursive predicate
P(t,x1,...,xn) with 1 4+ n arguments and produces a primitive
recursive function f : NI*7 — N.

(Y, X1,y Xp) = r;n<|n P(t,x1,...,Xn)

X

of 1 4+ n arguments.
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In contrast, unbounded minimalization begins with a computable
predicate P(x1,...,Xn,y) with n 4 1 arguments and produces a
computable function f : N — N

f(X1y...yxn) =min P(x1,...,Xn,Y),
y

of n arguments.
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