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Bounded Minimalization

Theorem

Let P(t, x1, . . . , xn) be a predicate that belongs to some PRC class
C. Define the function f (y , x1, . . . , xn) as having the least value t
such that t 6 y for which P(t, x1, . . . , xn) is TRUE, if such a value
exists. Otherwise, this value is 0. The function f belongs to the
same PRC class C.

The function f is denoted as

f (y , x1, . . . , xn) = min
t6y

P(t, x1, . . . , xn)

and the construction of f is bounded minimalization.
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Bounded Minimalization

Proof.

Let g(y , x1, . . . , xn) be the function defined by:

g(y , x1, . . . , xn) =

y∑
u=0

u∏
t=0

α(P(t, x1, . . . , xn)).

This function belongs to C by a previous theorem.
We claim that g(y , x1, . . . , xn) is the least value of t for which
P(t, x1, . . . , xn) = 1 (that is, P(t, x1, . . . , xn) = 1 is TRUE).
Indeed, suppose that for some value of t0 6 y we have:

P(t, x1, . . . , xn) = 0 for t < t0, and

P(t0, x1, . . . , xn) = 1.
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Bounded Minimalization

Proof cont’d

Proof.

In other words, t0 is the the least value of t 6 y for which
P(t, x1, . . . , xn) is TRUE.
Note that

u∏
t=0

α(P(t, x1, . . . , xn)) =

{
1 if u < t0,

0 if u > t0.

Therefore,
g(y , x1, . . . , xn) =

∑
u<t0

1 = t0,

hence g(y , x1, . . . , xn) is the least value of t for which
P(t, x1, . . . , xn) is TRUE.
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Bounded Minimalization

Proof cont’d

Proof.

Now we define

min
t6y

P(t, x1, . . . , xn) =

{
g(y , x1, . . . , xn) if (∃t)6yP(t, x1, . . . , xn)

0 otherwise.

This shows that mint6y P(t, x1, . . . , xn) belongs to C.
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Bounded Minimalization

The bounded minimalization allows the definition of further
primitive recursive functions.

Example

bx/yc is the integer part of the quotient x/y . For example,
b7/2c = 3 and b3/3c = 0. We also define the “special case”
bx/0c = 0.
This function is primitive recursive because

bx/yc = min
t6x

[(t + 1) · y > x ].
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Bounded Minimalization

Example

The remainder of the division of x by y , R(x , y): Note that
R(x , 0) = x .
Since

x

y
= bx/yc+

R(x , y)

y
,

we can write R(x , y) = x ·− (y · bx/yc), so R is primitive recursive.
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Bounded Minimalization

The nth prime number is denoted by pn. For example,

p0 = 0 (special case) , p1 = 2, p2 = 3, p3 = 5, . . .

The function pn is primitive recursive.
Begin by verifying the inequality

pn+1 6 (pn)! + 1.

Note that for 0 < i 6 n we have

pn! + 1

pi
= K +

1

pi
,

where K is an integer. Therefore, pn! + 1 is not divisible by any of
the primes p1, . . . , pn. So, either pn! + 1 is a prime itself, or it is
divisible by a prime greater than pn. In either case, there is a prime
q such that pn < q 6 pn! + 1, which implies pn+1 6 (pn)! + 1.
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Bounded Minimalization

Example

The function pn is primitive recursive.
Consider the primitive recursive function

h(y , z) = min
t6z

[Prime(t)&t > y ].

Then, we define k(x) = h(x , x! + 1), which is again primitive
recursive. This allows us to define pn as

p0 = 0,

pn+1 = k(pn),

so pn is primitive recursive.
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Unbounded Minimalization

Definition

Let P(x1, . . . , xn, y) be a predicate. The least value of y for which
the predicate P(x1, . . . , xn, y) is TRUE is denoted by
miny P(x1, . . . , xn, y) if such a value exists. If there is no value for
which P(x1, . . . , xn, y) is TRUE, then miny P(x1, . . . , xn, y) is
undefined.

The unbounded minimalization defines a partial function
y = f (x1, . . . , xn) = miny P(x1, . . . , xn, y).
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Unbounded Minimalization

Example

Note that
x − y = minz [y + z = x ]

This is a partial function that is undefined if x < y .
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Unbounded Minimalization

Theorem

If P(x1, . . . , xn, y) is a computable predicate and if

f (x1, . . . , xn) = min
y

P(x1, . . . , xn, y),

then f is a partially computable function.
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Unbounded Minimalization

Proof.

The following program obviously computes f :

[A] IF P(X1, . . . ,Xn,Y ) GOTO E
Y ← Y + 1
GOTO A
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Conclusion

Bounded minimalization begins with a primitive recursive predicate
P(t, x1, . . . , xn) with 1 + n arguments and produces a primitive
recursive function f : N1+n −→ N.

f (y , x1, . . . , xn) = min
t6y

P(t, x1, . . . , xn)

of 1 + n arguments.
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Conclusion

In contrast, unbounded minimalization begins with a computable
predicate P(x1, . . . , xn, y) with n + 1 arguments and produces a
computable function f : Nn −→ N

f (x1, . . . , xn) = min
y

P(x1, . . . , xn, y),

of n arguments.
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