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The Euler Functions
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The integrals

B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx and Γ(a) =

∫ ∞

0
xa−1e−xdx ,

are known as Euler’s integral of the first type and Euler’s integral of the
second type, respectively. We assume here that a and b are positive
numbers to ensure that the integrals are convergent.
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A few facts on Euler’s integrals:
B(a, b) = B(b, a);

B(a, b) =
b − 1

a+ b − 1
B(a, b − 1);

B(a, b) =
a− 1

a+ b − 1
· B(a− 1, b);

B(a, n) = B(n, a) =
1 · 2 · · · · (n − 1)

a · (a+ 1) · · · · (a+ n − 1)
.
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B(a, b) = Γ(a)Γ(b)
Γ(a+b)

The Γ function is a generalization of the factorial because
Γ(n + 1) = n! for n ∈ N.

Γ′(a) =

∫ ∞

0
xa−1(ln x)e−xdx ,

and, in general, Γ(n)(a) =
∫∞
0 xa−1(ln x)ne−xdx . Thus, Γ(2)(a) > 0,

which shows that the first derivative is increasing.
An integral that is useful for a variety of applications is

I =

∫
R
e−

1
2
t2dt =

√
2π.
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Using this integral, we can compute the value of Γ
(
1
2

)
.

Since Γ
(
1
2

)
=

∫∞
0

e−x
√
x
dx , by applying the change of variable x = t2

2 , we

have

Γ

(
1

2

)
=

√
2 ·

∫ ∞

0
e−

1
2
t2dt =

√
π. (1)

The relationship between B and Γ is

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.
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Note that

Γ

(
p +

1

2

)
=

(
p − 1

2

)
Γ

(
p − 1

2

)
=

(
p − 1

2

)(
p − 3

2

)
Γ

(
p − 3

2

)
= · · ·

The last equality allows us to compute the values of the form Γ
(
2p+1
2

)
. It

is easy to see that

Γ

(
2p + 1

2

)
=

(2p − 1) · (2p − 3) · · · 3 · 1
2p

√
π =

(2p)!

p!22p
√
π. (2)

Prof. Dan A. Simovici CS724: Topics in Algorithms Dimensionality Reduction Slide Set 10 7 / 87



Details on Euler’s Integrals
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Replacing x by 1− x yields the equality

B(a, b) = −
∫ 0

1
(1− x)a−1(x)b−1dx = B(b, a),

which shows that B is symmetric.
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Integrating B(a, b) by parts, we obtain

B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx =

∫ 1

0
(1− x)b−1d

xa

a

=
xa(1− x)1−b)

a

1∣∣∣∣∣
0

+
b − 1

a

∫ 1

0
xa(1− x)b−2dx

=
b − 1

a

∫ 1

0
xa−1(1− x)b−2dx − b − 1

a

∫ 1

0
xa−1(1− x)b−1dx

=
b − 1

a
B(a, b − 1)− b − 1

a
B(a, b),

which yields

B(a, b) =
b − 1

a+ b − 1
B(a, b − 1). (3)

The symmetry of the function B allows us to infer the formula

B(a, b) =
a− 1

a+ b − 1
· B(a− 1, b).
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If b is a natural number n, a repeated application of Equality (3) allows us
to write

B(a, n) =
n − 1

a+ n − 1
· n − 2

a+ n − 2
· · · 1

a+ 1
· B(a, 1).

The last factor of this equality, B(a, 1), is easily seen to equal 1
a . Thus,

B(a, n) = B(n, a) =
1 · 2 · · · · (n − 1)

a · (a+ 1) · · · · (a+ n − 1)
.

If a is also a natural number, a = m ∈ N, then

B(m, n) =
(n − 1)!(m − 1)!

(m + n − 1)!
.

Prof. Dan A. Simovici CS724: Topics in Algorithms Dimensionality Reduction Slide Set 10 11 / 87



Next, we show the connection between Euler’s integral functions:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (4)

Replacing x in the integral

Γ(a) =

∫ ∞

0
xa−1e−xdx

by x = ry with r > 0 gives Γ(a) = ra
∫∞
0 ya−1e−rydy .

Replacing a by a+ b and r by r + 1 yields the equality

Γ(a+ b)(r + 1)−(a+b) =

∫ ∞

0
ya+b−1e−(r+1)ydy .

By multiplying both sides by ra−1 and integrating, we have

Γ(a+b)

∫ ∞

0
ra−1(r+1)−(a+b)dr =

∫ ∞

0
ra−1

(∫ ∞

0
ya+b−1e−(r+1)ydy

)
dr .
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By the definition of B, the last equality can be written

Γ(a+ b)B(a, b) =

∫ ∞

0
ra−1

(∫ ∞

0
ya+b−1e−(r+1)ydy

)
dr .

By permuting the integrals from the right member (we omit the
justification of this manipulation), the last equality can be written as

Γ(a+ b)B(a, b) =

∫ ∞

0
ya+b−1e−y

(∫ ∞

0
ra−1e−rydr

)
dy .

Note that
∫∞
0 ra−1e−rydr = Γ(a)

ya . Therefore,

Γ(a+b)B(a, b) =

∫ ∞

0
ya+b−1e−y Γ(a)

ya
dy =

∫ ∞

0
yb−1e−yΓ(a)dy = Γ(a)Γ(b),

which is Formula (4).
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The Γ function is a generalization of the factorial. Starting from the
definition of Γ and integrating by parts, we obtain

Γ(a) =

∫ ∞

0
xa−1e−xdx =

xa

a
e−x

∞∣∣∣∣∣
0

+
1

a

∫ ∞

0
xae−xdx =

1

a
Γ(a+ 1).

Thus, Γ(a+ 1) = aΓ(a). Since Γ(1) =
∫∞
0 e−xdx = 1, it is easy to see

that Γ(n + 1) = n! for n ∈ N.
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It is possible to show that Γ has derivatives of arbitrary order and that we
can compute these derivatives by deriving the function under the integral
sign. Namely, we can write:

Γ′(a) =

∫ ∞

0
xa−1(ln x)e−xdx ,

and, in general, Γ(n)(a) =
∫∞
0 xa−1(ln x)ne−xdx . Thus, Γ(2)(a) > 0, which

shows that the first derivative is increasing.
Since Γ(1) = Γ(2) = 1, there exists a ∈ [1, 2] such that Γ′(a) = 0. For
0 < x < a, we have Γ′(x) ⩽ 0, so Γ is decreasing. For x > a, Γ′(x) ⩾ 0, so
Γ is increasing. It is easy to see that

lim
x→0+

Γ(x) =
Γ(x + 1)

x
= ∞,

and limx→∞ Γ(x) = ∞.
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An integral that is useful for a variety of applications is

I =

∫
R
e−

1
2
t2dt.

We prove that I =
√
2π.

We can write

I 2 =

∫
R
e−

1
2
x2dx ·

∫
R
e−

1
2
y2
dy =

∫
R2

e−
x2+y2

2 dxdy .
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Changing to polar coordinates by using the transformation x = ρ cos θ and
y = ρ sin θ whose Jacobian is∣∣∣∣∣∂x∂ρ ∂x

∂θ
∂y
∂ρ

∂y
∂θ

∣∣∣∣∣ =
∣∣∣∣cos θ −ρ sin θ
sin θ ρ cos θ

∣∣∣∣ = ρ,

we have

I 2 =

∫
R2

e−
ρ2

2 ρdρdθ =

∫ 2π

0
dθ

∫ ∞

0
e−

ρ2

2 ρdρ = 2π.

Thus, I =
√
2π. Since e−

1
2
t2 is an even function, it follows that∫ ∞

0
e−

1
2
t2dt =

√
π

2
.
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Volume of Spheres
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A closed sphere centered in (0, . . . , 0) and having the radius R in Rn is
defined as the set of points:

Sn(R) =

{
(x1, . . . , xn) ∈ Rn |

n∑
i=1

x2i = 1

}
.

The volume of this sphere is denoted by Vn(R).
We approximate the volume of an n-dimensional sphere of radius R as a
sequence of n − 1-dimensional spheres of radius r(u) =

√
R2 − u2, where

u varies between −R and R. This allows us to write

Vn+1(R) =

∫ R

−R
Vn(r(u))du.
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We seek Vn(R) as a number of the form Vn(R) = knR
n. Thus, we have

Vn+1(R) = kn

∫ R

−R
(r(u))ndu = kn

∫ R

−R
(R2 − u2)

n
2 du

= knR
n

∫ R

−R

(
1−

( u

R

)2
) n

2

du

= Vn(R)

∫ R

−R

(
1−

( u

R

)2
) n

2

du = RVn(R)

∫ 1

−1
(1− x2)

n
2 dx .

In turn, this yields the recurrence

kn+1 = kn

∫ 1

−1
(1− x2)

n
2 dx .
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Note that ∫ 1

−1
(1− x2)

n
2 dx = 2 ·

∫ 1

0
(1− x2)

n
2 dx

because the function (1− x2)
n
2 is even. To compute the latest integral,

substitute u = x2. We obtain∫ 1

0
(1− x2)

n
2 dx =

1

2

∫ 1

0
u−

1
2 (1− u)

n
2 du,

which equals 1
2 · B(12 ,

n
2 + 1). Using the Γ function, the integral can be

written as ∫ 1

0
(1− x2)

n
2 dx =

1

2
·
Γ(12)Γ(

n
2 + 1)

Γ
(
n
2 + 3

2

) .
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Thus,

kn+1 = kn
Γ
(
1
2

)
Γ
(
n
2 + 1

)
Γ
(
n+1
2 + 1

) .

Since k1 = 2, this implies

kn = 2

(
Γ

(
1

2

))n−1 Γ
(
1
2 + 1

)
Γ
(
n
2 + 1

) =

(
Γ

(
1

2

))n 1

Γ
(
n
2 + 1

) = π
n
2

1

Γ
(
n
2 + 1

) .
Thus, the volume of the n-dimensional sphere of radius R equals

π
n
2Rn

Γ
(
n
2 + 1

) .
For n = 1, 2, 3, by applying Formula (2), we obtain the well-known values

2R,πR2, and 4πR3

3 , respectively. For n = 4, the volume of the sphere is
π2R4

2 .
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The Dimensionality Curse
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The term “dimensionality curse,” invented by Richard Bellman is used to
describe the difficulties of exhaustively searching a space of high
dimensionality for an optimum value of a function defined on such a space.
These difficulties stem from the fact that the size of the sets that must be
searched increases exponentially with the number of dimensions.
Moreover, phenomena that are at variance with the common human
intuition acquired in two- or three-dimensional spaces become more
significant. This section is dedicated to a study of these phenomena.
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The dimensionality curse impacts many data mining tasks, including
classification and clustering. Thus, it is important to realize the limitations
that working with high-dimensional data impose on designing data mining
algorithms.
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Let Qn(ℓ) be an n-dimensional cube in Rn. The volume of this cube is ℓn.
Consider the n-dimensional closed sphere of radius R that is centered in
the center of the cube Qn(2R) and is tangent to the opposite faces of this
cube. We have:

lim
n→∞

Vn(R)

2nRn
=

π
n
2

2nΓ
(
n
2 + 1

) = 0.

In other words, as the dimensionality of the space grows, the fraction of
the cube volume that is located inside the sphere decreases and tends to
become negligible for very large values of n.
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It is interesting to compare the volumes of two concentric spheres of radii
R and R(1− ϵ), where ϵ ∈ (0, 1). The volume located between these
spheres relative to the volume of the larger sphere is

Vn(R)− Vn(R(1− ϵ))

Vn(R)
= 1− (1− ϵ)n,

and we have

lim
n→∞

Vn(R)− Vn(R(1− ϵ))

Vn(R)
= 1.

Thus, for large values of n, the volume of the sphere of radius R is
concentrated mainly near the surface of this sphere.
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Let Qn(1) be a unit side-length n-dimensional cube, Qn(1) = [0, 1]n,
centered in cccn = (0.5, . . . , 0.5) ∈ Rn. The d2-distance between the center
of the cube cccn and any of its vertices is

√
0.52 + · · · 0.52 = 0.5

√
n, and

this value tends to infinity with the number of dimensions n despite the
fact that the volume of the cube remains equal to 1. On the other hand,
the distance from the center of the cube to any of its faces remains equal
to 0.5. Thus, the n-dimensional cube is exhibits very different properties in
different directions; in other words the n-dimensional cube is an
anisotropic object.

Prof. Dan A. Simovici CS724: Topics in Algorithms Dimensionality Reduction Slide Set 10 28 / 87



An interesting property of the unit cube Qn(1):
Let P = (p, . . . , p) ∈ Rn be a point located on the main diagonal of Qn(1)
and let K be the subcube of Qn(1) that includes (0, . . . , 0) and P and has
a side of length p; similarly, let K ′ be the subcube of Qn(1) that includes
P and (1, . . . , 1) and has side of length 1− p. The ratio of the volumes V
and V ′ of the cubes K and K ′ is

r(p) =

(
p

1− p

)n

.

To determine the increase δ of p needed to double this ratio, we must find
δ such that r(p+δ)

r(p) = 2.
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Thus, we must have

p+δ
1−p−δ

p
1−p

=
p(1− p) + δ(1− p)

p(1− p)− δp
=

n
√
2.

Equivalently, we have

δ =
p(1− p)( n

√
2− 1)

1− p + p n
√
2

.
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For large dimensionality n smaller and smaller moves of the point p are
needed to double the ratio of the volumes of the cubes K and K ′. This
suggests that the division of Qn(1) into subcubes is very unstable. If data
classifications are attempted based on the location of data vectors in
subcubes, this shows in turn the instability of such classification schemes.
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Another interesting example of the counterintuitive behavior of spaces of
high dimensionality:
Let Qn(1) be the unit cube centered in the point cccn ∈ Rn, where
cccn = (0.5, . . . , 0.5). For n = 2 or n = 3, it is easy to see that every sphere
that intersects the sides of Q2(1) or all faces of Q3(1) must contain the
center of the cube cccn. We shall see that, for sufficiently high values of n a
sphere that intersects all (n − 1)-dimensional faces of Qn(1) does not
necessarily contain the center of Qn(1).
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Consider the closed sphere B(qqqn, r), whose center is the point
qqqn = (q, . . . , q), where q ∈ [0, 1]. Clearly, we have qqqn ∈ Qn(1) and
d2(cccn,qqqn) =

√
n(q2 − q + 0.25).

If the radius r of the sphere B(qqqn, r) is sufficiently large, then B(qqqn, r)
intersects all faces of Qn. Indeed, the distance from qqqn to an
(n− 1)-dimensional face is no more than max{q, 1− q}, which shows that
r ⩾ max{q, 1− q} ensures the nonemptiness of all these intersections.
Thus, the inequalities

n (q − 0.5)2 > r2 > max{q2, (1− q)2} (5)

ensure that B(qqqn, r) intersects every (n − 1)-dimensional face of Qn, while
leaving cccn outside B(qqqn, r). This is equivalent to requiring

n >
max{q2, (1− q)2}

(q − 0.5)2
.

For example, if we choose q = 0.3, then n > 0.72

0.22
= 12.25. Thus, in the

case of R13, Inequality (5) amounts to 0.52 > r2 > 0.49. Choosing

r =
√
2
2 gives the sphere with the desired “paradoxical” property.
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The examples discussed suggest that precautions and sound arguments are
needed when trying to extrapolate familiar properties of two- or
three-dimensional spaces to spaces of higher dimensionality.
Physical and biological data as well as economic and demographic data
have often high dimensionality. Intelligent data-mining algorithms work
best in interpretation and decision making based on this data when we are
able to simplify their tasks by reducing the high-dimensionality of the data.
Dimensionality reduction refers to the extraction of the relevant
information for a specific objective, while ignoring the unnecessary
information and is a key concept in the pattern recognition, data mining,
feature processing and machine learning. Dimensionality reduction requires
tuning in terms of the expected number of dimensions, or the parameters
of the learning algorithms.

Prof. Dan A. Simovici CS724: Topics in Algorithms Dimensionality Reduction Slide Set 10 34 / 87



Principal Component Analysis
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Principal component analysis (PCA) is a dimensionality reduction
technique that aims to create a few new, uncorrelated linear combinations
of the variables of an experiments that “explain” the major parts of the
data variability.
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Definition

Let www ∈ Rn be a unit vector and let uuu be a vector in Rn.
The residual of uuu relative to www is the number r(uuu) =∥ uuu − (uuu′www)www ∥2 and
it represents the error committed when the vector uuu is replaced by its
projection on www .
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Theorem

If r(uuu) is the residual of the vector uuu of a data matrix X relative to the
vector www with ∥ www ∥= 1, then

r(uuu) =∥ uuu ∥2 −(uuu′www)2.

Proof.

We have

r(uuu) = ∥ uuu − (uuu′www)www ∥2

= (uuu − (uuu′www)www)′(uuu − (uuu′www)www)

= (uuu′ − (uuu′www)www ′)(uuu − (uuu′www)www)

= uuu′uuu − (uuu′www)www ′uuu − uuu′(uuu′www)www + (uuu′www)www ′(uuu′www)www

= ∥ uuu ∥2 −2(uuu′www)2 + (uuu′www)2

= ∥ uuu ∥2 −(uuu′www)2

because www ′www = 1.
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Let X ∈ Rm×n be a data matrix whose rows are uuu′1, . . . ,uuu
′
m.

Definition

The mean square error MSE(X ,www) of the projections of the experiments
uuu1, . . . ,uuum of the data matrix X ∈ Rm×n on the unit vector www ∈ Rn is the
sum of the residuals, MSE(X ,www) = 1

m

∑m
i=1 r(uuui ).

The average of the projections of the experiment vectors on the unit
vector www is the scalar:

uwww =
1

m

m∑
i=1

uuu′iwww .

The data is centered if and only if uwww = 0.
The variance of the projections of the experiment vectors on www is

V (X ,www) =
1

m

m∑
i=1

(uuu′iwww − uwww )
2.
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Note that
if X is centered we have uwww = 0;
we choose www such that the variance V (X ,www) of the projections of the
experiment vectors of www to be maximal.
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Theorem

For the variance V (X ,www) and the mean square error MSE(X ,www) we have
the equalities:

V (X ,www) =
1

m

m∑
i=1

(uuu′iwww)2 − u2www ,

and

MSE(X ,www) =
1

m

m∑
i=1

∥ uuui ∥2 −u2www − V (X ,www).

Prof. Dan A. Simovici CS724: Topics in Algorithms Dimensionality Reduction Slide Set 10 41 / 87



Proof

For the first equality we have

V (X ,www) =
1

m

m∑
i=1

(uuu′iwww − uwww )
2

=
1

m

m∑
i=1

(
(uuu′iwww)2 + u2www − 2(uuu′iwww)uwww

)
=

1

m

m∑
i=1

(uuu′iwww)2 + u2www − 2u2www

=
1

m

m∑
i=1

(uuu′iwww)2 − u2www .
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Proof cont’d

For the second equality we can write:

MSE(X ,www) =
1

m

m∑
i=1

r(uuui )

=
1

m

m∑
i=1

(
∥ uuui ∥2 −(uuu′iwww)2

)
=

1

m

m∑
i=1

∥ uuui ∥2 −
1

m

m∑
i=1

(uuu′iwww)2

=
1

m

m∑
i=1

∥ uuui ∥2 −u2www − V (X ,www).
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Corollary

If X is a centered data matrix then minimizing MSE(X ,www) amounts to
maximizing the variance of the projections of the vectors of the
experiments.

Proof.

Since X is centered we have uwww = 0. Therefore, the equality involving
MSE(X ,www) from Slide 41 becomes:

MSE(X ,www) =
1

m

m∑
i=1

∥ uuui ∥2 −V (X ,www).

The first term does not depend on www . Therefore, to minimize the mean
square error we need to maximize the variance of the projections of the
vectors of the experiments.
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If X is a centered data matrix we have uwww = 0 and the variance of the
data matrix reduces to:

V (X ,www) =
1

m

m∑
i=1

(uuu′iwww)2.

This expression can be transformed as

V (X ,www) =
1

m
(Xwww)′(Xwww) =

1

m
www ′X ′Xwww = www ′Zwww ,

where Z = 1
mX ′X .
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We need to choose the unit vector www to maximize V (X ,www). In other
words we need to maximize V (X ,www) subjected to the restriction
www ′www − 1 = 0. This can be resolved using a Lagrange multiplier λ to
optimize the function

L(www , λ) =
1

m
www ′X ′Xwww − λ(www ′www − 1).
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Since

∂L

∂λ
= −www ′www + 1,

∂L

∂www
= 2Z ′www − 2λwww ,

which implies www ′www = 1 and Zwww = λwww . The last equality amounts to

1

m
X ′Xwww = λwww ,

which means that www must be an eigenvector of the covariance matrix
cov(X ). This is an n × n symmetric matrix, so its eigenvectors are
mutually orthogonal and all its eigenvalues are non-negative. These
eigenvectors are the principal components of the data.
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Definition

Let

X =

uuu′1
...

uuu′m

 = (vvv1, . . . ,vvvn) ∈ Rm×n

be a data sample matrix.
The centered data matrix is X̂ = (v̂vv1, . . . , v̂vvn) = HmX ∈ Rm×n.
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Definition

The principal directions of X are the eigenvectors of the covariance matrix

cov(X ) =
1

m − 1
X̂ ′X̂ =

1

m − 1
X ′H ′

mHmX =
1

m − 1
X ′HmX ∈ Rn×n.

If R ∈ Rn×n is the orthogonal matrix that diagonalizes cov(X ), then the
principal directions of X are the columns of R because R ′cov(X )R = D, or
equivalently, cov(X )R = RD.
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Note that:
the covariance matrix cov(X ) is a scalar multiple of the Gram matrix
X̂ ′X̂ of the columns v̂vv1, . . . , v̂vvn of the centered data matrix X̂ ;
If R ′cov(X )R = D = diag(d1, d2, . . . , dn) and d1 ⩾ d2 ⩾ · · · ⩾ dn
then the first eigenvector (which corresponds to d1) is the first
principal direction of cov(X ); in general, the kth eigenvector rrrk is
called the kth principal direction of X .
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The sum of the elements of D’s main diagonal equals the total variance
tvar(X ). The principal directions “explain” the sources of the total
variance: sample vectors grouped around rrr1 explain the largest portion of
the variance; sample vectors grouped around rrr2 explain the second largest
portion of the variance, etc.
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Let Q ∈ Rn×ℓ be a matrix having orthogonal columns.
Starting from a sample matrix X ∈ Rm×n we can construct a new sample
matrix W ∈ Rm×ℓ having ℓ variables as W = XQ
Each experiment Ei is represented now by a row www ′

i that is linked by uuu′i by
the equality www ′

i = uuu′iQ. This means that the component (www ′
i )k that

corresponds to the new variable Wk is obtained as (www ′
i )k =

∑n
p=1(u

′
i )pqpk ,

a linear combination of the values that correspond to the previous
variables. ‘
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Theorem

Let W ∈ Rm×n be a centered sample matrix and let R ∈ Rn×n be an
orthogonal matrix such that R ′cov(W )R = D, where D ∈ Rn×n is a
diagonal matrix D = diag(d1, . . . , dn) and d1 ⩾ · · · ⩾ dn.
Let Q ∈ Rn×ℓ be a matrix having orthogonal columns and let
X = WQ ∈ Rm×ℓ. Then, trace(cov(X )) is maximized when Q consists of
the first ℓ columns of R and is minimized when Q consists of the last ℓ
columns of R.

Proof: This result follows from Ky Fan’s Theorem applied to the
symmetric covariance matrix of the transformed data set.
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Let X̂ = UDV ′ be the thin SVD of the centered data matrix X̂ ∈ Rm×n,
where U ∈ Rm×r and V ∈ Rr×n are matrices having orthogonal columns
and

D =


σ1 0 · · · 0
0 σ2 · · · 0
...

... · · ·
...

0 0 · · · σr

 ,

where σ1 ⩾ · · · ⩾ σr > 0 are the singular values of X̂ . For the covariance
matrix cov(X ) we have

cov(X ) =
1

m − 1
X̂ ′X̂ =

1

m − 1
VD ′U ′UDV ′

=
1

m − 1
VD ′DV ′ =

1

m − 1
VD2V ′,

due to the orthogonality of the columns of U.
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It is clear that σ2
1, . . . , σ

2
r coincide with the eigenvalues of X̂ ′X̂ .

Starting with the thin SVD of the centered data matrix: X̂ = UDV ′ we
have the following definitions:

The columns of V are the eigenvectors of cov(X ). The matrix V is
known as the matrix of loadings.
The matrix S = UD ∈ Rm×r is known as the matrix of scores.
Observe that X̂ = SV ′, where S is the scores matrix and V is the
loadings matrix. Since the columns of V are orthogonal we also have
S = X̂V .
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The SVD of X̂ can be written as:

X̂ =
r∑

i=1

σiuuuivvv
′
i .

This implies X̂ ′X̂vvv i = σ2
i vvv i . Since uuu

′
i X̂ = σivvv

′
i , it follows that vvv

′
i is a

weighted sum of the rows of the matrix X̂ . Similarly, uuui are weighted sums
of the columns of X̂ .

Prof. Dan A. Simovici CS724: Topics in Algorithms Dimensionality Reduction Slide Set 10 56 / 87



If
X̂ = (uuu1 · · · uuur )(σ1vvv ′1 . . . σrvvv r )

′,

then

Ir = (uuu1 · · · uuur )′(uuu1 · · · uuur )
(n − 1)X̂ ′X̂ = (uuu1 · · · uuur )(uuu1 · · · uuur )′
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The data set that we analyze was published by FAO (Food and
Agricultural Organization of UN) and shows the protein and fat
consumption for 37 European countries in grams per person per day. The
countries are identified by a two-letter code.

code prot fat code prot fat
AL 97 87 IT 113 158
AT 107 155 LV 87 116
BY 88 97 LT 112 105
BE 97 164 LU 124 164
BA 86 67 MK 72 102
BG 79 101 MT 116 110
HR 74 97 MD 73 59
CY 99 133 NL 103 135
CZ 95 121 NO 104 144
DK 108 135 PL 100 113
EE 88 96 PT 114 137
FI 105 127 RO 110 107
FR 117 164 RU 92 87
GE 77 58 YU 75 116
DE 99 142 SK 72 108
GR 117 146 SI 102 131
HU 90 145 ES 109 152
IS 128 143 CH 91 152
IE 115 135
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The sample matrix X ∈ R37×2 is obtained from the second and third
columns of this table that correspond to the variables prot and fat.
The vector of the sample variances of the two columns is
sss = (15.5213 28.9541). Since the magnitudes of the sample variances
are substantial and quite distinct we normalize the data by dividing
the columns of X be their respective sample variances.
The normalization is done by using the function zscore; namely,
zscore(X) returns a centered and scaled version of X having the
same format as X such that the columns of the result have sample
mean 0 and sample variance 1.
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The fao.csv file

code, prot, fat

AL, 97, 87

AT, 107, 155

BY,88,97

BE,97,164

BA,86,67

BG,79,101

HR,74,97

CY,99,133

CZ,95,121

DK,108,135

EE,88,96

FI,105,127

FR,117,164

GE,77,58

DE,99,142

GR,117,146

HU,90,145

IS,128,143
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The fao.csv file cont.

code, prot, fat

IE,115,135

IT,113,158

LV,87,116

LT,112,105

LU,124,164

MK,72,102

MT,116,110

MD,73,59

NL,103,135

NO,104,144

PL,100,113

PT,114,137

RO,110,107

RU,92,87

YU,75,116

SK,72,108

SI,102,131

ES,109,152
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>> opts=detectImportOptions(’fao.csv’);

>> preview(’fao.csv’,opts)

ans =

code prot fat

{’AL’} 97 87

{’AT’} 107 155

{’BY’} 88 97

{’BE’} 97 164

{’BA’} 86 67

{’BG’} 79 101

{’HR’} 74 97

{’CY’} 99 133

>> opts.SelectedVariableNames=[2:3]
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>> M=readmatrix(’fao.csv’,opts)

M =

97 87

107 155

88 97

97 164

86 67

79 101

74 97

99 133

95 121

108 135

88 96

105 127

117 164

77 58

99 142

117 146

90 145

128 143

115 135

113 158

87 116

112 105

124 164

72 102

116 110

73 59

103 135

104 144

100 113

114 137

110 107

92 87

75 116

72 108

102 131

109 152

91 152
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>> Z=zscore(M)

Z =

-0.0801 -1.2041

0.5642 1.1444

-0.6599 -0.8588

-0.0801 1.4552

-0.7888 -1.8949

-1.2398 -0.7206

-1.5619 -0.8588

0.0488 0.3846

-0.2090 -0.0299

0.6286 0.4537

-0.6599 -0.8933

0.4353 0.1774

1.2085 1.4552

-1.3686 -2.2057

0.0488 0.6954

1.2085 0.8336

-0.5311 0.7990

1.9172 0.7300

1.0796 0.4537

0.9507 1.2480

-0.7244 -0.2026

0.8863 -0.5825

1.6594 1.4552

-1.6908 -0.6861

1.1440 -0.4098

-1.6264 -2.1712

0.3065 0.4537

0.3709 0.7645

0.1132 -0.3062

1.0152 0.5227

0.7575 -0.5134

-0.4022 -1.2041

-1.4975 -0.2026

-1.6908 -0.4789

0.2420 0.3155

0.6930 1.0408

-0.4667 1.0408
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>> pca(zscore(M))

ans =

0.7071 0.7071

0.7071 -0.7071

>>
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The first two principal components of the FAO dataset:
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Principal component analysis in MATLAB is done using the function
pca of the statistics toolbox. There are several signatures of this
function which we review next.
The statement coeff = pca(A) performs principal components
analysis (PCA) on the matrix A ∈ Rm×n, and returns the principal
component coefficients, also known as loadings.
Rows of A correspond to observations, and columns to variables. The
columns of the matrix coeff (a n × n matrix) contain coefficients for
one principal component and these columns are in order of decreasing
component variance.
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The function pca computes the principal components of a sample matrix
X . The are several incarnations of the function pca described below.

[coeff,score] = pca(X) returns the matrix score, the principal
component scores, that is, the representation of X in the principal
component space. The rows of score correspond to observations,
columns to components.
[coeff,score,latent] = pca(X) returns the vector latent which
contains the eigenvalues of the covariance matrix of X .
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The matrix score contains the data formed by transforming the
original data into the space of the principal components. The values
of the vector latent are the variance of the columns of score.
The function pca centers X by subtracting off column variance
means, but does not rescale the columns of X . To perform principal
components analysis with standardized variables we need to use
pca(zscore(X)).
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The loading matrix or the coefficient matrix is given by(
0.7071 −0.7071
0.7071 0.7071

)
Both coefficients in the first column (which represents the first principal
component) are equal and positive, which means that the first principal
component is a weighted average of the two variables. The second
principal component corresponds to a weighted difference of the original
variables. The coordinates of the data in the new coordinate system is
defined by the matrix scores.
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Example

The data set that we are about to analyze originates in a study of the
health condition of Boston neighborhoods produced by the Health
Department of the City of Boston. The data includes incidence of various
diseases and health events that occur in the 16 neighborhoods of the city
identified as

Neighborhood Code Neighborhood Code
Allston/Brighton AB North Dorchester ND
Back Bay BB North End NE
Charlestown CH Roslindale RO
East Boston EB Roxbury RX
Fenway FW South Boston SB
Hyde Park HP South End SE
Jamaica Plain JP South Dorchester SD
Mattapan MT West Roxbury WR

This is entered in MATLAB as

neighborhoods = [’AB’;’BB’;’CH’;’EB’;’FW’;’HP’;’JP’;...

’MT’;’ND’;’NE’;’RS’;’RX’;’SB’;’SD’;’SE’;’WR’]
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The diseases and the health conditions are listed as the vector
categories:

Category Code Category Code
Hepatitis B HepB Tuberculosis TBCD
Hepatitis C HepC Live Births B154
HIV/AIDS HIVA Low weight at birth LBWE
Chlamydia CHLA Infant Mortality INFM
Syphilis SYPH Children with Elevated Lead CELL
Gonorrhea GONO Subst. Abuse Treat. Admissions SATA

This is entered in MATLAB as

categories = [’HepB’;’HepC’;’HIVA’;’CHLA’;’SYPH’;’GONO’;...

’TBCD’;’B154’;’LBWE’;’INFM’;’CELL’;’SATA’]
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The data itself is contained in the matrix diseaseinc in R16×12 and it
has the form

38 57 13 168 5 22 20 607 40 7 13 624
17 24 16 179 11 52 8 306 25 0 0 497
10 13 0 46 0 8 0 284 25 0 0 489
12 46 11 150 10 16 17 718 43 10 43 1009
18 19 8 163 9 44 7 125 10 0 0 272
11 18 8 179 9 25 9 487 46 12 19 2781
6 32 18 213 10 46 6 420 35 5 10 1071

15 24 11 264 14 56 8 285 26 7 25 390
42 76 22 611 15 135 29 1350 168 28 88 1492
0 0 0 0 0 0 0 89 5 0 0 130

13 22 0 115 6 31 0 488 39 6 28 330
21 50 17 477 8 72 8 829 87 27 30 2075
9 52 0 85 7 25 5 403 25 0 18 1335

68 78 23 760 24 176 24 656 67 9 63 1464
51 35 35 124 31 61 11 439 34 0 0 6064
9 10 0 17 0 0 0 419 34 0 11 179
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The array containing the sample variances of columns is computed by
applying the function std:

stdinc = std(diseaseinc)

Next, by using the function repmat as in

si = diseaseinc./repmat(stdinc,16,1)

we create a 16× 12 matrix consisting of 16 copies of stdinc and compute
the normalized matrix si that is subjected to PCA in

[loadings,scores,variances]=pca(si)

This is one of several formats of the function pca. This function is applied
to a data matrix and it centers the matrix by subtracting off column
means.
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This is one of several formats of the function pca. This function is applied
to a data matrix and it centers the matrix by subtracting off column
means. In the format that we use here, the function returns the matrices
loadings, scores, and variances that contain the following data;
The columns of the matrix loadings contains the principal components.
The entries of this matrix are known as loadings. In our case loadings is
a 12× 12 matrix, where each column contains represents one principal
component. The columns are in order of decreasing component variance.
We reproduce below the first three columns of this matrix

0.2914 0.2732 -0.2641
0.3207 -0.0568 -0.1593
0.2666 0.3848 0.1427
0.3267 -0.0800 -0.2671
0.2426 0.4650 -0.0270
0.3209 0.0668 -0.3463
0.3215 -0.0161 -0.1444
0.3055 -0.2594 0.3184
0.3061 -0.2659 0.2735
0.2655 -0.3215 0.3832
0.3026 -0.2903 -0.0815
0.1423 0.4702 0.5848
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The matrix scores in R16×12 contains the principal component
scores, that is, the representation of si in the principal component
space. Rows of score correspond to neighborhoods and columns to
components.
The matrix variances contains the principal component variances,
that is, the eigenvalues of the covariance matrix of si.
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The first two columns of the matrix scores contain the projections of
data on the first two principal components. This is done by running

plot(scores(:,1),scores(:,2),’*’)

After the plot is created labels can be added to the axes using

xlabel(’First Principal Component’)

ylabel(’Second Principal Component’)

The resulting plot is shown next.
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Projections on the first two principal components:
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The neighborhood codes are applied to this plot by running
gname(neighborhoods). An inspection of the figure shows that the
health issues are different for neighborhoods like South End (SE), South
Dorchester (SD) and North Dorchester (ND).

Prof. Dan A. Simovici CS724: Topics in Algorithms Dimensionality Reduction Slide Set 10 78 / 87



The matrix variances allows us to examine the percentage of the total
variability explained by each principal component. Initially, we compute
the matrix percent_explained as

percent_explained=100*variances/sum(variances)

and using the function pareto we write

pareto(percent_explained)

xlabel(’Principal Component’)

ylabel(’Variance Explained’)
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This code produces the histogram shown below:
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To visualize the results one can use the biplot function as in

biplot(loadings(:,1:2),’scores’,scores(:,1:2),’varlabels’,categories)

resulting in
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Each of the 12 variable is represented by a vector in this figure.

Since the first principal component has positive coefficients, all
vectors are located in the right half-plane.
On the other hand the signs of the coefficients of the second principal
component are varying.
These components distinguish between neighborhoods where there is
a high incidence of substance abuse treatment admissions, (SATA),
syphilis (SYPH), HIV/Aids (HIVA), Hepatitis B (HepB), and
Gonorrhea (GONO) and low incidence of the others and
neighborhoods where the opposite situation occurs.
The conclusions of a PCA analysis of data are mainly qualitative. The
numerical precision (4 decimal digits) is not especially relevant for the
PCA.
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Next, we present a geometric point of view of principal component
analysis.
Let ttt ∈ Rn be a unit vector. The projection of a vector www ∈ Rn on the
subspace ⟨⟨⟨ttt⟩⟩⟩ generated by ttt is given by

proj⟨⟨⟨ttt⟩⟩⟩(www) = tttttt ′www .

To simplify the notation we shall write projttt instead of proj⟨⟨⟨ttt⟩⟩⟩. Let

Ŵ ∈ Rm×n be a centered sample matrix that corresponds to a sequence of
experiments (uuu1, . . . ,uuum), that is

Ŵ =

uuu′1
...

uuu′m

 .
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We seek to evaluate the inertia I000(projttt(Ŵ
′)) on the subspace generated

by the unit vector ttt ∈ Rn. Since Ŵ ′ = (uuu1 · · · uuum), by the definition of
the inertia, we have:

I000(projttt(Ŵ
′)) =

m∑
j=1

∥ tttttt ′uuuj ∥22

=
m∑
j=1

uuu′jtttttt
′tttttt ′uuuj

=
m∑
j=1

uuu′jtttttt
′uuuj

(because ttt ′ttt = 1)

=
m∑
j=1

ttt ′uuujuuu
′
jttt

(because both uuu′jttt and ttt ′uuuj are scalars)

= ttt ′X ′Xttt.
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The necessary condition for the existence of extreme values of this inertia
as a function of ttt is

grad
(
I000(projttt(Ŵ

′)) + λ(1− ttt ′ttt)
)

= grad
(
ttt ′Ŵ ′Ŵttt + λ(1− ttt ′ttt)

)
= 2Ŵ ′Ŵuuu − 2λttt = 000,

where λ is a Lagrange multiplier. This implies Ŵ ′Ŵttt = λttt. In other
words, to achieve extreme values of the inertia I000(projttt(Ŵ

′)), ttt must be
chosen as a eigenvector of the covariance matrix of Ŵ , that is, as a
principal direction of Ŵ .
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Suppose that the eigenvalues of Ŵ ′Ŵ are the numbers λ1 ⩾ · · · ⩾ λn.
The first principal direction ttt1 of W which corresponds to the largest
eigenvalue of Ŵ ′Ŵ is

ttt1 = argmax
ttt

{
ttt ′Ŵ Ŵ ′ttt | ttt ∈ Rn, ∥ ttt ∥2= 1

}
= argmax

ttt

{
∥ Ŵ ′ttt ∥22 | ∥ ttt ∥2= 1

}
.

Suppose that we computed the principal directions ttt1, . . . , tttk of Ŵ . Then,
tttk+1 ∈ Rn is a unit vector ttt that maximizes

ttt ′Ŵ Ŵ ′ttt =∥ Ŵ ′ttt ∥22

and belongs to the subspace orthogonal to the subspace generated by the
first k principal directions of Ŵ , that is,

tttk+1 = argmax
ttt

{
∥ Ŵ ′ttt ∥22 | ttt ∈ Rn, ∥ ttt ∥2= 1, ttt ∈ ⟨⟨⟨ttt1, . . . , tttk⟩⟩⟩⊥

}
.
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Note that for every vector zzz ∈ Rn we have

(I −
k∑

j=1

ttt jttt
′
j)zzz = zzz − proj⟨⟨⟨ttt1,...,tttk⟩⟩⟩zzz ∈ ⟨⟨⟨ttt1, . . . , tttk⟩⟩⟩⊥.

Therefore, xxx ∈ ⟨⟨⟨ttt1, . . . , tttk⟩⟩⟩⊥, is equivalent to xxx = (I −
∑k

j=1 ttt jttt
′
j)xxx . Thus,

we can write

tttk+1 = argmax
ttt


∣∣∣∣∣
∣∣∣∣∣Ŵ (I −

k∑
j=1

ttt jttt
′
j)ttt

∣∣∣∣∣
∣∣∣∣∣
2

| ∥ ttt ∥2= 1

 ,

for 0 ≤ k ≤ n − 1. This technique allows finding the principal directions of
Ŵ by solving a sequence of optimization problems involving the matrix Ŵ .
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