CS724: Topics in Algorithms Probability Review Slide Set 10

Prof. Dan A. Simovici

Random Variables

2 Discrete Probability Distributions

Markov and Cebyshev Inequalities

Random Variables

Experiments and Random Variables

The result of an experiment whose outcome is determined by chance is described by a *random variable* that gives a numerical value that is the outcome of the experiment.

The sample space is the set of all possible outcomes of the experiment.

If the sample space Ω is finite we can assign a probability to each outcome of the experiment.

Example

If we throw a die, the sample space is finite: $\{1,2,3,4,5,6\}$ and the probability of each outcome is $\frac{1}{6}$.

In some cases, if the sample space is infinite a probability can be assigned to each outcome.

Example

If the sample space Ω is the set of positive integers at least equal to 1, due to Euler formula, $\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$, a probability distribution function $p(i) = \frac{6}{\pi} \frac{1}{i^2}$ can be assigned to each i.

Discrete Probability Distributions

A random variable X on a sample space Ω is a real-valued function on Ω , $X:\Omega\to\mathbb{R}$.

A discrete random variable is a random variable that takes only a finite, or an infinitely countable number of values.

For a discrete random variable X, the notation "X = a" includes all elementary events for which the random variable X takes the value a.

Example

If X is the random variable representing the sum of two dice, then the event X=5 corresponds to the elementary events (1,4),(2,3),(3,2),(4,1) and $P(X=5)=\frac{4}{36}$.

Definition

Let Y be a random variable such that

$$Y = \begin{cases} 1 & \text{if an experiment succeeds,} \\ 0 & \text{otherwise.} \end{cases}$$

Y is called a Bernoulli variable, or an indicator variable.

Definition

The expectation E[x] of a discrete random variable X is

$$E[X] = \sum_{i} iP(X = i).$$

Example

The expectation of the discrete random variable representing the sum of two dice is:

$$E[X] = \frac{1}{36} \cdot 2 + \frac{2}{36} \cdot 3 + \dots + \frac{1}{36} \cdot 12 = 7$$

Example

Let X be the discrete random variable that takes the value 2^i with probability $\frac{1}{2^i}$ for $i=1,2,\ldots$ The expected value is

$$E[X] = \sum_{i=1}^{\infty} 2^i \cdot \frac{1}{2^i} = \infty.$$

Definition

The random variables X and Y are independent if

$$P((X = x) \cap (Y = y)) = P(X = x)P(Y = y)$$

for all values x and y. This extends to n random variables: X_1, \ldots, X_n are independent if for all x_1, \ldots, x_n we have

$$P((X_1 = x_1) \cap (X_2 = x_2) \cap \cdots \cap (X_n = x_n)) = P(X_1 = x_1) P(X_2 = x_2) \cdots P(X_n = x_n)$$

Linearity of Expectation

Theorem

For any finite collection of discrete random variables X_1, \ldots, X_n we have

$$E[X_1 + \cdots + X_n] = \sum_{i=1}^n E[X_i].$$

For any constant c and random variable X we have E[cX] = cE[X].

Markov and Cebyshev Inequalities

Markov's Inequality

Theorem

Let X be a discrete random variable that takes non-negative values:

$$X: \left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \\ p_1 & p_2 & \cdots & p_n \end{array} \right),$$

where $0 \le a_1 < a_2 < \cdots < a_n$ and $p_1 + p_2 + \cdots + p_n = 1$.

We have

$$P(X > a) \leqslant \frac{E[X]}{a}$$
.

(Markov's Inequality)

Proof

If $a_{j-1} < a \leqslant a_j$, then

$$E[X] = a_1p_1 + \dots + a_{j-1}p_{j-1} + a_jp_j + \dots + a_np_n$$

$$\geqslant a_jp_j + \dots + a_np_n \geqslant a(p_j + \dots + p_n)$$

= $aP(X > a)$.

Therefore,

$$P(X > a) \leqslant \frac{E[X]}{a}$$
.

Variance of a Random Variable

Definition

Let X be a random variable and let $Y = (X - E[X])^2$ be a non-negative random variable that depends on X. The number E[Y] is the variance of X and is denoted by Var(X).

Note that

$$Var(X) = E[(X - E[X])^2] = E[X^2 - 2E(X)X + E[X]^2] = E[X^2] - (E[X])^2.$$

Cebyshev Inequality

Theorem

Let X be a discrete random variable:

$$X:\left(\begin{array}{cccc}a_1 & a_2 & \cdots & a_n\\p_1 & p_2 & \cdots & p_n\end{array}\right),$$

where $a_1 < a_2 < \cdots < a_n$ and $p_1 + p_2 + \cdots + p_n = 1$. We have

$$P(|X - E(X)| \geqslant a) \leqslant \frac{Var(X)}{a^2}$$

Proof

Let $Y=(X-E[X])^2$ be a non-negative random variable. By applying Markov's inequality to Y we obtain $P(Y\geqslant a^2)\leqslant \frac{E[Y]}{a^2}$. Note that E[Y]=var(X), and therefore

$$P(|X-E(X)|\geqslant a)=P(Y\geqslant a^2)\leqslant \frac{E[y]}{a^2},$$

which implies

$$P(|X - E(X)| \geqslant a) \leqslant \frac{Var(X)}{a^2}.$$

Definition

The cumulative distribution function of a random variable X is the function $F_X : \mathbb{R} \longrightarrow [0,1]$ defined as

$$F_X(x) = P(X \leqslant x)$$

for every $x \in \mathbb{R}$.

Continuous Probability Distributions

Discrete random variables take a countable number of values.

Continuous random variables have a range that is an interval, or a union of non-overlaping intervals (that can be the entire set \mathbb{R}).

The theory of continuous random variables is similar to the theory of discrete radom variables:

- sums are replaced by integrals;
- probability mass functions are replaced by probability density functions (pdfs).

Example

For the uniform distribution on [0,1] the probability of any particular value is 0. However, in this case we can define a probability density function p(x), where

$$p(x) = \begin{cases} 1 & \text{if } 0 \leqslant x \leqslant 1, \\ 0 & \text{otherwise.} \end{cases}$$

This implies
$$P(a < x < b) = \int_a^b p(x) dx = \frac{1}{b-a}$$
.

The Gaussian or Normal Distribution

The normal distribution (or the Gaussian distribution) with mean m and variance σ^2 is defined by the probability density:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

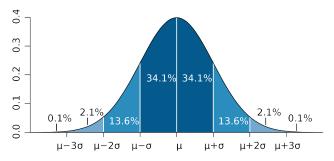
For mean m=0 and $\sigma=1$ the density becomes

$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

Standard tables give the values of the integral

$$\int_0^t \phi(x) \ dx = F(t).$$

A one-dimensional Gaussian has its probability mass close to origin.



The Central Limit Theorem

Let $S = X_1 + X_2 + \cdots + X_n$ be a sum of n independent random variables where

$$X_i = \begin{cases} 1 & \text{with probability } \frac{1}{2} \\ 0 & \text{with probability } \frac{1}{2}. \end{cases}$$

The expected value $E(X_i)$ of each variable X_i is 1/2 with variance

$$\sigma_i^2 = (1/2 - 0)^2 1/2 + (1/2 - 1)^2 1/2 = 1/4$$

The expected value of S is n/2, and because the variables X_1, \ldots, X_n are independent, the variance of s is the sum of the variances of x_i s, so it is $\frac{n}{4}$. Thus, the standard deviation of S is $\frac{\sqrt{n}}{2}$.

The Central Limit Theorem cont'd

Note that

$$\lim_{n\to\infty}\frac{\frac{\sqrt{n}}{2}}{n}=0.$$

In general, if X_1,\ldots,X_n are independent and identically distributed each with standard deviation σ , then the standard deviation of $X_1+\cdots+X_n$ is $\sqrt{n}\sigma$, so the random variable $\frac{X_1+\cdots+X_n}{\sqrt{n}}$ has standard deviation σ . A stronger assertion is included next.

Theorem (Central Limit Theorem)

If X_1, \ldots, X_n is a sequence of identically distributed independent random variables each with mean μ and variance σ^2 , the distribution of the random variable

$$\frac{1}{\sqrt{n}}(X_1+\cdots+X_n-n\mu)$$

converges to the Gaussian distribution with mean 0 and variance σ^2 .

BOSTON

Theorem

Let $X_1, ..., X_n$ be n mutually independent random variables with 0 mean and variance at most σ^2 . Suppose that:

$$a \in [0, \sqrt{2}n\sigma^2], s$$
 is a positive even integer and $s \leqslant \frac{n\sigma^2}{2}$,

and

$$E(X_i^r) \leqslant \sigma^2 r!$$
 for $3 \leqslant r \leqslant s$.

Then,

$$P(|X_1+\cdots+X_n|\geqslant a)\leqslant \left(\frac{2sn\sigma^2}{a^2}\right)^{\frac{\tau}{2}}.$$

If, further $s \geqslant \frac{a^2}{4n\sigma^2}$, we also have:

$$P(|X_1+\cdots+X_n|\geqslant a)\leqslant 3e^{-\frac{a^2}{12n\sigma^2}}.$$

Proof

We prove first an upper bound on $E(X^r)$ for any positive even r.

$$(X_1 + \cdots + X_n)^r = \sum_{r=1}^n {r \choose r_1 \dots r_n} X_1^{r_1} \cdots X_n^{r_n}$$
$$= \sum_{r=1}^n \frac{r!}{r_1! \cdots r_n!} X_1^{r_1} \cdots X_n^{r_n}.$$

This implies

$$E(X^r) = \sum \frac{r!}{r_1! \cdots r_n!} E(X_1^{r_1}) \cdots E(X_n^{r_n}).$$

For those terms where $r_i = 1$, the term is 0 because $E(X_i) = 0$. Thus, we can assume that (r_1, \ldots, r_n) runs over sets of non-zero r_i having the sum r, where each non-zero r_i is at least 2. Thus, there are at most r/2 non-zero r_i in each set.

Since $E(X_i^{r_i}) \leq \sigma^2 r_i!$ it follows that

$$E(X^r) \leqslant r! \sum_{r_1, \dots, r_n} \sigma^{2\text{number of non-zero } r_i \text{ in the set }}$$
.

Collect terms of the summation with t non-zero r_i s for $1 \leqslant t \leqslant \frac{r}{2}$. There are $\binom{n}{t}$ subsets of $\{1,\ldots,n\}$ of cardinality t. Once a subset is fixed as the set of t values of i with non-zero r_i , set each of $r_i \geqslant 2$.

That is, allocate two of each r_i and the alocate the remaining r-2t to tr_i arbitrarily. The number of such allocations is

$$\binom{r-2t+t-1}{t-1} = \binom{r-t+1}{t-1}.$$
Let $f(t) = \binom{n}{t} \binom{r-t-1}{t-1} \sigma^{2t}$. We have

$$E(X^r) \leqslant r! \sum_{t=1}^{r/2} f(t).$$

Thus $f(t) \leqslant h(t)$, where

$$h(t) = \frac{(n\sigma^2)^t}{t!} 2^{r-t-1}.$$

Since $r \leqslant r/2 \leqslant \frac{n\sigma^2}{4}$, we have:

$$\frac{h(t)}{h(t-1)} = \frac{n\sigma^2}{2t} \geqslant 2.$$

Thus, we obtain

$$E(x^r) = r! \sum_{t=1}^{r/2} \leqslant r! h(r/2) \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots \right) \leqslant \frac{r!}{(r/2)!} 2^{r/2} (n\sigma^2)^{\frac{r}{2}}.$$

By Markov's Inequality we have

$$P(|X| > a) = P(|X|^r > a^r) \leqslant g(r),$$

where $g(r) = \frac{r!(n\sigma^2)^{r/2}2^{r/2}}{(r/2)!a^r} \leqslant \left(\frac{2rn\sigma^2}{a^2}\right)^{r/2}$. This holds for $r \leqslant s$, r even, and applying for r = s we get the first inequality of the theorem.

For the second inequality, note that for even r,

$$\frac{g(r)}{g(r-2)} = \frac{4(r-1)n\sigma^2}{a^2} = \frac{r-1}{\frac{a^2}{4n\sigma^2}}.$$

Thus, g(r) decreases as long as $r-1\leqslant \frac{a^2}{4n\sigma^2}$. Taking r to be the largest even integer less of equal to $\frac{a^2}{6n\sigma^2}$, the tail probability is at most $e^{r/2}$, which is the most $e\cdot e^{-\frac{a^2}{12n\sigma^2}}\leqslant 3e^{-\frac{a^2}{12n\sigma^2}}$.

As dimension increases, the behavior of d-dimensional Gaussian random variables is changing.

A *d-dimensional spherical Gaussian* variable with 0 mean and variance σ^2 in each coordinate has the density function

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \sigma^d} e^{-\frac{\|\mathbf{x}\|^2}{2\sigma^2}}.$$

The next theorem states that nearly all probability of a spherical Gaussian is concentrated in a thin annulus.

Theorem (Gaussian Annulus Theorem)

For a d-dimensional spherical Gaussian with variance 1 in every direction and for any $\beta \leqslant \sqrt{d}$, there is a fixed positive constant c such that all but at most $3e^{-c\beta^2}$ of the probability lies within the annulus:

$$\sqrt{d} - \beta \leqslant \parallel \mathbf{x} \parallel \leqslant \sqrt{d} + \beta.$$

Proof

Note that

$$E(||\mathbf{x}||^2) = \sum_{i=1}^d E(x_i^2) = dE(x_1^2) = d,$$

so the mean square distance of a point to the center is d.

Let $\mathbf{x} = (x_1, \dots, x_d)$ be a point selected from a unit variance Gaussian centered at the origin and let $r = ||\mathbf{x}||$.

The inequality $\sqrt{d}-\beta \leqslant \parallel \mathbf{x} \parallel \leqslant \sqrt{d}+\beta$ is equivalent to $|r-\sqrt{d}|\geqslant \beta$. Multiplying with $r+\sqrt{d}$ yields $|r^2-d|\geqslant \beta(r+\sqrt{d})\geqslant \beta\sqrt{d}$. To prove the theorem it suffices to bound the probability that $|r^2-d|\geqslant \beta\sqrt{d}$.

Proof cont'

Note that

$$r^2 - d = (x_1^2 + \dots + x_d^2) - d = (x_1^2 - 1) + \dots + (x_d^2 - 1).$$

By introducing new varibles $y_i=x_i^2-1$ we can bound the probability that $|y_1+\cdots+y_d|\geqslant \beta\sqrt{d}$. Note that $E(y_i)=E(x_i^2)-1=0$. To apply the previous theorem we need to bind the $s^{\rm th}$ moment of y_i .

Proof cont'

For $|x_i| \le 1$, we have $|y_i|^s \le 1$ and for $|x_i| \ge 1$, $|y_i|^s \le |x_i|^{2s}$. Therefore,

$$|E(y_i^s)| = E(|y_i|^s) \le E(1 + x_i^{2s}) = 1 + E(x_i^{2s})$$

= $1 + \sqrt{\frac{2}{\pi}} \int_0^\infty x^{2s} e^{-\frac{x^2}{2}}$.

Using the substitution $2z = x^2$ we have

$$|E(y_i^s)| = 1 + \frac{1}{\sqrt{\pi}} \int_0^\infty 2^s z^{s-\frac{1}{2}} e^{-z} dz \le 2^s s!.$$

Since $E(y_i) = 0$, $Var(y) = E(y_i^2) \le 2^2 \cdot 2 = 8$. We need however, $E(y_i^s) \le 8s!$.

Now we apply a change of variable $y_i=2w_i$. Then $Var(w_i)\leqslant 2$ and $E(w_i^s)\leqslant 2s!$ and we need to bound the probability that $|w_1+\cdots+w_d|\geqslant \frac{\beta\sqrt{d}}{2}$. Applying the previous theorem with $\sigma^2=2$ and n=d yields the desired result.

