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Random Variables
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Experiments and Random Variables

The result of an experiment whose outcome is determined by chance is
described by a random variable that gives a numerical value that is the
outcome of the experiment.
The sample space is the set of all possible outcomes of the experiment.
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If the sample space Ω is finite we can assign a probability to each outcome
of the experiment.

Example

If we throw a die, the sample space is finite: {1, 2, 3, 4, 5, 6} and the
probability of each outcome is 1

6 .

In some cases, if the sample space is infinite a probability can be assigned
to each outcome.

Example

If the sample space Ω is the set of positive integers at least equal to 1, due
to Euler formula,

∑∞
i=1

1
i2
= π2

6 , a probability distribution function

p(i) = 6
π

1
i2

can be assigned to each i .
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Discrete Probability Distributions
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A random variable X on a sample space Ω is a real-valued function on Ω,
X : Ω → R.
A discrete random variable is a random variable that takes only a finite, or
an infinitely countable number of values.
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For a discrete random variable X , the notation ”X = a”includes all
elementary events for which the random variable X takes the value a.

Example

If X is the random variable representing the sum of two dice, then the
event X = 5 corresponds to the elementary events
(1, 4), (2, 3), (3, 2), (4, 1) and P(X = 5) = 4

36 .
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Definition

Let Y be a random variable such that

Y =

{
1 if an experiment succeeds,

0 otherwise.

Y is called a Bernoulli variable, or an indicator variable.
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Definition

The expectation E [x ] of a discrete random variable X is

E [X ] =
∑
i

iP(X = i).

Example

The expectation of the discrete random variable representing the sum of
two dice is:

E [X ] =
1

36
· 2 + 2

36
· 3 + · · ·+ 1

36
· 12 = 7
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Example

Let X be the discrete random variable that takes the value 2i with
probability 1

2i
for i = 1, 2, . . .. The expected value is

E [X ] =
∞∑
i=1

2i · 1

2i
= ∞.
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Definition

The random variables X and Y are independent if

P((X = x) ∩ (Y = y)) = P(X = x)P(Y = y)

for all values x and y . This extends to n random variables: X1, . . . ,Xn are
independent if for all x1, . . . , xn we have

P((X1 = x1)∩(X2 = x2)∩· · ·∩(Xn = xn)) = P(X1 = x1)P(X2 = x2) · · ·P(Xn = xn).
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Linearity of Expectation

Theorem

For any finite collection of discrete random variables X1, . . . ,Xn we have

E [X1 + · · ·+ Xn] =
n∑

i=1

E [Xi ].

For any constant c and random variable X we have E [cX ] = cE [X ].
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Markov and Cebyshev Inequalities
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Markov’s Inequality

Theorem

Let X be a discrete random variable that takes non-negative values:

X :

(
a1 a2 · · · an
p1 p2 · · · pn

)
,

where 0 ⩽ a1 < a2 < · · · < an and p1 + p2 + · · ·+ pn = 1.
We have

P(X > a) ⩽
E [X ]

a
.

(Markov’s Inequality)
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Proof

If aj−1 < a ⩽ aj , then

E [X ] = a1p1 + · · ·+ aj−1pj−1 + ajpj + · · ·+ anpn

⩾ ajpj + · · ·+ anpn ⩾ a(pj + · · ·+ pn)

= aP(X > a).

Therefore,

P(X > a) ⩽
E [X ]

a
.
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Variance of a Random Variable

Definition

Let X be a random variable and let Y = (X − E [X ])2 be a non-negative
random variable that depends on X . The number E [Y ] is the variance of
X and is denoted by Var(X ).

Note that
Var(X ) = E [(X −E [X ])2] = E [X 2−2E (X )X +E [X ]2] = E [X 2]− (E [X ])2.
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Cebyshev Inequality

Theorem

Let X be a discrete random variable:

X :

(
a1 a2 · · · an
p1 p2 · · · pn

)
,

where a1 < a2 < · · · < an and p1 + p2 + · · ·+ pn = 1. We have

P(|X − E (X )| ⩾ a) ⩽
Var(X )

a2
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Proof

Let Y = (X − E [X ])2 be a non-negative random variable. By applying

Markov’s inequality to Y we obtain P(Y ⩾ a2) ⩽ E [Y ]
a2

. Note that
E [Y ] = var(X ), and therefore

P(|X − E (X )| ⩾ a) = P(Y ⩾ a2) ⩽
E [y ]

a2
,

which implies

P(|X − E (X )| ⩾ a) ⩽
Var(X )

a2
.
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Definition

The cumulative distribution function of a random variable X is the
function FX : R −→ [0, 1] defined as

FX (x) = P(X ⩽ x)

for every x ∈ R.
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Continuous Probability Distributions
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Discrete random variables take a countable number of values.
Continuous random variables have a range that is an interval, or a union of
non-overlaping intervals (that can be the entire set R).
The theory of contiuous random variables is similar to the theory of
discrete radom variables:

sums are replaced by integrals;
probability mass functions are replaced by probability density
functions (pdfs).
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Example

For the uniform distribution on [0, 1] the probability of any particular value
is 0. However, in this case we can define a probability density function
p(x), where

p(x) =

{
1 if 0 ⩽ x ⩽ 1,

0 otherwise.

This implies P(a < x < b) =
∫ b
a p(x) dx = 1

b−a .
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The Gaussian or Normal Distribution

The normal distribution (or the Gaussian distribution) with mean m and
variance σ2 is defined by the probability density:

f (x) =
1√
2πσ

e−
(x−m)2

2σ2 .

For mean m = 0 and σ = 1 the density becomes

ϕ(x) =
1√
2π

e−
x2

2 .

Standard tables give the values of the integral∫ t

0
ϕ(x) dx = F (t).
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A one-dimensional Gaussian has its probability mass close to origin.
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The Central Limit Theorem

Let S = X1 + X2 + · · ·+ Xn be a sum of n independent random variables
where

Xi =

{
1 with probability 1

2

0 with probability 1
2 .

The expected value E (Xi ) of each variable Xi is 1/2 with variance

σ2
i = (1/2− 0)21/2 + (1/2− 1)21/2 = 1/4

The expected value of S is n/2, and because the variables X1, . . . ,Xn are
independent, the variance of s is the sum of the variances of xi s, so it is n

4 .

Thus, the standard deviation of S is
√
n
2 .
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The Central Limit Theorem cont’d

Note that

lim
n→∞

√
n
2

n
= 0.

In general, if X1, . . . ,Xn are independent and identically distributed each
with standard deviation σ, then the standard deviation of X1 + · · ·+ Xn is√
nσ, so the random variable X1+···+Xn√

n
has standard deviation σ. A

stronger assertion is included next.

Theorem (Central Limit Theorem)

If X1, . . . ,Xn is a sequence of identically distributed independent random
variables each with mean µ and variance σ2, the distribution of the
random variable

1√
n
(X1 + · · ·+ Xn − nµ)

converges to the Gaussian distribution with mean 0 and variance σ2.
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Theorem

Let X1, . . . ,Xn be n mutually independent random variables with 0 mean
and variance at most σ2. Suppose that:

a ∈ [0,
√
2nσ2], s is a positive even integer and s ⩽

nσ2

2
,

and
E (X r

i ) ⩽ σ2r ! for 3 ⩽ r ⩽ s.

Then,

P(|X1 + · · ·+ Xn| ⩾ a) ⩽

(
2snσ2

a2

) s
2

.

If, further s ⩾ a2

4nσ2 , we also have:

P(|X1 + · · ·+ Xn| ⩾ a) ⩽ 3e−
a2

12nσ2 .
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Proof

We prove first an upper bound on E (X r ) for any positive even r .

(X1 + · · ·+ Xn)
r =

∑(
r

r1 . . . rn

)
X r1
1 · · ·X rn

n

=
∑ r !

r1! · · · rn!
X r1
1 · · ·X rn

n .

This implies

E (X r ) =
∑ r !

r1! · · · rn!
E (X r1

1 ) · · ·E (X rn
n ).

For those terms where ri = 1, the term is 0 because E (Xi ) = 0. Thus, we
can assume that (r1, . . . , rn) runs over sets of non-zero ri having the sum
r , where each non-zero ri is at least 2. Thus, there are at most r/2
non-zero ri in each set.
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Since E (X ri
i ) ⩽ σ2ri ! it follows that

E (X r ) ⩽ r !
∑

r1,...,rn

σ2number of non-zero ri in the set .

Collect terms of the summation with t non-zero ri s for 1 ⩽ t ⩽ r
2 . There

are

(
n
t

)
subsets of {1, . . . , n} of cardinality t. Once a subset is fixed as

the set of t values of i with non-zero ri , set each of ri ⩾ 2.
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That is, allocate two of each ri and the alocate the remaining r − 2t to tri
arbitrarily. The number of such allocations is(
r − 2t + t − 1

t − 1

)
=

(
r − t + 1
t − 1

)
.

Let f (t) =

(
n
t

)(
r − t − 1
t − 1

)
σ2t . We have

E (X r ) ⩽ r !

r/2∑
t=1

f (t).

Thus f (t) ⩽ h(t), where

h(t) =
(nσ2)t

t!
2r−t−1.

Since r ⩽ r/2 ⩽ nσ2

4 , we have:

h(t)

h(t − 1)
=

nσ2

2t
⩾ 2.
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Thus, we obtain

E (x r ) = r !

r/2∑
t=1

⩽ r !h(r/2)

(
1 +

1

2
+

1

4
+ · · ·

)
⩽

r !

(r/2)!
2r/2(nσ2)

r
2 .

By Markov’s Inequality we have

P(|X | > a) = P(|X |r > ar ) ⩽ g(r),

where g(r) = r !(nσ2)r/22r/2

(r/2)!ar ⩽
(
2rnσ2

a2

)r/2
. This holds for r ⩽ s, r even, and

applying for r = s we get the first inequality of the theorem.
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For the second inequality, note that for even r ,

g(r)

g(r − 2)
=

4(r − 1)nσ2

a2
=

r − 1
a2

4nσ2

.

Thus, g(r) decreases as long as r − 1 ⩽ a2

4nσ2 . Taking r to be the largest

even integer less of equal to a2

6nσ2 , the tail probability is at most er/2,

which is the most e · e−
a2

12nσ2 ⩽ 3e−
a2

12nσ2 .
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As dimension increases, the behavior of d-dimensional Gaussian random
variables is changing.
A d-dimensional spherical Gaussian variable with 0 mean and variance σ2

in each coordinate has the density function

p(xxx) =
1

(2π)d/2σd
e−

∥xxx∥2

2σ2 .
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The next theorem states that nearly all probability of a spherical Gaussian
is concentrated in a thin annulus.

Theorem (Gaussian Annulus Theorem)

For a d-dimensional spherical Gaussian with variance 1 in every direction
and for any β ⩽

√
d, there is a fixed positive constant c such that all but

at most 3e−cβ2
of the probability lies within the annulus:

√
d − β ⩽∥ xxx ∥⩽

√
d + β.
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Proof

Note that

E (∥ xxx ∥2) =
d∑

i=1

E (x2i ) = dE (x21 ) = d ,

so the mean square distance of a point to the center is d .
Let xxx = (x1, . . . , xd) be a point selected from a unit variance Gaussian
centered at the origin and let r =∥ xxx ∥.
The inequality

√
d − β ⩽∥ xxx ∥⩽

√
d + β is equivalent to |r −

√
d | ⩾ β.

Multiplying with r +
√
d yields |r2 − d | ⩾ β(r +

√
d) ⩾ β

√
d . To prove

the theorem it suffices to bound the probability that |r2 − d | ⩾ β
√
d .
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Proof cont’

Note that

r2 − d = (x21 + · · ·+ x2d )− d = (x21 − 1) + · · ·+ (x2d − 1).

By introducing new varibles yi = x2i − 1 we can bound the probability that
|y1 + · · ·+ yd | ⩾ β

√
d . Note that E (yi ) = E (x2i )− 1 = 0. To apply the

previous theorem we need to bind the sth moment of yi .
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Proof cont’

For |xi | ⩽ 1, we have |yi |s ⩽ 1 and for |xi | ⩾ 1, |yi |s ⩽ |xi |2s . Therefore,

|E (y si )| = E (|yi |s) ⩽ E (1 + x2si ) = 1 + E (x2si )

= 1 +

√
2

π

∫ ∞

0
x2se−

x2

2 .

Using the substitution 2z = x2 we have

|E (y si )| = 1 +
1√
π

∫ ∞

0
2szs−

1
2 e−z dz ⩽ 2ss!.
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Since E (yi ) = 0, Var(y) = E (y2i ) ⩽ 22 · 2 = 8. We need however,
E (y si ) ⩽ 8s!.
Now we apply a change of variable yi = 2wi . Then Var(wi ) ⩽ 2 and
E (w s

i ) ⩽ 2s! and we need to bound the probability that

|w1 + · · ·+ wd | ⩾ β
√
d

2 . Applying the previous theorem with σ2 = 2 and
n = d yields the desired result.
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