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Experiments and Random Variables

The result of an experiment whose outcome is determined by chance is
described by a random variable that gives a numerical value that is the
outcome of the experiment.

The sample space is the set of all possible outcomes of the experiment.
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If the sample space €2 is finite we can assign a probability to each outcome
of the experiment.

Example

If we throw a die, the sample space is finite: {1,2,3,4,5,6} and the
probability of each outcome is %.

In some cases, if the sample space is infinite a probability can be assigned
to each outcome.

Example

If the sample space (Q is the set of positive integers at least equal to 1, due
2 e .

to Euler formula, >~7°; I% = % a probability distribution function

p(i) = %I% can be assigned to each /.
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A random variable X on a sample space €2 is a real-valued function on €,
X:Q—R

A discrete random variable is a random variable that takes only a finite, or
an infinitely countable number of values.
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For a discrete random variable X, the notation " X = a"includes all
elementary events for which the random variable X takes the value a.

Example

If X is the random variable representing the sum of two dice, then the
event X = b corresponds to the elementary events
(174)? (2a3)7 (372) (4 1) and P(X - 5) - 3i
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Definition

Let Y be a random variable such that

1 if an experiment succeeds,

0 otherwise.

Y is called a Bernoulli variable, or an indicator variable.
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Definition
The expectation E[x] of a discrete random variable X is

E[X] =) iP(X = ).

i

Example
The expectation of the discrete random variable representing the sum of
two dice is:

1 2 1
E(X| =5 2+ 553+ +55-12=7 J
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Example

Let X be the discrete random variable that takes the value 2/ with
probability % for i=1,2,.... The expected value is

S|
E[X]IZT-E:OO.
i=1
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Definition
The random variables X and Y are independent if

P((X =x)N (Y =y)) = P(X =x)P(Y = y)

for all values x and y. This extends to n random variables: Xi,..., X, are
independent if for all xq,...,x, we have

P((Xl = Xl)ﬂ(Xz = Xz)ﬂ- . -ﬂ(Xn = X,-,)) = P(Xl = X1)P(X2 = X2) SO P(Xr E

v
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Linearity of Expectation

Theorem

For any finite collection of discrete random variables Xi, ..., X, we have

E[X1 + - —i—X,-,] e iE[X,]
i=1

For any constant c and random variable X we have E[cX] = cE[X].
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Markov's Inequality

Theorem

Let X be a discrete random variable that takes non-negative values:

pPL P2 - Pn
where0 < a1 <ax<---<ayandpr+pr+---+p,=1.
We have

P(X>a)<¥.

(Markov's Inequality)
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Proof

If aj_1 < a < aj, then

E[X] = aip1+---+aj-1pj-1+ajpj+ -+ anpn
> ajpj+ -+ anpp = a(pj+ -+ pn)
= aP(X > a).
Therefore,
E[X
P(X > a) < %
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Variance of a Random Variable

Definition

Let X be a random variable and let Y = (X — E[X])? be a non-negative
random variable that depends on X. The number E[Y] is the variance of
X and is denoted by Var(X).

Note that
Var(X) = E[(X — E[X])?] = E[X? —2E(X)X + E[X]?] = E[X?] - (E[X])>.
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Cebyshev Inequality

Theorem
Let X be a discrete random variable:
pL P2 - Pn
whereay < ap < ---<apandpr+pr+---+pn=1.
Var(X)

PX - E(X)| > a) < 2253

We have
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Proof

Let Y = (X — E[X])? be a non-negative random variable. By applying
Markov's inequality to Y we obtain P(Y > a°) < % Note that
E[Y] = var(X), and therefore

E
PIX — E(X)| > 2) = P(Y > %) < F2)
which implies
Var(X)

PIX — EX)| > ) < T

~
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Definition
The cumulative distribution function of a random variable X is the
function Fx : R — [0, 1] defined as

Fx(x) = P(X < x)

for every x € R.
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Continuous Probability Distributions
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Discrete random variables take a countable number of values.
Continuous random variables have a range that is an interval, or a union of
non-overlaping intervals (that can be the entire set R).
The theory of contiuous random variables is similar to the theory of
discrete radom variables:

@ sums are replaced by integrals;

@ probability mass functions are replaced by probability density

functions (pdfs).
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Example

For the uniform distribution on [0, 1] the probability of any particular value
is 0. However, in this case we can define a probability density function
p(x), where

p(x) =

1 ifo<x<1,
0 otherwise.

This implies P(a < x < b) = fab p(x) dx = ﬁ_
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The Gaussian or Normal Distribution

The normal distribution (or the Gaussian distribution) with mean m and
variance o2 is defined by the probability density:

1 _x=m?
e 202

f(x) =

2mo

For mean m =0 and o = 1 the density becomes

1 <2
P(x) = \/—2—779_7-

Standard tables give the values of the integral

/Ot¢(x) dx = F(t).
7
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A one-dimensional Gaussian has its probability mass close to origin.

03 04

0.2

7 34.1% 34.1%
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The Central Limit Theorem

Let S= X1+ X5+ ---+ X, be a sum of n independent random variables
where

X 1 with probability %
" 10 with probability 1.

The expected value E(X;) of each variable X; is 1/2 with variance

o? = (1/2-0)%1/2+ (1/2-1)*1/2=1/4

The expected value of S is n/2, and because the variables Xi, ..., X, are
independent, the variance of s is the sum of the variances of x;s, so it is 2

Thus, the standard deviation of S is @

-

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Probability Re 25/38



The Central Limit Theorem cont'd

Note that
n
lim -2 =0.
n—oo n
In general, if Xi,..., X, are independent and identically distributed each

with standard deviation o, then the standard deviation of X; +---+ X, is
\/no, so the random variable % has standard deviation o. A
stronger assertion is included next.

Theorem (Central Limit Theorem)

If X1,..., X, is a sequence of identically distributed independent random
variables each with mean p and variance o2, the distribution of the
random variable

1
%(X1+--.+Xn—n,u)

converges to the Gaussian distribution with mean 0 and variance o
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Theorem

Let Xi,...,X, be n mutually independent random variables with 0 mean
and variance at most 0. Suppose that:

no?

A

ae|o, \/Enaz], S is a positive even integer and s <

and
E(X/) < o?r!l for3< r <s.

1

Then,

s

2sno? 2
P(|X1+---+Xn|>a)<( g ) :

2
If, further s > ﬁ;, we also have:

2

P(IX1 + -+ + Xo| > a) < 3e™ 2n2.

(4 |
UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Probability Re 27/38



Proof

We prove first an upper bound on E(X") for any positive even r.

r _ r r; rn
Xi+- 4+ X)) = Z(rl_“rn>xll"'xn
— r! n rn
= 2 X

This implies

EX) = 30 T B EOX).

For those terms where r; = 1, the term is 0 because E(X;) = 0. Thus, we

can assume that (r,..., r,) runs over sets of non-zero r; having the sum
r, where each non-zero r; is at least 2. Thus, there are at most r/2
non-zero r; in each set. m
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Since E(X") < o?r;! it follows that

E(X") < r! Z g2number of non-zero r; in the set
<rl .
Myeeestn
Collect terms of the summation with t non-zero r;s for 1 <t < 5 There
n - e
are { subsets of {1,...,n} of cardinality t. Once a subset is fixed as

the set of t values of / with non-zero r;, set each of r; > 2.
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That is, allocate two of each r; and the alocate the remaining r — 2t to tr;

arbitrarily. The number of such allocations is

r—=2t+t—-1\ _ (r—t+1
t—1 o t—1 '

Let f(t) = (Z) (r;i;1> ot. We have

r/2
E(XT) <y f(1).

t=1

Thus f(t) < h(t), where

(no?)t

2r—t—1
t! '

h(t) =

. 2
Since r < r/2 < 77, we have:

We-n 2”7 7
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Thus, we obtain

r/2 |

E(x") = rl ; < rlh(r/2) (1 + % + % +- ) < (r;'z)!zf/z(ngz)é-

By Markov's Inequality we have

P(IX] > a) = P(IX|" > a") < g(r),

| 2yr/20r/2 2\ 1/
where g(r) = - (r('f/%)!a, < (2?20

applying for r = s we get the first inequality of the theorem.

2
. This holds for r <'s, r even, and
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For the second inequality, note that for even r,

g(r) _ 4(r—1)no® r— 1.

g(r-2) a? 2

4no?2

Thus, g(r) decreases as Iong as r—1< %5 Taking r to be the largest

even integer less of equal to g7, the tail probability is at most e r/2,

_a a

which is the most e - e 12002 < 3e™ 12002 .
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As dimension increases, the behavior of d-dimensional Gaussian random
variables is changing.

A d-dimensional spherical Gaussian variable with 0 mean and variance o
in each coordinate has the density function

2

1 _
p(x) = (om)725d
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The next theorem states that nearly all probability of a spherical Gaussian
is concentrated in a thin annulus.

Theorem (Gaussian Annulus Theorem)

For a d-dimensional spherical Gaussian with variance 1 in every direction

and for any B < \/d, there is a fixed positive constant ¢ such that all but
2 o o - o

at most 3e~P" of the probability lies within the annulus:

Vd -8 < x ||< Vd + 8.
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Proof

Note that ;

E(Ix IP) = Y EGE) = dEGE) = d,
i=1

so the mean square distance of a point to the center is d.
Let x = (x1,...,Xxq) be a point selected from a unit variance Gaussian
centered at the origin and let r =|| x ||.
The inequality vd — 3 <|| x |< V/d + 3 is equivalent to |r — V/d| > 8.
Multiplying with r + /d yields |r? — d| > B(r + v/d) > $v/d. To prove
the theorem it suffices to bound the probability that |r? — d| > $v/d.
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Proof cont’

Note that
rz—d:(X12+"'+Xc2i)_d:(xl2_1)+""|‘(X§—1)-

By introducing new varibles y; = x,-2 — 1 we can bound the probability that
ly1 + -+ ya| = BVd. Note that E(y;) = E(x?) — 1 =0. To apply the
previous theorem we need to bind the s*® moment of y;.
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Proof cont’

*<1landfor x| > 1, lyi]° < ]x,-\zs. Therefore,

For |xi| < 1, we have |y;

EG) = E(yil') S E(L+x7) =1+ E(x7)

X2
= 1+ /xe2.

Using the substitution 2z = x> we have

[E(y) =1+ —= / 2575 2e7% dz < 2°s).
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Since E(y;) =0, Var(y) = E(y?) < 22-2 =28. We need however,
E(y?) < 8sl.

Now we apply a change of variable y; = 2w;. Then Var(w;) < 2 and
E(w?) < 2s! and we need to bound the probability that

lwi + -+ wy| > %g. Applying the previous theorem with o> = 2 and
n = d yields the desired result.
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