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Trace of a Collection of Sets

Definition

Let C be a collection of sets and let U be a set. The trace of collection C

on the set U is the collection

CU = {U ∩ C | C ∈ C}.

If the trace of C on U, CU equals P(U), then we say that U is shattered by
C.

U is shattered by C if C can carve any subset of U as an intersection with
a set in C .
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Example

Let U = {u1, u2} and let C be the collection of sets

C = {{u3}, {u1, u3}, {u2, u3}, {u1, u2, u3}}.

C shatters U because we can write:

∅ = U ∩ {u3}
{u1} = U ∩ {u1, u3}
{u2} = U ∩ {u2, u3}

{u1, u2} = U ∩ {u1, u2, u3}
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Definition

The Vapnik-Chervonenkis dimension of the collection C (called the
VC-dimension for brevity) is the largest size of a set K that is shattered by
C.
This largest size is denoted by VCD(C).
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Example

Note that the previous collection C cannot shatter the set
U ′ = {u1, u2, u3} because this set has 8 subsets and C has just four sets.
Thus, if is impossible to express all subsets of U ′ as intersections of U ′

with some set of C.
The VCD dimension of the collection C is 2.
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Note that:
We have VCD(C) = 0 if and only if |C| = 1.
If VCD(C) = d , then there exists a set K of size d such that for each
subset L of K there exists a set C ∈ C such that L = K ∩ C .
C shatters K if and only if the trace of C on K denoted by CK

shatters K . This allows us to assume without loss of generality that
both the sets of the collection C and a set K shattered by C are
subsets of a set U.
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Collections of Sets as Sets of Hypotheses

Let U be a set, K a subset, and let C be a collection of sets.
Each C ∈ C defines a hypothesis hC : U −→ {−1, 1} that is a dichotomy,
where

hC (u) =

{
1 if u ∈ C ,

−1 if u ̸∈ C .

K is shattered by C if and only if for every subset L of K there exists a
dichotomy hC such that the set of positive examples {u ∈ U | hC (u) = 1}
equals L.
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Finite Collections have Finite VC-Dimension

Let C be a collection of sets with VCD(C) = d and let K be a set
shattered by C with |K | = d .
Since there exist 2d subsets of K , there are at least 2d subsets of C, so

2d ⩽ |C|.

Consequently, VCD(C) ⩽ log2 |C|. This shows that if C is finite, then
VCD(C) is finite.
The converse is false: there exist infinite collections C that have a finite
VC -dimension.
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A Tabular Representation of Collections

If U = {u1, . . . , un} is a finite set, then the trace of a collection
C = {C1, . . . ,Cp} of subsets of U on a subset K of U can be presented in
an intuitive, tabular form.
Let θ be a table containing the rows t1, . . . , tp and the binary attributes
u1, . . . , un.
Each tuple tk corresponds to a set Ck of C and is defined by

tk [ui ] =

{
1 if ui ∈ Ck ,

0 otherwise,

for 1 ⩽ i ⩽ n. Then, C shatters K if the content of the projection rrr [K ]
consists of 2|K | distinct rows.
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Example

Let U = {u1, u2, u3, u4} and let
C = {{u2, u3}, {u1, u3, u4}, {u2, u4}, {u1, u2}, {u2, u3, u4}} represented by:

TC

u1 u2 u3 u4
0 1 1 0
1 0 1 1
0 1 0 1
1 1 0 0
0 1 1 1

The set K = {u1, u3} is shattered by the collection C because the
projection on K ((0, 1), (1, 1), (0, 0), (1, 0), (0, 1)). contains the all four
necessary tuples (0, 1), (1, 1), (0, 0), and (1, 0).
No subset K of U that contains at least three elements can be shattered
by C because this would require the projection rrr [K ] to contain at least
eight tuples. Thus, VCD(C) = 2.
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Observations:
Every collection of sets shatters the empty set.
If C shatters a set of size n, then it shatters a set of size p, where
p ⩽ n.

For a collection of sets C and for m ∈ N, let

ΠC[m] = max{|CK | | |K | = m}

be the largest number of distinct subsets of a set having m elements that
can be obtained as intersections of the set with members of C.

We have ΠC[m] ⩽ 2m;
if C shatters a set of size m, then ΠC[m] = 2m.
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Definition

A Vapnik-Chervonenkis class (or a VC class) is a collection C of sets such
that VCD(C) is finite.

13 / 81



Example

Let R be the set of real numbers and let I be the collection of sets
{(−∞, t) | t ∈ R}.
We claim that any singleton is shattered by I. Indeed, if S = {x} is a
singleton, then P({x}) = {∅, {x}}. Thus, if t ⩾ x , we have
(−∞, t) ∩ S = {x}; also, if t < x , we have (−∞, t) ∩ S = ∅, so
IS = P(S).
There is no set S with |S | = 2 that can be shattered by I. Indeed, suppose
that S = {x , y}, where x < y . Then, any member of I that contains y
includes the entire set S , so IS = {∅, {x}, {x , y}} ≠ P(S). This shows
that I is a VC class and VCD(I) = 1.
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Example

Consider the collection I = {[a, b] | a, b ∈ R, a ⩽ b} of closed intervals.
We claim that VCD(I) = 2. To justify this claim, we need to show that
there exists a set S = {x , y} such that IS = P(S) and no three-element
set can be shattered by I.
For the first part of the statement, consider the intersections

[u, v ] ∩ S = ∅, where v < x ,

[x − ϵ, x+y
2 ] ∩ S = {x},

[ x+y
2 , y ] ∩ S = {y},

[x − ϵ, y + ϵ] ∩ S = {x , y},
which show that IS = P(S).
For the second part of the statement, let T = {x , y , z} be a set that
contains three elements. Any interval that contains x and z also contains
y , so it is impossible to obtain the set {x , z} as an intersection between an
interval in I and the set T .
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An Example

Let H be the collection of closed half-planes in R2 of the form

{xxx = (x1, x2) ∈ R2 | ax1 + bx2 − c ⩾ 0, a ̸= 0 or b ̸= 0}.

We claim that VCD(H) = 3.
Let P,Q,R be three non-colinear points. Each line is marked with the sets
it defines; thus, it is clear that the family of half-planes shatters the set
{P,Q,R}, so VCD(H) is at least 3.

s
ss

P

Q

R

{P,Q}

{Q}{P, R}

{P}

{Q, R}

∅ {P,Q, R}

{R}
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Example (cont’d)

To complete the justification of the claim we need to show that no set
that contains at least four points can be shattered by H.
Let {P,Q,R,S} be a set that contains four points such that no three
points of this set are collinear. If S is located inside the triangle P,Q,R,
then every half-plane that contains P,Q,R also contains S , so it is
impossible to separate the subset {P,Q,R}. Thus, we may assume that
no point is inside the triangle formed by the remaining three points.
Any half-plane that contains two diagonally opposite points, for example,
P and R, contains either Q or S , which shows that it is impossible to
separate the set {P,R}. Thus, no set that contains four points may be

shattered by H, so VCD(H) = 3.

s
s
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Q

R

S
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CLAIM: the VCD of an arbitrary family of hyperplanes in Rd is d + 1.
Consider the set of d + 1 points {xxx0,xxx1, . . . ,xxxd} defined as

xxx0 = 000d ,xxx i = eee1 for 1 ⩽ i ⩽ d .

Let y0, y1, . . . , yd ∈ {−1, 1} and let www ∈ Rd be the vector whose i th

coordinate is yi . We have www ′xxx = yi for 1 ⩽ i ⩽ d . Therefore,

sign
(
www ′xxx i +

y0
2

)
= sign

(
yi +

y0
2

)
= yi .

Thus, points xxx i for which yi = 1 are on the positive side of the hyperplane
yyy ′xxx = 0; the ones for which yi = −1 are on the oposite side, so any family
of d + 1 points in Rd can be shattered by hyperplanes.
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Also we need to show that no set of d + 2 points can be shattered by
hyperplanes. For this we need the notion of convex set and the notion of
convex hull.
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Let xxx ,yyy ∈ Rn. The closed segment determined by xxx and yyy is the set

[xxx ,yyy ] = {(1− a)xxx + ayyy | 0 ⩽ a ⩽ 1}.

Definition

A subset C of Rn is convex if, for all xxx ,yyy ∈ C we have [xxx ,yyy ] ⊆ C .
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Example

The convex subsets of R are the intervals of R.
Regular polygons are convex subsets of R2.
An open sphere B(xxx0, r) or a closed sphere B[xxx0, r ] in Rn is convex.
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Definition

Let U be a subset of Rn. A convex combination of U is a vector of the
form a1xxx1 + · · ·+ akxxxk , where xxx1, . . . ,xxxk ∈ U, ai ⩾ 0 for 1 ⩽ i ⩽ k, and
a1 + · · ·+ ak = 1.
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Theorem

The intersection of any collection of convex sets in Rn is a convex set.

Proof.

Let C = {Ci | i ∈ I} be a collection of convex sets and let C =
⋂

C.
Suppose that xxx1, . . . ,xxxk ∈ C , ai ⩾ 0 for 1 ⩽ i ⩽ k , and a1 + · · ·+ ak = 1.
Since xxx1, . . . ,xxxk ∈ Ci , it follows that a1xxx1 + · · ·+ akxxxk ∈ Ci for every
i ∈ I . Thus, a1xxx1 + · · ·+ akxxxk ∈ C , which proves the convexity of C .
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Definition

The convex hull (or the convex closure of a subset U of Rn is the
intersection of all convex sets that contain U, that is, the smallest convex
set that contains U.
The convex null of U is denoted by KKK conv(U).

U

KKK conv(U)
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Theorem

Let S be a subset of Rn. The convex hull KKK conv(S) consists of the set of
all convex combinations of elements of S , that is,

KKK conv(S) = {a1xxx1 + · · ·+ amxxxm,xxx1, . . . ,xxxm ∈ S

| a1, . . . , am ⩾ 0 and
m∑
i=1

ai = 1}.
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Proof

Note that S ⊆ KKK conv(S) because xxx ∈ S implies 1xxx = xxx ∈ KKK conv(S).
The set KKK conv(S) is convex. Indeed, let

uuu = a1xxx1 + · · ·+ amxxxm ∈ KKK conv(S)

vvv = b1xxx1 + · · ·+ bmxxxm ∈ KKK conv(S),

a1, . . . , am ⩾ 0 and
m∑
i=1

ai = 1,

b1, . . . , bm ⩾ 0 and
m∑
i=1

bi = 1,

where we assume, without loss of generality, that the two convex
combinations involve the same number of terms.

27 / 81



Let c ∈ [0, 1] and let zzz = cuuu + (1− c)vvv .
Since

zzz =
m∑
i=1

(cai + (1− c)bi )xxx i

and
∑m

i=1(cai + (1− c)bi ) = c
∑m

i=1 ai + (1− c)
∑m

i=1 bi = 1, it follows
that zzz ∈ KKK conv(S), so KKK conv(S) is convex. }
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Proof continued

Every convex set T that contains S will contain KKK conv(S), hence KKK conv(S)
is the smallest convex set that contains S .
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Example

A two-dimensional simplex is defined starting from three points xxx1,xxx2,xxx3
in R2 such that none of these points is collinear with the others two.
Thus, the two-dimensional simplex generated by xxx1,xxx2,xxx3 is the full
triangle determined by xxx1,xxx2,xxx3.

xxx1

xxx2

xxx3
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Let S be the n-dimensional simplex generated by the points xxx1, . . . ,xxxn+1

in Rn and let xxx ∈ S . If xxx ∈ S , then xxx is a convex combination of
xxx1, . . . ,xxxn,xxxn+1. In other words, there exist a1, . . . , an, an+1 such that
a1, . . . , an, an+1 ∈ (0, 1),

∑n+1
i=1 ai = 1, and

xxx = a1xxx1 + · · ·+ anxxxn + an+1xxxn+1.
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Theorem

(Radon’s Theorem) Any set X = {xxx1, . . . ,xxxd+2} of d + 2 points in Rd can
be partitioned into two sets X1 and X2 such that the convex hulls of X1

and X2 intersect.
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Proof

Consider the following system with d + 1 linear equations and d + 2
variables α1, α2, . . . , αd+2:∑d+2

i=1 αixxx i = 000d , (d scalar equations)∑d+2
i=1 αi = 0.

Since the number of variables d + 2 is larger than the number of equations
d + 1, the system has a non-trivial solution β1, . . . , βd+2.
Since

∑d+2
i=1 βi = 0 both sets

I1 = {i |1 ⩽ i ⩽ d + 2, βi > 0}, I2 = {i |1 ⩽ i ⩽ d + 2, βi < 0}

are non-empty sets and disjoint sets, and

X1 = {xxx i | i ∈ I1},X2 = {xxx i | i ∈ I2},

form a partition of X .
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Proof (cont’d)

Define β =
∑

i∈I1 βi .
Since

∑
i∈I1 βi = −

∑
i∈I2 βi , we have

∑
i∈I1

βi
β
xxx i =

∑
i∈I2

−βi
β

xxx i .

Also, ∑
i∈I1

βi
β

=
∑
i∈I2

−βi
β

= 1,

βi
β ⩾ 0 for i ∈ I1 and −βi

β ⩾ 0 for i ∈ I2. This implies that

∑
i∈I1

βi
β
xxx i

belongs both to the convex hulls of X1 and X2.
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Let X be a set of d + 2 points in Rd . By Radon’s Theorem it can be
partitioned into X1 and X2 such that the two convex hulls intersect.
When two sets are separated by a hyperplane, their convex hulls are also
separated by the hyperplane. Thus, X1 and X2 cannot be separated by a
hyperplane and X is not shattered.
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Example

Let R be the set of rectangles whose sides are parallel with the axes x and
y . There is a set S with |S | = 4 that is shattered by R. Let S be a set of
four points in R2 that contains a unique “northernmost point” Pn, a
unique “southernmost point” Ps , a unique “easternmost point” Pe , and a
unique “westernmost point” Pw . If L ⊆ S and L ̸= ∅, let RL be the
smallest rectangle that contains L. For example, we show the rectangle RL

for the set {Pn,Ps ,Pe}.q

q
qq

Pn

Ps

Pe

Pw
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Example (cont’d)

This collection cannot shatter a set of points that contains at least five
points. Indeed, let S be such that |S | ⩾ 5. If the set contains more than
one “northernmost” point, then we select exactly one to be Pn. Then, the
rectangle that contains the set K = {Pn,Pe ,Ps ,Pw} contains the entire
set S , which shows the impossibility of separating S .
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The Class of All Convex Polygons

Example

Consider the system of all convex polygons in the plane.
For any positive integer m, place m points on the unit circle. Any subset
of the points are the vertices of a convex polygon. Clearly that polygon
will not contain any of the points not in the subset. This shows that we
can shatter arbitrarily large sets, so the VC-dimension of the class of all
convex polygons is infinite.
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The Case of Convex Polygons with d Vertices

Example

Consider the class of convex polygons that have no more than d vertices in
R2 and place 2d + 1 points on a circle.

Label a subset of these points as positive, and the remaining points as
negative. Since we have an odd number of points there exists a
majority in one of the classes (positive or negative).
If the negative point are in majority, there are at most d positive
points; these are contained by the convex polygon formed by joining
the positive points.
If the positive are in majority, consider the polygon formed by the
tangents of the negative points.
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Negative Points in the Majority

positive examples

negative examples
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Positive Points in the Majority

positive examples

negative examples
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Example cont’d

Since a set with 2d + 1 points can be shattered, the VC dimension of
the set of convex polygons with at most d vertices is at least 2d + 1.
If all labeled points are located on a circle then it is impossible for a
point to be in the convex closure of a subset of the remaining points.
Thus, placing the points on a circle maximizes the number of sets
required to shatter the set, so the VC-dimension is indeed 2d + 1.
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Definition

Let H be a set of hypotheses and let (x1, . . . , xm) be a sequence of
examples of length m. A hypothesis h ∈ H induces a classification

(h(x1), . . . , h(xm))

of the components of this sequence. Note that the number of ways in
which h can classify the members of the sequence (x1, . . . , xm) is
|{h(x1), . . . , h(xm)}|.
The growth function of H is the function ΠH : N −→ N gives the number
of ways a sequence of examples of length m can be classified by a
hypothesis in H:

ΠH(m) = max
(x1,...,xm)∈Xm

{|{(h(x1), . . . , h(xm)}| | h ∈ H}.
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A Preliminary Result

Theorem

Let S = {s1, . . . , sn} be a set and let C be a collection of subsets of S ,
C ⊆ P(S).
Let SH(C) be the family of subsets of S that are shattered by C. Then, we
have |SH(C)| ⩾ |C|.
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Proof

The argument is by induction on |C|, the size of the collection C.
Consider the subcollections C0 and C1 of C defined by:

C0 = {U ∈ C | s1 ̸∈ U}
C1 = {U ∈ C | s1 ∈ U}

The families C0 and C1 of subsets of S are disjoint and |C| = |C0|+ |C1|.
Let

S ′ = {s2, s3, . . . , sn}.

By the inductive hypothesis, |SH(C0)| ⩾ |C0|, that is, C0 shatters at least
as many subsets of S ′ as |C0|.
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Proof (cont’d)

Next, consider the family

C′
1 = {U − {s1} | U ∈ C1}.

This is a family of subsets of S ′ and |C′
1| = |C1|.

By induction, C′
1 shatters at least as many subsets of S ′ = {s2, s3, . . . , sn}

as its cardinality, that is, |SH(C′
1)| ⩾ |C′

1|.
The number of subsets of S ′ shattered by C0 and C′

1 sum up to at least
|C0|+ |C′

1| = |C0|+ |C1| = |C|, and every subset of S ′ shattered by C′
1 is

shattered by C1 ⊆ C.
Note that there may be subsets V of S ′ shattered by both C0 and C′

1. In
this case both V and V ∪ {s1} are shattered by C.

46 / 81



For n, k ∈ N and 0 ⩽ k ⩽ n define the number
( n
⩽k

)
as:

(
n

⩽ k

)
=

k∑
i=0

(
n

i

)
.

Clearly,
( n
⩽0

)
= 1 and

( n
⩽n

)
= 2n.

Observe that if Pk(S) is the collection of subsets of S that contain k or
fewer elements, then for |S | = n,

|Pk(S)| =
(

n

⩽ k

)
.
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Theorem

(Sauer-Shelah Theorem) Let S be a set with |S | = n and let C be a
collection of subsets of S such that

|C| >
(

n

⩽ k

)
.

Then, there exists a subset T of S having at least k + 1 elements such
that C shatters T .
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Proof

Let |SH(C)| be the number of sets shattered by C. We have |SH(C)| ⩾ |C|
by the previous theorem.
The inequality of the theorem means that |C| > |Pk(S)|, hence
|SH(C)| > |Pk(S)|. Therefore, there exists a subset T of S with at least
k + 1 elements that is shattered by C.

49 / 81



Theorem

Let ϕ : N2 −→ N be the function defined by

ϕ(d ,m) =

{
1 if m = 0 or d = 0

ϕ(d ,m − 1) + ϕ(d − 1,m − 1), otherwise.

We have

ϕ(d ,m) =

(
m

⩽ d

)
for d ,m ∈ N.
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Proof

The argument is by strong induction on s = d +m.
The base case, s = 0, implies m = 0 and d = 0, and the equality is
immediate.

51 / 81



Proof cont’d

Suppose that the equality holds for ϕ(d ′,m′), where d ′ +m′ < d +m. We
have:

ϕ(d ,m) = ϕ(d ,m − 1) + ϕ(d − 1,m − 1)
(by definition)

=
∑d

i=0

(m−1
i

)
+
∑d−1

i=0

(m−1
i

)
(by inductive hypothesis)

=
∑d

i=0

(m−1
i

)
+
∑d

i=1

(m−1
i−1

)
(by changing the summation index in the second sum)

=
∑d

i=0

(m−1
i

)
+
∑d

i=0

(m−1
i−1

)
(because

(m−1
−1

)
= 0)

=
∑d

i=0

((m−1
i

)
+
(m−1
i−1

))
=

∑d
i=0

(m
i

)
=

( m
⩽d

)
,

which gives the desired conclusion.
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Another Inequality

Suppose that VCD(C) = d and |S | = n. Then SH(C) ⊆ Pd(S), hence

|C| ⩽ |SH(C)| ⩽
d∑

i=1

(
n

i

)
=

(
n

⩽ d

)
.

Together with the previous inequality we obtain:

2d ⩽ |C| ⩽
(

n

⩽ d

)
= ϕ(n, d).
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Lemma

For d ∈ N and d ⩾ 2 we have:

2d−1 ⩽
dd

d!
.

Proof: The argument is by induction on d . In the basis step, d = 2 both
members are equal to 2.
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Suppose the inequality holds for d . We have

(d + 1)d+1

(d + 1)!
=

(d + 1)d

d!
=

dd

d!
· (d + 1)d

dd

=
dd

d!
·
(
1 +

1

d

)d

⩾ 2d ·
(
1 +

1

d

)d

⩾ 2d+1

(by inductive hypothesis)

because (
1 +

1

d

)d

⩾ 1 + d
1

d
= 2.

This concludes the proof of the inequality.
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Lemma

We have ϕ(d ,m) ⩽ 2md

d! for every m ⩾ d and d ⩾ 1.

Proof: The argument is by induction on d and n. If d = 1, then
ϕ(1,m) = m + 1 ⩽ 2m for m ⩾ 1, so the inequality holds for every m ⩾ 1,
when d = 1.
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Proof (cont’d)

If m = d ⩾ 2, then ϕ(d ,m) = ϕ(d , d) = 2d and the desired inequality
follows immediately from a previous Lemma.
Suppose that the inequality holds for m > d ⩾ 1. We have

ϕ(d ,m + 1) = ϕ(d ,m) + ϕ(d − 1,m)

(by the definition of ϕ)

⩽ 2
md

d!
+ 2

md−1

(d − 1)!

(by inductive hypothesis)

= 2
md−1

(d − 1)!

(
1 +

m

d

)
.
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Proof (cont’d)

It is easy to see that the inequality

2
md−1

(d − 1)!

(
1 +

m

d

)
⩽ 2

(m + 1)d

d!

is equivalent to

d

m
+ 1 ⩽

(
1 +

1

m

)d

and, therefore, is valid. This yields immediately the inequality of the
lemma.
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The Asymptotic Behavior of the Function ϕ

Theorem

The function ϕ satisfies the inequality:

ϕ(d ,m) <
(em

d

)d

for every m ⩾ d and d ⩾ 1.

Proof: By a previous Lemma, ϕ(d ,m) ⩽ 2md

d! . Therefore, we need to
show only that

2

(
d

e

)d

< d!.

The argument is by induction on d ⩾ 1. The basis case, d = 1 is

immediate. Suppose that 2
(
d
e

)d
< d!. We have

2

(
d + 1

e

)d+1

= 2

(
d

e

)d (d + 1

d

)d d + 1

e

=

(
1 +

1

d

)d 1

e
· 2

(
d

e

)d

(d + 1) < 2

(
d

e

)d

(d + 1),

because (
1 +

1

d

)d

< e.
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Proof cont’d

The last inequality holds because the sequence
((

1 + 1
d

)d)
d∈N

is an

increasing sequence whose limit is e. Since 2
(
d+1
e

)d+1
< 2

(
d
e

)d
(d + 1),

by inductive hypothesis we obtain:

2

(
d + 1

e

)d+1

< (d + 1)!.

This proves the inequality of the theorem.
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Corollary

If m is sufficiently large we have ϕ(d ,m) = O(md).

The statement is a direct consequence of the previous theorem.
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Denote by ⊕ the symmetric difference of two sets.

Theorem

Let C a family of sets and C0 ∈ C. Define the family ∆C0 as

∆C0(C) = {T | T = C0 ⊕ C where C ∈ C}.

We have VCD(C) = VCD(∆C0(C)).
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Proof

Let S be a set, S = CS and S0 = (∆C0(C))S .
Define ψ : S −→ S0 as ψ(S ∩ C ) = S ∩ (C0 ⊕ C ). We claim that ψ is a
bijection.
If ψ(S ∩ C ) = ψ(S ∩ C ′) for C ,C ′ ∈ C, then
S ∩ (C0 ⊕ C ) = S ∩ (C0 ⊕ C ′). Therefore,

(S ∩ C0)⊕ (S ∩ C ) = (S ∩ C0)⊕ (S ∩ C ′),

which implies S ∩ C = S ∩ C ′, so ψ is injective.
On other hand, if U ∈ S0 we have U = S ∩ (C0 ⊕ C ), so U = ψ(S ∩ C ),
hence ψ is a surjection. Thus, S and S0 have the same number of sets,
which implies that a set S is shattered by C if and only if it is shattered by
∆C0(C).
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Let u : Bk
2 −→ B2 be a Boolean function of k arguments and let

C1, . . . ,Ck be k subsets of a set U. Define the set u(C1, . . . ,Ck) as the
subset C of U whose indicator function is IC = u(IC1 , . . . , ICk

).

Example

If u : B2
2 −→ B2 is the Boolean function u(a1, a2) = a1 ∨ a2, then

u(C1,C2) is C1 ∪ C2; similarly, if u(x1, x2) = x1 ⊕ x2, then u(C1,C2) is the
symmetric difference C1 ⊕ C2 for every C1,C2 ∈ P(U).
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Let u : Bk
2 −→ B2 and C1, . . . ,Ck are k family of subsets of U, the family

of sets u(C1, . . . ,Ck) is

u(C1, . . . ,Ck) = {u(C1, . . . ,Ck) | C1 ∈ C1, . . . ,Ck ∈ Ck}.

Theorem

Let α(k) be the least integer a such that a
log(ea) > k .

If C1, . . . ,Ck are k collections of subsets of the set U such that
d = max{VCD(Ci ) | 1 ⩽ i ⩽ k} and u : B2

2 −→ B2 is a Boolean function,
then

VCD(u(C1, . . . ,Ck)) ⩽ α(k) · d .
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Proof

Let S be a subset of U that consists of m elements. The collection (Ci )S
is not larger than ϕ(d ,m). For a set in the collection W ∈ u(C1, . . . ,Ck)S
we can write W = S ∩ u(C1, . . . ,Ck), or, equivalently,
1W = 1S · u(1C1 , . . . , 1Ck

).
There exists a Boolean function gS such that

1S · u(1C1 , . . . , 1Ck
) = gS(1S · 1C1 , . . . , 1S · 1Ck

) = gS(1S∩C1 , . . . , 1S∩Ck
).

Since there are at most ϕ(d ,m) distinct sets of the form S ∩Ci for every i ,
1 ⩽ i ⩽ k, it follows that there are at most (ϕ(d ,m))k distinct sets W ,
hence u(C1, . . . ,Ck)[m] ⩽ (ϕ(d ,m))k .
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Proof (cont’d)

By a previous theorem,

u(C1, . . . ,Ck)[m] ⩽
(em

d

)kd
.

We observed that if ΠC[m] < 2m, then VCD(C) < m. Therefore, to limit
the Vapnik-Chervonenkis dimension of the collection u(C1, . . . ,Ck) it

suffices to require that
(
em
d

)kd
< 2m.

Let a = m
d . The last inequality can be written as (ea)kd < 2ad ;

equivalently, we have (ea)k < 2a, which yields k < a
log(ea) . If α(k) is the

least integer a such that k < a
log(ea) , then m ⩽ α(k)d , which gives our

conclusion.
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Example

If k = 2, the least integer a such that a
log(ea) > 2 is k = 10, as it can be

seen by graphing this function; thus, if C1,C2 are two collection of
concepts with VCD(C1) = VCD(C2) = d , the Vapnik-Chervonenkis
dimension of the collections C1 ∨ C2 or C1 ∧ C2 is not larger than 10d .
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Lemma

Let S ,T be two sets and let f : S −→ T be a function. If D is a
collection of subsets of T , U is a finite subset of S and C = f −1(D) is the
collection {f −1(D) | D ∈ D}, then |CU | ⩽ |Df (U)|.

Proof: Let V = f (U) and denote f ↿U by g . For D,D ′ ∈ D we have

(U ∩ f −1(D))⊕ (U ∩ f −1(D ′))

= U ∩ (f −1(D)⊕ f −1(D ′)) = U ∩ (f −1(D ⊕ D ′))

= g−1(V ∩ (D ⊕ D ′)) = g−1(V ∩ D)⊕ g−1(V ⊕ D ′).

Thus, C = U ∩ f −1(D) and C ′ = U ∩ f −1(D ′) are two distinct members
of CU , then V ∩ D and V ∩ D ′ are two distinct members of Df (U). This
implies |CU | ⩽ |Df (U)|.
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Theorem

Let S ,T be two sets and let f : S −→ T be a function. If D is a
collection of subsets of T and C = f −1(D) is the collection
{f −1(D) | D ∈ D}, then VCD(C) ⩽ VCD(D). Moreover, if f is a
surjection, then VCD(C) = VCD(D).
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Proof

Suppose that C shatters an n-element subset K = {x1, . . . , xn} of S , so
|CK | = 2n By a previous Lemma we have |CK | ⩽ |Df (U)|, so |Df (U)| ⩾ 2n,
which implies |f (U)| = n and |Df (U)| = 2n, because f (U) cannot have
more than n elements. Thus, D shatters f (U), so VCD(C) ⩽ VCD(C).
Suppose now that f is surjective and H = {t1, . . . , tm} is an m element set
that is shattered by D. Consider the set L = {u1, . . . , um} such that
ui ∈ f −1(ti ) for 1 ⩽ i ⩽ m. Let U be a subset of L. Since H is shattered
by D, there is a set D ∈ D such that f (U) = H ∩ D, which implies
U = L ∩ f −1(D). Thus, L is shattered by C and this means that
VCD(C) = VCD(D).
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Definition

The density of C is the number

dens(C) = inf{s ∈ R>0 | ΠC[m] ⩽ c ·ms for every m ∈ N},

for some positive constant c .
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Theorem

Let S ,T be two sets and let f : S −→ T be a function. If D is a
collection of subsets of T and C = f −1(D) is the collection
{f −1(D) | D ∈ D}, then dens(C) ⩽ dens(D). Moreover, if f is a
surjection, then dens(C) = dens(D).

Proof: Let L be a subset of S such that |L| = m. Then, |CL| ⩽ |Df (L)|. In
general, we have |f (L)| ⩽ m, so |Df (L)| ⩽ D[m] ⩽ cms . Therefore, we
have |CL| ⩽ |Df (L)| ⩽ D[m] ⩽ cms , which implies dens(C) ⩽ dens(D).
If f is a surjection, then, for every finite subset M of T such that |M| = m
there is a subset L of S such that |L| = |M| and f (L) = M. Therefore,
D[m] ⩽ ΠC[m] and this implies dens(C) = dens(D).
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If C,D are two collections of sets such that C ⊆ D, then
VCD(C) ⩽ VCD(D) and dens(C) ⩽ dens(D).

Theorem

Let C be a collection of subsets of a set S and let C′ = {S − C | C ∈ C}.
Then, for every K ∈ P(S) we have |CK | = |C′

K |.
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Proof

We prove the statement by showing the existence of a bijection
f : CK −→ C′

K . If U ∈ CK , then U = K ∩ C , where C ∈ C. Then
S − C ∈ C′ and we define f (U) = K ∩ (S − C ) = K − C ∈ C′

K . The
function f is well-defined because if K ∩ C1 = K ∩ C2, then
K − C1 = K − (K ∩ C1) = K − (K ∩ C2) = K − C2.
It is clear that if f (U) = f (V ) for U,V ∈ CK , U = K ∩ C1, and
V = K ∩ C2, then K − C1 = K − C2, so K ∩ C1 = K ∩ C2 and this means
that U = V . Thus, f is injective. If W ∈ C′

K , then W = K ∩ C ′ for some
C ′ ∈ C. Since C ′ = S − C for some C ∈ C, it follows that W = K − C , so
W = f (U), where U = K ∩ C .
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Corollary

Let C be a collection of subsets of a set S and let C′ = {S − C | C ∈ C}.
We have dens(C) = dens(C′) and VCD(C) = VCD(C′).
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Theorem

For every collection of sets we have dens(C) ⩽ VCD(C). Furthermore, if
dens(C) is finite, then C is a VC-class.

Proof: If C is not a VC-class the inequality dens(C) ⩽ VCD(C) is clearly
satisfied. Suppose now that C is a VC-class and VCD(C) = d . By
Sauer-Shelah Theorem we have ΠC[m] ⩽ ϕ(d ,m); then, we obtain

ΠC[m] ⩽
(
em
d

)d
, so dens(C) ⩽ d .

Suppose now that dens(C) is finite. Since ΠC[m] ⩽ cms ⩽ 2m for m
sufficiently large, it follows that VCD(C) is finite, so C is a VC-class.
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Let D be a finite collection of subsets of a set S . The partition πD was
defined as consisting of the nonempty sets of the form
{Da1

1 ∩ Da2
2 ∩ · · · ∩ Dar

r , where (a1, a2, . . . , ar ) ∈ {0, 1}r .

Definition

A collection D = {D1, . . . ,Dr} of subsets of a set S is independent if the
partition πD has the maximum numbers of blocks, that is, it consists of 2r

blocks.

If D is independent, then the Boolean subalgebra generated by D in the
Boolean algebra (P(S), {∩,∪, ¯, ∅, S}) contains 22r sets, because this
subalgebra has 2r atoms. Thus, if D shatters a subset T with |T | = p,
then the collection DT contains 2p sets, which implies 2p ⩽ 22

r
, or p ⩽ 2r .
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Definition

Let C be a collection of subsets of a set S . The independence number of C
I (C) is:

I (C) = sup{r | {C1, . . . ,Cr}
is independent for some finite {C1, . . . ,Cr} ⊆ C}.
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Theorem

Let S ,T be two sets and let f : S −→ T be a function. If D is a collection
of subsets of T and C = f −1(D) is the collection {f −1(D) | D ∈ D},
then I (C) ⩽ I (D). Moreover, if f is a surjection, then I (C) = I (D).

Proof: Let E = {D1, . . . ,Dp} be an independent finite subcollection of D.
The partition πE contains 2r blocks. The number of atoms of the
subalgebra generated by {f −1(D1), . . . , f

−1(Dp)} is not greater than 2r .
Therefore, I (C) ⩽ I (D); from the same supplement it follows that if f is
surjective, then I (C) = I (D).
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Theorem

If C is a collection of subsets of a set S such that VCD(C) ⩾ 2n, then
I (C) ⩾ n.

Proof: Suppose that VCD(C) ⩾ 2n, that is, there exists a subset T of S
that is shattered by C and has at least 2n elements. Then, the collection
Ht contains at least 2

2n sets, which means that the Boolean subalgebra of
P(T ) generated by TC contains at least 2n atoms. This implies that the
subalgebra of P(S) generated by C contains at least this number of atoms,
so I (C) ⩾ n.
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