The Vapnik-Chervonenkis Dimension Slide Set 12

Prof. Dan A. Simovici

UMB

・ロト ・回ト ・ヨト ・ヨト … ヨ

1/81

Trace of a Collection of Sets

Definition

Let C be a collection of sets and let U be a set. The trace of collection C on the set U is the collection

$$\mathfrak{C}_U = \{ U \cap C \mid C \in \mathfrak{C} \}.$$

If the trace of \mathcal{C} on U, \mathcal{C}_U equals $\mathcal{P}(U)$, then we say that U is shattered by \mathcal{C} .

U is shattered by C if C can carve *any subset of U* as an intersection with a set in *C*.

Let $U = \{u_1, u_2\}$ and let \mathcal{C} be the collection of sets

$$\mathfrak{C} = \{\{u_3\}, \{u_1, u_3\}, \{u_2, u_3\}, \{u_1, u_2, u_3\}\}.$$

 \mathcal{C} shatters U because we can write:

$$\emptyset = U \cap \{u_3\}$$

$$\{u_1\} = U \cap \{u_1, u_3\}$$

$$\{u_2\} = U \cap \{u_2, u_3\}$$

$$u_1, u_2\} = U \cap \{u_1, u_2, u_3\}$$

Definition

The Vapnik-Chervonenkis dimension of the collection \mathcal{C} (called the VC-dimension for brevity) is the largest size of a set K that is shattered by \mathcal{C} .

This largest size is denoted by $VCD(\mathcal{C})$.

Note that the previous collection \mathcal{C} cannot shatter the set $U' = \{u_1, u_2, u_3\}$ because this set has 8 subsets and \mathcal{C} has just four sets. Thus, if is impossible to express all subsets of U' as intersections of U'with some set of \mathcal{C} . The VCD dimension of the collection \mathcal{C} is 2. Note that:

- We have $VCD(\mathcal{C}) = 0$ if and only if $|\mathcal{C}| = 1$.
- If VCD(C) = d, then there exists a set K of size d such that for each subset L of K there exists a set C ∈ C such that L = K ∩ C.
- C shatters K if and only if the trace of C on K denoted by C_K shatters K. This allows us to assume without loss of generality that both the sets of the collection C and a set K shattered by C are subsets of a set U.

Collections of Sets as Sets of Hypotheses

Let U be a set, K a subset, and let C be a collection of sets. Each $C \in C$ defines a hypothesis $h_C : U \longrightarrow \{-1, 1\}$ that is a dichotomy, where

$$h_C(u) = \begin{cases} 1 & \text{if } u \in C, \\ -1 & \text{if } u \notin C. \end{cases}$$

K is shattered by C if and only if for every subset *L* of *K* there exists a dichotomy h_C such that the set of positive examples $\{u \in U \mid h_C(u) = 1\}$ equals *L*.

Finite Collections have Finite VC-Dimension

Let C be a collection of sets with VCD(C) = d and let K be a set shattered by C with |K| = d.

Since there exist 2^d subsets of K, there are at least 2^d subsets of C, so

 $2^d \leqslant |\mathcal{C}|.$

Consequently, $VCD(\mathcal{C}) \leq \log_2 |\mathcal{C}|$. This shows that if \mathcal{C} is finite, then $VCD(\mathcal{C})$ is finite.

The converse is false: there exist infinite collections $\ensuremath{\mathbb{C}}$ that have a finite VC-dimension.

A Tabular Representation of Collections

If $U = \{u_1, \ldots, u_n\}$ is a finite set, then the trace of a collection $\mathcal{C} = \{C_1, \ldots, C_p\}$ of subsets of U on a subset K of U can be presented in an intuitive, tabular form.

Let θ be a table containing the rows t_1, \ldots, t_p and the binary attributes u_1, \ldots, u_n .

Each tuple t_k corresponds to a set C_k of C and is defined by

$$t_k[u_i] = egin{cases} 1 & ext{if } u_i \in C_k, \ 0 & ext{otherwise}, \end{cases}$$

for $1 \leq i \leq n$. Then, \mathcal{C} shatters K if the content of the projection r[K] consists of $2^{|K|}$ distinct rows.

Let $U = \{u_1, u_2, u_3, u_4\}$ and let $C = \{\{u_2, u_3\}, \{u_1, u_3, u_4\}, \{u_2, u_4\}, \{u_1, u_2\}, \{u_2, u_3, u_4\}\}$ represented by:

Te			
<i>u</i> ₁	<i>u</i> ₂	Uз	<i>U</i> 4
0	1	1	0
1	0	1	1
0	1	0	1
1	1	0	0
0	1	1	1

The set $K = \{u_1, u_3\}$ is shattered by the collection \mathcal{C} because the projection on K ((0, 1), (1, 1), (0, 0), (1, 0), (0, 1)). contains the all four necessary tuples (0, 1), (1, 1), (0, 0), and (1, 0).

No subset K of U that contains at least three elements can be shattered by \mathcal{C} because this would require the projection r[K] to contain at least eight tuples. Thus, $VCD(\mathcal{C}) = 2$. Observations:

- Every collection of sets shatters the empty set.
- If C shatters a set of size n, then it shatters a set of size p, where $p \leq n$.

For a collection of sets \mathcal{C} and for $m \in \mathbb{N}$, let

$$\Pi_{\mathcal{C}}[m] = \max\{|\mathcal{C}_{\mathcal{K}}| \mid |\mathcal{K}| = m\}$$

be the largest number of distinct subsets of a set having m elements that can be obtained as intersections of the set with members of C.

- We have $\Pi_{\mathcal{C}}[m] \leq 2^m$;
- if \mathcal{C} shatters a set of size m, then $\Pi_{\mathcal{C}}[m] = 2^m$.

Definition

A Vapnik-Chervonenkis class (or a VC class) is a collection C of sets such that VCD(C) is finite.

Let \mathbb{R} be the set of real numbers and let \mathcal{I} be the collection of sets $\{(-\infty, t) \mid t \in \mathbb{R}\}$. We claim that any singleton is shattered by \mathcal{I} . Indeed, if $S = \{x\}$ is a singleton, then $\mathcal{P}(\{x\}) = \{\emptyset, \{x\}\}$. Thus, if $t \ge x$, we have $(-\infty, t) \cap S = \{x\}$; also, if t < x, we have $(-\infty, t) \cap S = \emptyset$, so $\mathcal{I}_S = \mathcal{P}(S)$. There is no set S with |S| = 2 that can be shattered by \mathcal{I} . Indeed, suppose that $S = \{x, y\}$, where x < y. Then, any member of \mathcal{I} that contains y includes the entire set S, so $\mathcal{I}_S = \{\emptyset, \{x\}, \{x, y\}\} \neq \mathcal{P}(S)$. This shows that \mathcal{I} is a VC class and $VCD(\mathcal{I}) = 1$.

Consider the collection $\mathcal{I} = \{[a, b] \mid a, b \in \mathbb{R}, a \leq b\}$ of closed intervals. We claim that $VCD(\mathcal{I}) = 2$. To justify this claim, we need to show that there exists a set $S = \{x, y\}$ such that $\mathcal{I}_S = \mathcal{P}(S)$ and no three-element set can be shattered by \mathcal{I} .

For the first part of the statement, consider the intersections

$$[u, v] \cap S = \emptyset, \text{ where } v < x,$$

$$[x - \epsilon, \frac{x+y}{2}] \cap S = \{x\},$$

$$[\frac{x+y}{2}, y] \cap S = \{y\},$$

$$[x - \epsilon, y + \epsilon] \cap S = \{x, y\},$$

which show that $\mathfrak{I}_{S} = \mathfrak{P}(S)$.

For the second part of the statement, let $T = \{x, y, z\}$ be a set that contains three elements. Any interval that contains x and z also contains y, so it is impossible to obtain the set $\{x, z\}$ as an intersection between an interval in \mathcal{I} and the set T.

An Example

Let ${\mathcal H}$ be the collection of closed half-planes in ${\mathbb R}^2$ of the form

$$\{oldsymbol{x}=(x_1,x_2)\in\mathbb{R}^2\ |\ ax_1+bx_2-c\geqslant 0,a
eq 0 ext{ or } b
eq 0\}.$$

We claim that $VCD(\mathcal{H}) = 3$.

Let P, Q, R be three non-colinear points. Each line is marked with the sets it defines; thus, it is clear that the family of half-planes shatters the set $\{P, Q, R\}$, so $VCD(\mathcal{H})$ is at least 3.

Example (cont'd)

To complete the justification of the claim we need to show that no set that contains at least four points can be shattered by \mathcal{H} . Let $\{P, Q, R, S\}$ be a set that contains four points such that no three points of this set are collinear. If S is located inside the triangle P, Q, R, then every half-plane that contains P, Q, R also contains S, so it is impossible to separate the subset $\{P, Q, R\}$. Thus, we may assume that no point is inside the triangle formed by the remaining three points. Any half-plane that contains two diagonally opposite points, for example, P and R, contains either Q or S, which shows that it is impossible to separate the set $\{P, R\}$. Thus, no set that contains four points may be

Р

ις

R

・ロト ・四ト ・ヨト ・ヨト … ヨ

17 / 81

shattered by \mathcal{H} , so $VCD(\mathcal{H}) = 3$.

CLAIM: the VCD of an arbitrary family of hyperplanes in \mathbb{R}^d is d + 1. Consider the set of d + 1 points $\{x_0, x_1, \dots, x_d\}$ defined as

$$\mathbf{x}_0 = \mathbf{0}_d, \mathbf{x}_i = \mathbf{e}_1 \text{ for } 1 \leqslant i \leqslant d.$$

Let $y_0, y_1, \ldots, y_d \in \{-1, 1\}$ and let $\boldsymbol{w} \in \mathbb{R}^d$ be the vector whose i^{th} coordinate is y_i . We have $\boldsymbol{w}'\boldsymbol{x} = y_i$ for $1 \leq i \leq d$. Therefore,

sign
$$\left(\mathbf{w}'\mathbf{x}_{i}+\frac{y_{0}}{2}\right)=$$
sign $\left(y_{i}+\frac{y_{0}}{2}\right)=y_{i}.$

Thus, points x_i for which $y_i = 1$ are on the positive side of the hyperplane y'x = 0; the ones for which $y_i = -1$ are on the oposite side, so any family of d + 1 points in \mathbb{R}^d can be shattered by hyperplanes.

Also we need to show that no set of d + 2 points can be shattered by hyperplanes. For this we need the notion of convex set and the notion of convex hull.

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. The *closed segment* determined by \mathbf{x} and \mathbf{y} is the set

$$[\mathbf{x},\mathbf{y}] = \{(1-a)\mathbf{x} + a\mathbf{y} \mid 0 \leq a \leq 1\}.$$

Definition

A subset C of \mathbb{R}^n is *convex* if, for all $\mathbf{x}, \mathbf{y} \in C$ we have $[\mathbf{x}, \mathbf{y}] \subseteq C$.

Convex Set (a) vs. a Non-convex Set (b)

The convex subsets of \mathbb{R} are the intervals of \mathbb{R} . Regular polygons are convex subsets of \mathbb{R}^2 . An open sphere $B(\mathbf{x}_0, r)$ or a closed sphere $B[\mathbf{x}_0, r]$ in \mathbb{R}^n is convex.

Definition

Let *U* be a subset of \mathbb{R}^n . A *convex combination* of *U* is a vector of the form $a_1\mathbf{x}_1 + \cdots + a_k\mathbf{x}_k$, where $\mathbf{x}_1, \ldots, \mathbf{x}_k \in U$, $a_i \ge 0$ for $1 \le i \le k$, and $a_1 + \cdots + a_k = 1$.

Theorem

The intersection of any collection of convex sets in \mathbb{R}^n is a convex set.

Proof.

Let $\mathcal{C} = \{C_i \mid i \in I\}$ be a collection of convex sets and let $C = \bigcap \mathcal{C}$. Suppose that $\mathbf{x}_1, \dots, \mathbf{x}_k \in C$, $a_i \ge 0$ for $1 \le i \le k$, and $a_1 + \dots + a_k = 1$. Since $\mathbf{x}_1, \dots, \mathbf{x}_k \in C_i$, it follows that $a_1\mathbf{x}_1 + \dots + a_k\mathbf{x}_k \in C_i$ for every $i \in I$. Thus, $a_1\mathbf{x}_1 + \dots + a_k\mathbf{x}_k \in C$, which proves the convexity of C. \Box

Definition

The convex hull (or the convex closure of a subset U of \mathbb{R}^n is the intersection of all convex sets that contain U, that is, the smallest convex set that contains U.

The convex null of U is denoted by $K_{conv}(U)$.

Theorem

Let S be a subset of \mathbb{R}^n . The convex hull $K_{conv}(S)$ consists of the set of all convex combinations of elements of S, that is,

$$\begin{aligned} \boldsymbol{K}_{conv}(S) &= \{a_1 \boldsymbol{x}_1 + \dots + a_m \boldsymbol{x}_m, \boldsymbol{x}_1, \dots, \boldsymbol{x}_m \in S \\ \mid a_1, \dots, a_m \geq 0 \text{ and } \sum_{i=1}^m a_i = 1\}. \end{aligned}$$

Proof

Note that $S \subseteq \mathbf{K}_{conv}(S)$ because $\mathbf{x} \in S$ implies $1\mathbf{x} = \mathbf{x} \in \mathbf{K}_{conv}(S)$. The set $\mathbf{K}_{conv}(S)$ is convex. Indeed, let

$$u = a_1 x_1 + \dots + a_m x_m \quad \in \quad \mathbf{K}_{conv}(S)$$

$$v = b_1 x_1 + \dots + b_m x_m \quad \in \quad \mathbf{K}_{conv}(S),$$

$$a_1, \dots, a_m \ge 0 \quad \text{and} \quad \sum_{i=1}^m a_i = 1,$$

$$b_1, \dots, b_m \ge 0 \quad \text{and} \quad \sum_{i=1}^m b_i = 1,$$

where we assume, without loss of generality, that the two convex combinations involve the same number of terms.

Let $c \in [0,1]$ and let $\boldsymbol{z} = c\boldsymbol{u} + (1-c)\boldsymbol{v}$. Since

$$oldsymbol{z} = \sum_{i=1}^m (c a_i + (1-c)b_i)oldsymbol{x}_i$$

and $\sum_{i=1}^{m} (ca_i + (1-c)b_i) = c \sum_{i=1}^{m} a_i + (1-c) \sum_{i=1}^{m} b_i = 1$, it follows that $\boldsymbol{z} \in \boldsymbol{K}_{\text{conv}}(S)$, so $\boldsymbol{K}_{\text{conv}}(S)$ is convex. }

Proof continued

Every convex set T that contains S will contain $K_{conv}(S)$, hence $K_{conv}(S)$ is the smallest convex set that contains S.

A two-dimensional simplex is defined starting from three points x_1, x_2, x_3 in \mathbb{R}^2 such that none of these points is collinear with the others two. Thus, the two-dimensional simplex generated by x_1, x_2, x_3 is the full triangle determined by x_1, x_2, x_3 .

Let *S* be the *n*-dimensional simplex generated by the points x_1, \ldots, x_{n+1} in \mathbb{R}^n and let $x \in S$. If $x \in S$, then x is a convex combination of $x_1, \ldots, x_n, x_{n+1}$. In other words, there exist $a_1, \ldots, a_n, a_{n+1}$ such that $a_1, \ldots, a_n, a_{n+1} \in (0, 1)$, $\sum_{i=1}^{n+1} a_i = 1$, and $x = a_1x_1 + \cdots + a_nx_n + a_{n+1}x_{n+1}$.

Theorem

(Radon's Theorem) Any set $X = \{x_1, \ldots, x_{d+2}\}$ of d+2 points in \mathbb{R}^d can be partitioned into two sets X_1 and X_2 such that the convex hulls of X_1 and X_2 intersect.

Proof

Consider the following system with d + 1 linear equations and d + 2 variables $\alpha_1, \alpha_2, \ldots, \alpha_{d+2}$:

$$\sum_{\substack{i=1\\j=1}}^{d+2} \alpha_i \mathbf{x}_i = \mathbf{0}_d, \quad (d \text{ scalar equations})$$
$$\sum_{\substack{i=1\\j=1}}^{d+2} \alpha_i = \mathbf{0}.$$

Since the number of variables d + 2 is larger than the number of equations d + 1, the system has a non-trivial solution $\beta_1, \ldots, \beta_{d+2}$. Since $\sum_{i=1}^{d+2} \beta_i = 0$ both sets

$$I_1 = \{i | 1 \le i \le d+2, \beta_i > 0\}, I_2 = \{i | 1 \le i \le d+2, \beta_i < 0\}$$

are non-empty sets and disjoint sets, and

$$X_1 = \{ \mathbf{x}_i \mid i \in I_1 \}, X_2 = \{ \mathbf{x}_i \mid i \in I_2 \},\$$

form a partition of X.

Proof (cont'd)

Define
$$\beta = \sum_{i \in I_1} \beta_i$$
.
Since $\sum_{i \in I_1} \beta_i = -\sum_{i \in I_2} \beta_i$, we have

$$\sum_{i\in I_1}\frac{\beta_i}{\beta}\boldsymbol{x}_i = \sum_{i\in I_2}\frac{-\beta_i}{\beta}\boldsymbol{x}_i.$$

Also,

$$\sum_{i \in I_1} \frac{\beta_i}{\beta} = \sum_{i \in I_2} \frac{-\beta_i}{\beta} = 1,$$

 $\frac{\beta_i}{\beta} \ge 0$ for $i \in I_1$ and $\frac{-\beta_i}{\beta} \ge 0$ for $i \in I_2$. This implies that

$$\sum_{i\in I_1}\frac{\beta_i}{\beta}\boldsymbol{x}_i$$

belongs both to the convex hulls of X_1 and X_2 .

Let X be a set of d + 2 points in \mathbb{R}^d . By Radon's Theorem it can be partitioned into X_1 and X_2 such that the two convex hulls intersect. When two sets are separated by a hyperplane, their convex hulls are also separated by the hyperplane. Thus, X_1 and X_2 cannot be separated by a hyperplane and X is not shattered.

Let \mathcal{R} be the set of rectangles whose sides are parallel with the axes x and y. There is a set S with |S| = 4 that is shattered by \mathcal{R} . Let S be a set of four points in \mathbb{R}^2 that contains a unique "northernmost point" P_n , a unique "southernmost point" P_s , a unique "easternmost point" P_e , and a unique "westernmost point" P_w . If $L \subseteq S$ and $L \neq \emptyset$, let R_L be the smallest rectangle that contains L. For example, we show the rectangle R_L for the set $\{P_n, P_s, P_e\}$.

Example (cont'd)

This collection cannot shatter a set of points that contains at least five points. Indeed, let *S* be such that $|S| \ge 5$. If the set contains more than one "northernmost" point, then we select exactly one to be P_n . Then, the rectangle that contains the set $K = \{P_n, P_e, P_s, P_w\}$ contains the entire set *S*, which shows the impossibility of separating *S*.

The Class of All Convex Polygons

Example

Consider the system of all convex polygons in the plane. For any positive integer *m*, place *m* points on the unit circle. Any subset of the points are the vertices of a convex polygon. Clearly that polygon will not contain any of the points not in the subset. This shows that we can shatter arbitrarily large sets, so the VC-dimension of the class of all convex polygons is infinite.

The Case of Convex Polygons with d Vertices

Example

Consider the class of convex polygons that have no more than d vertices in \mathbb{R}^2 and place 2d + 1 points on a circle.

- Label a subset of these points as positive, and the remaining points as negative. Since we have an odd number of points there exists a majority in one of the classes (positive or negative).
- If the negative point are in majority, there are at most *d* positive points; these are contained by the convex polygon formed by joining the positive points.
- If the positive are in majority, consider the polygon formed by the tangents of the negative points.

Negative Points in the Majority

Positive Points in the Majority

Example cont'd

- Since a set with 2d + 1 points can be shattered, the VC dimension of the set of convex polygons with at most d vertices is at least 2d + 1.
- If all labeled points are located on a circle then it is impossible for a point to be in the convex closure of a subset of the remaining points. Thus, placing the points on a circle maximizes the number of sets required to shatter the set, so the VC-dimension is indeed 2d + 1.

Definition

Let *H* be a set of hypotheses and let (x_1, \ldots, x_m) be a sequence of examples of length *m*. A hypothesis $h \in H$ induces a classification

 $(h(x_1),\ldots,h(x_m))$

of the components of this sequence. Note that the number of ways in which *h* can classify the members of the sequence (x_1, \ldots, x_m) is $|\{h(x_1), \ldots, h(x_m)\}|$. The growth function of *H* is the function $\Pi_H : \mathbb{N} \longrightarrow \mathbb{N}$ gives the number of ways a sequence of examples of length *m* can be classified by a hypothesis in *H*:

$$\Pi_{H}(m) = \max_{(x_1,...,x_m) \in \mathcal{X}^m} \{ | \{ (h(x_1),...,h(x_m) \} | \mid h \in H \}.$$

A Preliminary Result

Theorem

Let $S = \{s_1, \ldots, s_n\}$ be a set and let \mathbb{C} be a collection of subsets of S, $\mathbb{C} \subseteq \mathcal{P}(S)$. Let $SH(\mathbb{C})$ be the family of subsets of S that are shattered by \mathbb{C} . Then, we have $|SH(\mathbb{C})| \ge |\mathbb{C}|$.

Proof

The argument is by induction on $|\mathcal{C}|$, the size of the collection \mathcal{C} . Consider the subcollections \mathcal{C}_0 and \mathcal{C}_1 of \mathcal{C} defined by:

$$\mathcal{C}_0 = \{ U \in \mathcal{C} \mid s_1 \notin U \} \mathcal{C}_1 = \{ U \in \mathcal{C} \mid s_1 \in U \}$$

The families C_0 and C_1 of subsets of S are disjoint and $|C| = |C_0| + |C_1|$. Let

$$S'=\{s_2,s_3,\ldots,s_n\}.$$

By the inductive hypothesis, $|SH(\mathcal{C}_0)| \ge |\mathcal{C}_0|$, that is, \mathcal{C}_0 shatters at least as many subsets of S' as $|\mathcal{C}_0|$.

Proof (cont'd)

Next, consider the family

$$C'_1 = \{ U - \{ s_1 \} \mid U \in C_1 \}.$$

This is a family of subsets of S' and $|\mathcal{C}'_1| = |\mathcal{C}_1|$.

By induction, \mathcal{C}'_1 shatters at least as many subsets of $S' = \{s_2, s_3, \ldots, s_n\}$ as its cardinality, that is, $|SH(\mathcal{C}'_1)| \ge |\mathcal{C}'_1|$.

The number of subsets of S' shattered by \mathcal{C}_0 and \mathcal{C}'_1 sum up to at least $|\mathcal{C}_0| + |\mathcal{C}'_1| = |\mathcal{C}_0| + |\mathcal{C}_1| = |\mathcal{C}|$, and every subset of S' shattered by \mathcal{C}'_1 is shattered by $\mathcal{C}_1 \subseteq \mathcal{C}$.

Note that there may be subsets V of S' shattered by both \mathcal{C}_0 and \mathcal{C}'_1 . In this case both V and $V \cup \{s_1\}$ are shattered by \mathcal{C} .

For $n, k \in \mathbb{N}$ and $0 \leq k \leq n$ define the number $\binom{n}{\leq k}$ as:

$$\binom{n}{\leqslant k} = \sum_{i=0}^{k} \binom{n}{i}.$$

Clearly, $\binom{n}{\leq 0} = 1$ and $\binom{n}{\leq n} = 2^n$. Observe that if $\mathcal{P}_k(S)$ is the collection of subsets of S that contain k or fewer elements, then for |S| = n,

$$|\mathfrak{P}_k(S)| = \binom{n}{\leqslant k}.$$

イロト イロト イヨト イヨト 一日

47 / 81

Theorem

(Sauer-Shelah Theorem) Let S be a set with |S| = n and let C be a collection of subsets of S such that

$$|\mathcal{C}| > \binom{n}{\leqslant k}.$$

Then, there exists a subset T of S having at least k + 1 elements such that C shatters T.

Proof

Let |SH(C)| be the number of sets shattered by C. We have $|SH(C)| \ge |C|$ by the previous theorem.

The inequality of the theorem means that $|\mathcal{C}| > |\mathcal{P}_k(S)|$, hence $|SH(\mathcal{C})| > |\mathcal{P}_k(S)|$. Therefore, there exists a subset *T* of *S* with at least k + 1 elements that is shattered by \mathcal{C} .

Theorem

Let $\phi : \mathbb{N}^2 \longrightarrow \mathbb{N}$ be the function defined by

$$\phi(d,m)=egin{cases} 1 & ext{if }m=0 ext{ or }d=0\ \phi(d,m-1)+\phi(d-1,m-1), & ext{otherwise.} \end{cases}$$

We have

$$\phi(d,m) = \binom{m}{\leqslant d}$$

for $d, m \in \mathbb{N}$.

Proof

The argument is by strong induction on s = d + m. The base case, s = 0, implies m = 0 and d = 0, and the equality is immediate.

Proof cont'd

Suppose that the equality holds for $\phi(d', m')$, where d' + m' < d + m. We have:

$$\begin{split} \phi(d,m) &= \phi(d,m-1) + \phi(d-1,m-1) \\ & (\text{by definition}) \\ &= \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d-1} \binom{m-1}{i} \\ & (\text{by inductive hypothesis}) \\ &= \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=1}^{d} \binom{m-1}{i-1} \\ & (\text{by changing the summation index in the second sum}) \\ &= \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d} \binom{m-1}{i-1} \\ & (\text{because } \binom{m-1}{i-1} = 0) \\ &= \sum_{i=0}^{d} \binom{m-1}{i} + \binom{m-1}{i-1} \\ &= \sum_{i=0}^{d} \binom{m}{i} = \binom{m}{\leq d}, \end{split}$$

which gives the desired conclusion.

Another Inequality

Suppose that $VCD(\mathcal{C}) = d$ and |S| = n. Then $SH(\mathcal{C}) \subseteq \mathcal{P}_d(S)$, hence

$$|\mathcal{C}| \leq |\mathsf{SH}(\mathcal{C})| \leq \sum_{i=1}^{d} \binom{n}{i} = \binom{n}{\leq d}.$$

Together with the previous inequality we obtain:

$$2^d \leq |\mathcal{C}| \leq {n \choose \leq d} = \phi(n, d).$$

Lemma

For $d \in \mathbb{N}$ and $d \ge 2$ we have:

$$2^{d-1} \leqslant \frac{d^d}{d!}.$$

Proof: The argument is by induction on *d*. In the basis step, d = 2 both members are equal to 2.

Suppose the inequality holds for d. We have

$$\frac{(d+1)^{d+1}}{(d+1)!} = \frac{(d+1)^d}{d!} = \frac{d^d}{d!} \cdot \frac{(d+1)^d}{d^d}$$
$$= \frac{d^d}{d!} \cdot \left(1 + \frac{1}{d}\right)^d \ge 2^d \cdot \left(1 + \frac{1}{d}\right)^d \ge 2^{d+1}$$
(by inductive hypothesis)

because

$$\left(1+\frac{1}{d}\right)^d \ge 1+d\frac{1}{d}=2.$$

This concludes the proof of the inequality.

(日)(1日)(1日)(日)(日)(日)(日)

Lemma

We have $\phi(d, m) \leq 2 \frac{m^d}{d!}$ for every $m \geq d$ and $d \geq 1$.

Proof: The argument is by induction on d and n. If d = 1, then $\phi(1, m) = m + 1 \leq 2m$ for $m \geq 1$, so the inequality holds for every $m \geq 1$, when d = 1.

Proof (cont'd)

¢

If $m = d \ge 2$, then $\phi(d, m) = \phi(d, d) = 2^d$ and the desired inequality follows immediately from a previous Lemma. Suppose that the inequality holds for $m > d \ge 1$. We have

$$\begin{aligned} \phi(d, m+1) &= \phi(d, m) + \phi(d-1, m) \\ &\quad \text{(by the definition of } \phi) \\ &\leqslant 2\frac{m^d}{d!} + 2\frac{m^{d-1}}{(d-1)!} \\ &\quad \text{(by inductive hypothesis)} \\ &= 2\frac{m^{d-1}}{(d-1)!} \left(1 + \frac{m}{d}\right). \end{aligned}$$

Proof (cont'd)

It is easy to see that the inequality

$$2\frac{m^{d-1}}{(d-1)!}\left(1+\frac{m}{d}\right) \leqslant 2\frac{(m+1)^d}{d!}$$

is equivalent to

$$\frac{d}{m} + 1 \leqslant \left(1 + \frac{1}{m}\right)^d$$

and, therefore, is valid. This yields immediately the inequality of the lemma.

The Asymptotic Behavior of the Function ϕ

Theorem

The function ϕ satisfies the inequality:

$$\phi(d,m) < \left(\frac{em}{d}\right)^d$$

for every $m \ge d$ and $d \ge 1$.

Proof: By a previous Lemma, $\phi(d, m) \leq 2\frac{m^d}{d!}$. Therefore, we need to show only that

$$2\left(\frac{d}{e}\right)^d < d!.$$

The argument is by induction on $d \ge 1$. The basis case, d = 1 is immediate. Suppose that $2\left(\frac{d}{e}\right)^d < d!$. We have

$$2\left(\frac{d+1}{e}\right)^{d+1} = 2\left(\frac{d}{e}\right)^{d} \left(\frac{d+1}{d}\right)^{d} \frac{d+1}{e}$$
$$= \left(1+\frac{1}{d}\right)^{d} \frac{1}{2} \cdot 2\left(\frac{d}{e}\right)^{d} \left(d+1\right) \stackrel{\text{sometry}}{\leq} 2\left(\frac{d}{e}\right)^{d} \left(d+1) \stackrel{\text{sometry}}{\leq} 2\left(\frac{d}{e}\right)^{d}$$

Proof cont'd

The last inequality holds because the sequence $\left(\left(1+\frac{1}{d}\right)^d\right)_{d\in\mathbb{N}}$ is an increasing sequence whose limit is *e*. Since $2\left(\frac{d+1}{e}\right)^{d+1} < 2\left(\frac{d}{e}\right)^d(d+1)$, by inductive hypothesis we obtain:

$$2\left(\frac{d+1}{e}\right)^{d+1} < (d+1)!.$$

This proves the inequality of the theorem.

Corollary

If m is sufficiently large we have $\phi(d, m) = O(m^d)$.

The statement is a direct consequence of the previous theorem.

Denote by \oplus the symmetric difference of two sets.

Theorem

Let \mathcal{C} a family of sets and $C_0 \in \mathcal{C}$. Define the family Δ_{C_0} as

$$\Delta_{C_0}(\mathcal{C}) = \{ T \mid T = C_0 \oplus C \text{ where } C \in \mathcal{C} \}.$$

We have $VCD(\mathcal{C}) = VCD(\Delta_{C_0}(\mathcal{C}))$.

Proof

Let S be a set, $S = C_S$ and $S_0 = (\Delta_{C_0}(\mathcal{C}))_S$. Define $\psi : S \longrightarrow S_0$ as $\psi(S \cap C) = S \cap (C_0 \oplus C)$. We claim that ψ is a bijection. If $\psi(S \cap C) = \psi(S \cap C')$ for $C, C' \in \mathcal{C}$, then $S \cap (C_0 \oplus C) = S \cap (C_0 \oplus C')$. Therefore,

$$(S \cap C_0) \oplus (S \cap C) = (S \cap C_0) \oplus (S \cap C'),$$

which implies $S \cap C = S \cap C'$, so ψ is injective.

On other hand, if $U \in S_0$ we have $U = S \cap (C_0 \oplus C)$, so $U = \psi(S \cap C)$, hence ψ is a surjection. Thus, S and S_0 have the same number of sets, which implies that a set S is shattered by C if and only if it is shattered by $\Delta_{C_0}(C)$. Let $u: B_2^k \longrightarrow B_2$ be a Boolean function of k arguments and let C_1, \ldots, C_k be k subsets of a set U. Define the set $u(C_1, \ldots, C_k)$ as the subset C of U whose indicator function is $I_C = u(I_{C_1}, \ldots, I_{C_k})$.

Example

If $u: B_2^2 \longrightarrow B_2$ is the Boolean function $u(a_1, a_2) = a_1 \lor a_2$, then $u(C_1, C_2)$ is $C_1 \cup C_2$; similarly, if $u(x_1, x_2) = x_1 \oplus x_2$, then $u(C_1, C_2)$ is the symmetric difference $C_1 \oplus C_2$ for every $C_1, C_2 \in \mathcal{P}(U)$.

Let $u: B_2^k \longrightarrow B_2$ and C_1, \ldots, C_k are k family of subsets of U, the family of sets $u(C_1, \ldots, C_k)$ is

 $u(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \{u(C_1,\ldots,C_k) \mid C_1 \in \mathcal{C}_1,\ldots,C_k \in \mathcal{C}_k\}.$

Theorem

Let $\alpha(k)$ be the least integer a such that $\frac{a}{\log(ea)} > k$. If $\mathbb{C}_1, \ldots, \mathbb{C}_k$ are k collections of subsets of the set U such that $d = \max\{VCD(\mathbb{C}_i) \mid 1 \leq i \leq k\}$ and $u : B_2^2 \longrightarrow B_2$ is a Boolean function, then

 $VCD(u(\mathcal{C}_1,\ldots,\mathcal{C}_k)) \leq \alpha(k) \cdot d.$

Proof

Let S be a subset of U that consists of m elements. The collection $(\mathcal{C}_i)_S$ is not larger than $\phi(d, m)$. For a set in the collection $W \in u(\mathcal{C}_1, \ldots, \mathcal{C}_k)_S$ we can write $W = S \cap u(C_1, \ldots, C_k)$, or, equivalently, $1_W = 1_S \cdot u(1_{C_1}, \ldots, 1_{C_k})$. There exists a Boolean function g_S such that

$$1_{S} \cdot u(1_{C_{1}}, \ldots, 1_{C_{k}}) = g_{S}(1_{S} \cdot 1_{C_{1}}, \ldots, 1_{S} \cdot 1_{C_{k}}) = g_{S}(1_{S \cap C_{1}}, \ldots, 1_{S \cap C_{k}}).$$

Since there are at most $\phi(d, m)$ distinct sets of the form $S \cap C_i$ for every i, $1 \leq i \leq k$, it follows that there are at most $(\phi(d, m))^k$ distinct sets W, hence $u(\mathcal{C}_1, \ldots, \mathcal{C}_k)[m] \leq (\phi(d, m))^k$.

Proof (cont'd)

By a previous theorem,

$$u(\mathcal{C}_1,\ldots,\mathcal{C}_k)[m] \leqslant \left(\frac{em}{d}\right)^{kd}.$$

We observed that if $\Pi_{\mathbb{C}}[m] < 2^m$, then $VCD(\mathbb{C}) < m$. Therefore, to limit the Vapnik-Chervonenkis dimension of the collection $u(\mathbb{C}_1, \ldots, \mathbb{C}_k)$ it suffices to require that $\left(\frac{em}{d}\right)^{kd} < 2^m$. Let $a = \frac{m}{d}$. The last inequality can be written as $(ea)^{kd} < 2^{ad}$; equivalently, we have $(ea)^k < 2^a$, which yields $k < \frac{a}{\log(ea)}$. If $\alpha(k)$ is the least integer *a* such that $k < \frac{a}{\log(ea)}$, then $m \leq \alpha(k)d$, which gives our conclusion.

Example

If k = 2, the least integer *a* such that $\frac{a}{\log(ea)} > 2$ is k = 10, as it can be seen by graphing this function; thus, if $\mathcal{C}_1, \mathcal{C}_2$ are two collection of concepts with $VCD(\mathcal{C}_1) = VCD(\mathcal{C}_2) = d$, the Vapnik-Chervonenkis dimension of the collections $\mathcal{C}_1 \vee \mathcal{C}_2$ or $\mathcal{C}_1 \wedge \mathcal{C}_2$ is not larger than 10*d*.

Lemma

Let S, T be two sets and let $f : S \longrightarrow T$ be a function. If \mathbb{D} is a collection of subsets of T, U is a finite subset of S and $\mathbb{C} = f^{-1}(\mathbb{D})$ is the collection $\{f^{-1}(D) \mid D \in \mathbb{D}\}$, then $|\mathbb{C}_U| \leq |\mathbb{D}_{f(U)}|$.

Proof: Let V = f(U) and denote $f \downarrow_U$ by g. For $D, D' \in \mathcal{D}$ we have

$$\begin{array}{ll} (U \cap f^{-1}(D)) \oplus (U \cap f^{-1}(D')) \\ &= & U \cap (f^{-1}(D) \oplus f^{-1}(D')) = U \cap (f^{-1}(D \oplus D')) \\ &= & g^{-1}(V \cap (D \oplus D')) = g^{-1}(V \cap D) \oplus g^{-1}(V \oplus D'). \end{array}$$

Thus, $C = U \cap f^{-1}(D)$ and $C' = U \cap f^{-1}(D')$ are two distinct members of \mathcal{C}_U , then $V \cap D$ and $V \cap D'$ are two distinct members of $\mathcal{D}_{f(U)}$. This implies $|\mathcal{C}_U| \leq |\mathcal{D}_{f(U)}|$.

Theorem

Let S, T be two sets and let $f : S \longrightarrow T$ be a function. If \mathcal{D} is a collection of subsets of T and $\mathcal{C} = f^{-1}(\mathcal{D})$ is the collection $\{f^{-1}(D) \mid D \in \mathcal{D}\}$, then $VCD(\mathcal{C}) \leq VCD(\mathcal{D})$. Moreover, if f is a surjection, then $VCD(\mathcal{C}) = VCD(\mathcal{D})$.

Proof

Suppose that \mathcal{C} shatters an *n*-element subset $K = \{x_1, \ldots, x_n\}$ of *S*, so $|\mathcal{C}_K| = 2^n$ By a previous Lemma we have $|\mathcal{C}_K| \leq |\mathcal{D}_{f(U)}|$, so $|\mathcal{D}_{f(U)}| \geq 2^n$, which implies |f(U)| = n and $|\mathcal{D}_{f(U)}| = 2^n$, because f(U) cannot have more than *n* elements. Thus, \mathcal{D} shatters f(U), so $VCD(\mathcal{C}) \leq VCD(\mathcal{C})$. Suppose now that *f* is surjective and $H = \{t_1, \ldots, t_m\}$ is an *m* element set that is shattered by \mathcal{D} . Consider the set $L = \{u_1, \ldots, u_m\}$ such that $u_i \in f^{-1}(t_i)$ for $1 \leq i \leq m$. Let *U* be a subset of *L*. Since *H* is shattered by \mathcal{D} , there is a set $D \in \mathcal{D}$ such that $f(U) = H \cap D$, which implies $U = L \cap f^{-1}(D)$. Thus, *L* is shattered by \mathcal{C} and this means that $VCD(\mathcal{C}) = VCD(\mathcal{D})$.

Definition

The *density* of \mathcal{C} is the number

 $\operatorname{dens}(\mathfrak{C}) = \inf \{ s \in \mathbb{R}_{>0} \mid \Pi_{\mathfrak{C}}[m] \leqslant c \cdot m^s \text{ for every } m \in \mathbb{N} \},$

for some positive constant c.
Let S, T be two sets and let $f : S \longrightarrow T$ be a function. If \mathbb{D} is a collection of subsets of T and $\mathbb{C} = f^{-1}(\mathbb{D})$ is the collection $\{f^{-1}(D) \mid D \in \mathbb{D}\}$, then dens $(\mathbb{C}) \leq dens(\mathbb{D})$. Moreover, if f is a surjection, then dens $(\mathbb{C}) = dens(\mathbb{D})$.

Proof: Let *L* be a subset of *S* such that |L| = m. Then, $|\mathcal{C}_L| \leq |\mathcal{D}_{f(L)}|$. In general, we have $|f(L)| \leq m$, so $|\mathcal{D}_{f(L)}| \leq \mathcal{D}[m] \leq cm^s$. Therefore, we have $|\mathcal{C}_L| \leq |\mathcal{D}_{f(L)}| \leq \mathcal{D}[m] \leq cm^s$, which implies dens $(\mathcal{C}) \leq \text{dens}(\mathcal{D})$. If *f* is a surjection, then, for every finite subset *M* of *T* such that |M| = m there is a subset *L* of *S* such that |L| = |M| and f(L) = M. Therefore, $\mathcal{D}[m] \leq \Pi_{\mathbb{C}}[m]$ and this implies dens $(\mathcal{C}) = \text{dens}(\mathcal{D})$.

If \mathcal{C}, \mathcal{D} are two collections of sets such that $\mathcal{C} \subseteq \mathcal{D}$, then $VCD(\mathcal{C}) \leq VCD(\mathcal{D})$ and dens $(\mathcal{C}) \leq dens(\mathcal{D})$.

Theorem

Let \mathcal{C} be a collection of subsets of a set S and let $\mathcal{C}' = \{S - C \mid C \in \mathcal{C}\}$. Then, for every $K \in \mathcal{P}(S)$ we have $|\mathcal{C}_K| = |\mathcal{C}'_K|$.

Proof

We prove the statement by showing the existence of a bijection $f: \mathcal{C}_K \longrightarrow \mathcal{C}'_K$. If $U \in \mathcal{C}_K$, then $U = K \cap C$, where $C \in \mathcal{C}$. Then $S - C \in \mathcal{C}'$ and we define $f(U) = K \cap (S - C) = K - C \in \mathcal{C}'_K$. The function f is well-defined because if $K \cap C_1 = K \cap C_2$, then $K - C_1 = K - (K \cap C_1) = K - (K \cap C_2) = K - C_2$. It is clear that if f(U) = f(V) for $U, V \in \mathcal{C}_K$, $U = K \cap C_1$, and $V = K \cap C_2$, then $K - C_1 = K - C_2$, so $K \cap C_1 = K \cap C_2$ and this means that U = V. Thus, f is injective. If $W \in \mathcal{C}'_K$, then $W = K \cap C'$ for some $C' \in \mathcal{C}$. Since C' = S - C for some $C \in \mathcal{C}$, it follows that W = K - C, so W = f(U), where $U = K \cap C$.

Corollary

Let \mathcal{C} be a collection of subsets of a set S and let $\mathcal{C}' = \{S - C \mid C \in \mathcal{C}\}$. We have dens $(\mathcal{C}) = dens(\mathcal{C}')$ and $VCD(\mathcal{C}) = VCD(\mathcal{C}')$.

For every collection of sets we have $dens(\mathbb{C}) \leq VCD(\mathbb{C})$. Furthermore, if $dens(\mathbb{C})$ is finite, then \mathbb{C} is a VC-class.

Proof: If \mathcal{C} is not a VC-class the inequality dens(\mathcal{C}) $\leq VCD(\mathcal{C})$ is clearly satisfied. Suppose now that \mathcal{C} is a VC-class and $VCD(\mathcal{C}) = d$. By Sauer-Shelah Theorem we have $\Pi_{\mathcal{C}}[m] \leq \phi(d, m)$; then, we obtain $\Pi_{\mathcal{C}}[m] \leq \left(\frac{em}{d}\right)^d$, so dens(\mathcal{C}) $\leq d$. Suppose now that dens(\mathcal{C}) is finite. Since $\Pi_{\mathcal{C}}[m] \leq cm^s \leq 2^m$ for m sufficiently large, it follows that $VCD(\mathcal{C})$ is finite, so \mathcal{C} is a VC-class. Let \mathcal{D} be a finite collection of subsets of a set S. The partition $\pi_{\mathcal{D}}$ was defined as consisting of the nonempty sets of the form $\{D_1^{a_1} \cap D_2^{a_2} \cap \cdots \cap D_r^{a_r}, \text{ where } (a_1, a_2, \ldots, a_r) \in \{0, 1\}^r.$

Definition

A collection $\mathcal{D} = \{D_1, \ldots, D_r\}$ of subsets of a set *S* is *independent* if the partition $\pi_{\mathcal{D}}$ has the maximum numbers of blocks, that is, it consists of 2^r blocks.

If \mathcal{D} is independent, then the Boolean subalgebra generated by \mathcal{D} in the Boolean algebra $(\mathcal{P}(S), \{\cap, \cup, \bar{}, \emptyset, S\})$ contains 2^{2^r} sets, because this subalgebra has 2^r atoms. Thus, if \mathcal{D} shatters a subset T with |T| = p, then the collection \mathcal{D}_T contains 2^p sets, which implies $2^p \leq 2^{2^r}$, or $p \leq 2^r$.

Definition

Let \mathcal{C} be a collection of subsets of a set *S*. The independence number of \mathcal{C} $I(\mathcal{C})$ is:

$$I(\mathcal{C}) = \sup\{r \mid \{C_1, \dots, C_r\}$$

is independent for some finite $\{C_1, \dots, C_r\} \subseteq \mathcal{C}\}.$

Let S, T be two sets and let $f : S \longrightarrow T$ be a function. If \mathcal{D} is a collection of subsets of T and $\mathcal{C} = f^{-1}(\mathcal{D})$ is the collection $\{f^{-1}(D) \mid D \in \mathcal{D}\}$, then $I(\mathcal{C}) \leq I(\mathcal{D})$. Moreover, if f is a surjection, then $I(\mathcal{C}) = I(\mathcal{D})$.

Proof: Let $\mathcal{E} = \{D_1, \ldots, D_p\}$ be an independent finite subcollection of \mathcal{D} . The partition $\pi_{\mathcal{E}}$ contains 2^r blocks. The number of atoms of the subalgebra generated by $\{f^{-1}(D_1), \ldots, f^{-1}(D_p)\}$ is not greater than 2^r . Therefore, $I(\mathcal{C}) \leq I(\mathcal{D})$; from the same supplement it follows that if f is surjective, then $I(\mathcal{C}) = I(\mathcal{D})$.

If \mathbb{C} is a collection of subsets of a set S such that $VCD(\mathbb{C}) \ge 2^n$, then $I(\mathbb{C}) \ge n$.

Proof: Suppose that $VCD(\mathcal{C}) \ge 2^n$, that is, there exists a subset T of S that is shattered by \mathcal{C} and has at least 2^n elements. Then, the collection \mathcal{H}_t contains at least 2^{2^n} sets, which means that the Boolean subalgebra of $\mathcal{P}(T)$ generated by \mathcal{T}_C contains at least 2^n atoms. This implies that the subalgebra of $\mathcal{P}(S)$ generated by \mathcal{C} contains at least this number of atoms, so $I(\mathcal{C}) \ge n$.