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Functions of One Real Variable

Let E be a subset of R.
A function f : E −→ R has a maximum M on E if there exists x0 ∈ E
such that f (x0) = M and f (x1) ⩽ M for every x1 ∈ E . The element x0 is a
maximizer of f on E .
Similarly, f : E −→ R has a minimum m on E if there exists x0 ∈ E such
that f (x0) = m and f (x1) ⩾ m for every x1 ∈ E . The element x0 is a
minimizer of f on E .

3 / 63



If f : [a, b] −→ R and f is continuous, then f has a global maximum
M and a global minimum m on [a,b].
If f has a derivative on [a, b], and f ′(x0) = 0, then x0 is a critical
point of f .
A local extremum (minimum or maximum) can occur only at a
critical point x0. If f

′′(x0) < 0, the critical point provides a local
maximum; if f ′′(x0) > 0 the critical point provides a local minimum.
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The ∇f notation

(read “nabla f”).
Let f : X −→ R, where X ⊆ Rn, and let zzz ∈ X . The gradient of f in zzz is
the vector

(∇f )(zzz) =


∂f
∂x1

(zzz)
...

∂f
∂xn

(zzz)

 ∈ Rn.
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Example

Let f : Rn −→ R be the function f (xxx) = x21 + · · ·+ x2n ; in other words,
f (xxx) =∥ xxx ∥2.
We have

∂f

∂x1
= 2x1, . . . ,

∂f

∂xn
= 2xn.

Therefore, (∇f )(xxx) = 2xxx .
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Example

Let bbbj ∈ Rn and cj ∈ R for 1 ⩽ j ⩽ n, and let f : Rn −→ R be the function

f (xxx) =
n∑

j=1

(bbb′jxxx − cj)
2.

We have ∂f
∂xi

(xxx) =
∑n

j=1 2bij(bbb
′
jxxx − cj), where bbbj =

(
b1j · · · bnj

)
for

1 ⩽ j ⩽ n. Thus, we obtain:

(∇f )(xxx) = 2


∑n

j=1 2b1j(bbb
′
jxxx − cj)

...∑n
j=1 2bnj(bbb

′
jxxx − cj)

 = 2(B ′xxx − ccc ′)B = 2B ′xxxB − 2ccc ′B,

where B = (bbb1 · · ·bbbn) ∈ Rn×n.
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The matrix-valued function Hf : Rk −→ Rk×k defined by

Hf (xxx) =

(
∂2f

∂xi1 ∂xi2

)
is the Hessian matrix of f .
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Example

For the function f (xxx) = x21 + · · ·+ x2n discussed on Slide 6 we have

Hf (xxx) =


2 0 · · · 0
0 2 · · · 0
...

... · · ·
...

0 0 · · · 2

 .
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Definition

Let X be a open subset in Rn and let f : X −→ R be a function.
The point xxx0 ∈ X is a local minimum for f if there exists δ > 0 such that
B(xxx0, δ) ⊆ X and f (xxx0) ⩽ f (xxx) for every xxx ∈ B(xxx0, δ).
The point xxx0 is a strict local minimum if f (xxx0) < f (xxx) for every
x ∈ B(xxx0, δ)− {xxx0}.
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Definition

A symmetric matrix A ∈ Rn×n is positive semidefinite if xxx ′Axxx ⩾ 0 for all
xxx ∈ Rn.
A is positive definite if xxx ′Axxx > 0 for all xxx ∈ Rn − {000n}.
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Example

The symmetric real matrix

A =

(
a b
b c

)
is positive definite if and only if a > 0 and b2 − ac < 0. Indeed, we have
xxx ′Axxx > 0 for every xxx ∈ R2 − {000} if and only if ax21 + 2bx1x2 + cx22 > 0,
where xxx ′ = (x1 x2); elementary algebra considerations lead to a > 0 and
b2 − ac < 0.
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Is the matrix

A =

(
1 2
2 1

)
positive definite?

No, because (x1 x2)

(
1 2
2 1

)(
x1
x2

)
= x21 + 4x1x2 + x22 can be made

negative with x1 = 1 and x2 = −1.
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Theorem

A symmetric matrix A ∈ Rn×n is positive definite if and only if all its
leading principal minors are positive.

The leading minors of the previous matrix are 1 and

∣∣∣∣1 2
2 1

∣∣∣∣ = −3.
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Theorem

Let f : B(xxx0, r) −→ R be a function that belongs to the class
C 2(B(xxx0, r)), where B(xxx0, r) ⊆ Rk and xxx0 is a critical point for f .
If the Hessian matrix Hf (xxx0) is positive semidefinite, then xxx0 is a local
minimum for f ; if Hf (xxx0) is negative semidefinite, then xxx0 is a local
maximum for f .
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Let f : R2 −→ R be a function in C 2(B(xxx0, r)). The Hessian matrix in xxx0
is

Hf (xxx0) =

(
∂2f
∂x12

∂2f
∂x1 ∂x2

∂2f
∂x2 ∂x1

∂2f
∂x22

.

)
(xxx0).

Let a11 =
∂2f
∂x12

(xxx0), a12 =
∂2f

∂x1 ∂x2
(xxx0), and a22 =

∂2f
∂x22

(xxx0). Note that

hhh′Hf (xxx0)hhh = a11h
2
1 + 2a12h1h2 + a22h

2
2

= h22
(
a11ξ

2 + 2a12ξ + a22
)
,

where ξ = h1
h2
.
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For a critical point xxx0 we have:
hhh′Hf (xxx0)hhh ⩾ 0 for every hhh if a11 > 0 and a212 − a11a22 < 0; in this
case, Hf (xxx0) is positive semidefinite and xxx0 is a local minimum;
hhh′Hf (xxx0)hhh ⩽ 0 for every hhh if a11 < 0 and a212 − a11a22 < 0; in this
case, Hf (xxx0) is negative semidefinite and xxx0 is a local maximum;
if a212 − a11a22 ⩾ 0; in this case, Hf (xxx0) is neither positive nor
negative definite, so xxx0 is a saddle point.

Note that in the first two previous cases we have a212 < a11a22, so a11 and
a22 have the same sign.
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Example

Let aaa1, . . . ,aaam be m points in Rn. The function f (xxx) =
∑m

i=1 ∥ xxx − aaai ∥2
gives the sum of squares of the distances between xxx and the points
aaa1, . . . ,aaam. We will prove that this sum has a global minimum obtained
when xxx is the barycenter of the set {aaa1, . . . ,aaam}.
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Example (cont’d)
We have

f (xxx) = m ∥ xxx ∥2 −2
m∑
i=1

aaa′ixxx +
m∑
i=1

∥ aaai ∥2

= m(x21 + · · ·+ x2n )− 2
n∑

j=1

m∑
i=1

aijxj +
m∑
i=1

∥ aaai ∥2,

which implies

∂f

∂xj
= 2mxj − 2

m∑
i=1

aij

for 1 ⩽ j ⩽ n. Thus, there exists only one critical point given by

xj =
1

m

m∑
i=1

aij

for 1 ⩽ j ⩽ n.
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The Hessian matrix Hf = 2mIn is positive definite, so the critical point is a
local minimum and, in view of convexity of f , the global minimum. This
point is the barycenter of the set {aaa1, . . . ,aaam}.
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Let f : Rn −→ R, ccc : Rn −→ Rm, and ddd : Rn −→ Rp be three functions
defined on Rn. A general formulation of a constrained optimization
problem is:

minimize f (xxx), where xxx ∈ Rn,
subject to ccc(xxx) ⩽ 000m, where ccc : Rn −→ Rm,
and ddd(xxx) = 000p, where ddd : Rn −→ Rp.
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Here ccc specifies inequality constraints placed on xxx , while ddd defines equality
constraints.
The feasible region of the constrained optimization problem is the set

Rccc,ddd = {xxx ∈ Rn | ccc(xxx) ⩽ 000m and ddd(xxx) = 000p}.

If the feasible region Rccc,ddd is non-empty and bounded, then, under certain
conditions a solution exists. If Rccc,ddd = ∅ we say that the constraints are
inconsistent.
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If only inequality constraints are present (as specified by the function ccc)
the feasible region is:

Rccc = {xxx ∈ Rn | ccc(xxx) ⩽ 000m}.
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Let xxx ∈ Rccc . The set of active constraints at xxx is

ACT(Rccc ,ccc ,xxx) = {i ∈ {1, . . . ,m} | ci (xxx) = 0}.

If i ∈ ACT(Rccc ,ccc ,xxx), we say that ci is an active constraint or that ci is
tight on xxx ∈ S ; otherwise, that is, if ci (xxx) < 0, ci is an inactive constraint
on xxx .
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Definition

Let f : Rn −→ R and ccc : Rn −→ Rm be two functions. The minimization
problem MP(f ,ccc) is:

minimize f (xxx), where xxx ∈ Rn,
subject to xxx ∈ Rccc .

If xxx0 exists in Rccc that f (xxx0) = min{f (xxx) | xxx ∈ Rccc} we refer to xxx0 as a
solution of MP(f ,ccc).
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If hhh : Rn −→ Rm we can write

hhh(xxx) =

h1(xxx)
...

hm(xxx)

 ,

where hj : Rn −→ R are the components of hhh for 1 ⩽ j ⩽ m. If hhh is a
differentiable function, the function (Dhhh)(xxx) is

(Dhhh)(xxx) =

 (∇h1)(xxx)
′

...
(∇hm)(xxx)

′

 .
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Example

Let hhh : R2 −→ R3 be given by

hhh(xxx) =

x1x2
x21
x22


Then

(Dhhh)(xxx) =

 x2 x1
2x1 0
0 2x2

 .

Observe that the rows of (Dhhh)(xxx) are the gradients of the components of
h.
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Theorem

(Existence Theorem of Lagrange Multipliers) Let f : Rn −→ R and
hhh : Rn −→ Rm be two functions such that:

m < n,
f ∈ C 1(Rn),
hhh ∈ C 1(Rn), and
the matrix (Dhhh)(xxx) is of full rank, that is, rank((Dhhh)(xxx)) = m < n
(which means that the gradients (∇h1)(xxx), . . . , (∇hm)(xxx) are linearly
independent).

If xxx0 is a regular point of hhh and a local extremum of f subjected to the
restriction hhh(xxx0) = 000m, then (∇f )(xxx0) is a linear combination of
(∇h1)(xxx0), . . . , (∇hm)(xxx0).
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Example

Suppose that we wish to minimize f (xxx) = x1 + x2 subject to the condition

h(xxx) = x21 + x22 = 2.

We have

(∇f )(xxx) =

(
1
1

)
(∇h)(xxx) =

(
2x1
2x2

)
.
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Example continued

x2

x1

0

x1 + x2 = a
h(x) = 0

At the local minimum xxx∗ = (−1,−1)

we have (∇f )(xxx∗) =

(
1
1

)
and

(∇h) =

(
−2
−2

)
, so

(∇f )(xxx∗) +
1

2
(∇h) = 000.

30 / 63



To apply the Lagrange multiplier technique the constraint gradients

(∇h1)(xxx), · · · , (∇hm)(xxx)

must be linearly independent. In this case, xxx is said to be regular.
There may not exist Lagrange multipliers for a local minimum that is not
regular.
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Example

Consider minimizing the function f (xxx) = x1 + x2 subject to the constraints

h1(xxx) = (x1 − 1)2 + x22 − 1 = 0, h2(xxx) = (x1 − 2)2 + x22 − 4 = 0.

We have

(∇f )(xxx) =

(
1
1

)
,

and

(∇h1)(xxx) =

(
2(x1 − 1)

2x2

)
, (∇h2)(xxx) =

(
2(x1 − 2)

2x2

)
.
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Example continued

The local minimum is at

(
0
0

)
. At that point, we have

(∇f )(000) =

(
1
1

)
, (∇h1)(000) =

(
−2
0

)
, (∇h2)(000) =

(
−4
0

)
.

The gradients (∇h1)(000), (∇h2)(000) are not linearly independent, so 000 is not
a regular point and Lagrange’s multipliers do not exist.
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Example

Let A ∈ Rn×n be a symmetric matrix and let f : Rn −→ R be the function
defined by f (xxx) = xxx ′Axxx .
Optimization problem: minimize f subjected to the restriction ∥ xxx ∥= 1,
or equivalently h(xxx) =∥ xxx ∥2 −1 = 0.
Since (∇f ) = 2Axxx and (∇h)(xxx) = 2xxx there exists λ such that
2Axxx0 = 2λxxx0 for any extremum of f subjected to ∥ xxx0 ∥= 1. Thus, xxx0
must be a unit eigenvector of A and λ must be an eigenvalue of the same
matrix.
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The next theorem provides necessary conditions for optimality that
include the linear independence of the gradients of the components of
the constraint (∇ci )(xxx0) for i ∈ ACT(S ,ccc ,xxx0)}, and
ensure that the coefficient of the gradient of the objective function
(∇f )(xxx0) is not null.

These conditions are known as the Karush-Kuhn-Tucker conditions or the
KKT conditions.

36 / 63



Theorem

(Karush-Kuhn-Tucker Theorem) Let S be a non-empty open subset of
Rn and let f : Rn −→ R and ccc : Rn −→ Rm. Let xxx0 be a local minimum in
S of f subjected to the restriction ccc(xxx0) ⩽ 000m.
Suppose that f is differentiable in xxx0, ci are differentiable in xxx0 for
i ∈ ACT(S ,ccc ,xxx0), and ci are continuous in xxx0 for i ̸∈ ACT(S ,ccc ,xxx0).
If {(∇ci )(xxx0) | i ∈ ACT(S ,ccc ,xxx0)} is a linearly independent set, then there
exist non-negative numbers wi for i ∈ ACT(S ,ccc ,xxx0) such that

(∇f )(xxx0) +
∑

{wi (∇ci )(xxx0) | i ∈ ACT(S ,ccc ,xxx0)} = 000n.
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Theorem continued

Furthermore, if the functions ci are differentiable in xxx0 for
i ̸∈ ACT(S ,ccc ,xxx0), then the previous condition can be written as:

(∇f )(xxx0) +
∑m

i=1 wi (∇ci )(xxx0) = 000n;
www ′ccc(xxx0) = 0;

www ⩾ 000m, where www =

w1
...

wm

.
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The Primal Problem

Consider the following optimization problem for an object function
f : Rn −→ R, a subset C ⊆ Rn, and the constraint functions
ccc : Rn −→ Rm and ddd : Rn −→ Rp:

minimize f (xxx),where xxx ∈ C ,
subject to ccc(xxx) ⩽ 000m
and ddd(xxx) = 000p.

We refer to this optimization problem as the primal problem.
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Definition

The Lagrangian associated to the primal problem is the function
L : Rn × Rm × Rp −→ R given by:

L(xxx ,uuu,vvv) = f (xxx) + uuu′ccc(xxx) + vvv ′ddd(xxx)

for xxx ∈ C , uuu ∈ Rm, and vvv ∈ Rp.
The component ui of uuu is the Lagrangian multiplier corresponding to the
constraint ci (xxx) ⩽ 0; the component vj of vvv is the Lagrangian multiplier
corresponding to the constraint dj(xxx) = 0.

40 / 63



Lemma

At each feasible xxx we have
f (xxx) = sup{L(xxx ,uuu,vvv)} | uuu ⩾ 000m,vvv ∈ Rp, uiccc i (xxx) = 0 for 1 ⩽ i ⩽ m}.

Proof: at each feasible xxx we have ci (x) ⩽ 0 and di (xxx) = 0, hence

L(xxx ,uuu,vvv) = f (xxx) + uuu′ccc(xxx) + vvv ′ddd(xxx) ⩽ f (xxx).

The last inequality becomes an equality if uiccc i (xxx) = 0 for 1 ⩽ i ⩽ m.
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Lemma

The optimal value of the primal problem f ∗ is

f ∗ = inf
xxx

sup
uuu⩾000m,vvv

L(xxx ,uuu,vvv).

Proof: Consider feasible xxx (designated as xxx ∈ C ). In this case we have
f ∗ = infxxx∈C f (xxx) = infxxx∈C supuuu⩾000m,vvv L(xxx ,uuu,vvv).
When xxx is not feasible, since supuuu⩾000m,vvv L(xxx ,uuu,vvv) = ∞ for any x ̸∈ C , we
have infxxx ̸∈C supuuu⩾000m,vvv L(xxx ,uuu,vvv) = ∞. Thus, in either case,
f ∗ = infxxx supuuu⩾000m,vvv L(xxx ,uuu,vvv).
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The Dual Optimization Problem

The dual optimization problem starts with the Lagrange dual function
g : Rm × Rp −→ R defined by

g(uuu,vvv) = inf
xxx∈C

L(xxx ,uuu,vvv) (1)

and consists of
maximize g(uuu,vvv), where uuu ∈ Rm and vvv ∈ Rp,

subject to uuu ⩾ 000m.
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Theorem

For every primal problem the Lagrange dual function g : Rm × Rp −→ R
defined by Equality (1) is always concave over Rm × Rp.
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Proof

For uuu1,uuu2 ∈ Rm and vvv1,vvv2 ∈ Rp we have:

g(tuuu1 + (1− t)uuu2, tvvv1 + (1− t)vvv2)

= inf{f (xxx) + (tuuu′1 + (1− t)uuu′2)ccc(xxx) + (tvvv ′1 + (1− t)vvv ′2)ddd(xxx) | xxx ∈ S}
= inf{t(f (xxx) + uuu′1ccc + vvv ′1ddd) + (1− t)(f (xxx) + uuu′2ccc(xxx) + vvv ′2ddd(xxx)) | xxx ∈ S}
⩾ t inf{f (xxx) + uuu′1ccc + vvv ′1ddd | xxx ∈ S}

+(1− t) inf{f (xxx) + uuu′2ccc(xxx) + vvv ′2ddd(xxx) | xxx ∈ S}
= tg(uuu1,vvv1) + (1− t)g(uuu2,vvv2),

which shows that g is concave.
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The concavity of g is significant because a local optimum of g is a
global optimum regardless of convexity properties of f ,ccc or ddd .
Although the dual function g is not given explicitly, the restrictions of
the dual have a simpler form and this may be an advantage in specific
cases.
The dual function produces lower bounds for the optimal value of the
primal problem.
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Theorem

(The Weak Duality Theorem) Suppose that x∗ is an optimum of f and
f∗ = f (x∗), (uuu∗,vvv∗) is an optimum for g , and g∗ = g(uuu∗,vvv∗). We have
g∗ ⩽ f∗.

Proof: Since ccc(xxx∗) ⩽ 000m and ddd(xxx∗) = 000p it follows that

L(xxx∗,uuu,vvv) = f (xxx∗) + uuu′ccc(xxx∗) + vvv ′ddd(xxx∗) ⩽ f∗.

Therefore, g(uuu,vvv) = infxxx∈C L(xxx ,uuu,vvv) ⩽ f∗ for all uuu and vvv .
Since g∗ is the optimal value of g , the last inequality implies g∗ ⩽ f∗.

47 / 63



The inequality of the previous theorem holds when f∗ and g∗ are finite or
infinite. The difference f∗ − g∗ is the duality gap of the primal problem.
Strong duality holds when the duality gap is 0.
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Note that for the Lagrangian function of the primal problem we can write

sup
uuu⩾000m,vvv

L(xxx ,uuu,vvv) = sup
uuu⩾000m,vvv

f (xxx) + uuu′ccc(xxx) + vvv ′ddd(xxx)

=

{
f (xxx) if ccc(xxx) ⩽ 000m,

∞ otherwise
,

which implies f∗ = infxxx∈Rn supuuu⩾000m,vvv L(xxx ,uuu,vvv). By the definition of g∗ we
also have

g∗ = sup
uuu⩾000m,vvv

inf
xxx∈Rn

L(xxx ,uuu,vvv).
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Thus, the weak duality amounts to the inequality

sup
uuu⩾000m,vvv

inf
xxx∈Rn

L(xxx ,uuu,vvv) ⩽ inf
xxx∈Rn

sup
uuu⩾000m,vvv

L(xxx ,uuu,vvv),

and the strong duality is equivalent to the equality

sup
uuu⩾000m,vvv

inf
xxx∈Rn

L(xxx ,uuu,vvv) = inf
xxx∈Rn

sup
uuu⩾000m,vvv

L(xxx ,uuu,vvv).
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Example

Let f : Rn −→ R be the linear function f (xxx) = aaa′xxx , A ∈ Rp×n, and bbb ∈ Rp.
Consider the primal problem:

minimize aaa′xxx , where xxx ∈ Rn,
subject to xxx ⩾ 000n and
Axxx − bbb = 000p.

The constraint functions are ccc(xxx) = −xxx and ddd(xxx) = Axxx − bbb and the
Lagrangian L is

L(xxx ,uuu,vvv) = aaa′xxx − uuu′xxx + vvv ′(Axxx − bbb)

= −vvv ′bbb + (aaa′ − uuu′ + vvv ′A)xxx .
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Example (cont’d)

This yields the dual function

g(uuu,vvv) = −vvv ′bbb + inf
xxx∈Rn

(aaa′ − uuu′ + vvv ′A)xxx .

Unless aaa′ − uuu′ + vvv ′A = 000′n we have g(uuu,vvv) = −∞. Therefore, we have

g(uuu,vvv) =

{
−vvv ′bbb if aaa− uuu + A′vvv = 000n,

−∞ otherwise.

Thus, the dual problem is

maximize g(uuu,vvv),
subject to uuu ⩾ 000m.
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Example (cont’d)

An equivalent of the dual problem is

maximize −vvv ′bbb,
subject to aaa− uuu + A′vvv = 000n
and uuu ⩾ 000m.

In turn, this problem is equivalent to:
maximize −vvv ′bbb,

subject to aaa+ A′vvv ⩾ 000n.
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Example

The following optimization problem
minimize 1

2xxx
′Qxxx − rrr ′xxx ,

where xxx ∈ Rn,
subject to Axxx ⩾ bbb,

where Q ∈ Rn×n is a positive definite matrix, rrr ∈ Rn, A ∈ Rp×n, and
bbb ∈ Rp is known as a quadratic optimization problem.
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The Lagrangian L is

L(xxx ,uuu) =
1

2
xxx ′Qxxx − rrr ′xxx + uuu′(Axxx − bbb) =

1

2
xxx ′Qxxx + (uuu′A− rrr ′)xxx − uuu′bbb

and the dual function is g(uuu) = infxxx∈Rn L(xxx ,uuu) subject to uuu ⩾ 000m. Since xxx
is unconstrained in the definition of g , the minimum is attained when we
have the equalities

∂

∂xi

(
1

2
xxx ′Qxxx + (uuu′A− rrr ′)xxx − uuu′bbb

)
= 0

for 1 ⩽ i ⩽ n, which amount to xxx = Q−1(rrr − Auuu). The dual optimization
function is: g(uuu) = −1

2uuu
′Puuu − uuu′ddd − 1

2rrr
′Qrrr subject to uuu ⩾ 000p, where

P = AQ−1A′, ddd = bbb − AQ−1rrr . This shows that the dual problem of this
quadratic optimization problem is itself a quadratic optimization problem.
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Example

Let aaa1, . . . ,aaam ∈ Rn. We seek to determine a closed sphere B[xxx , r ] of
minimal radius that includes all points aaai for 1 ⩽ i ⩽ m. This is the
minimum bounding sphere problem, formulated by J. J. Sylvester. This
problem amounts to solving the following primal optimization problem:

minimize r , where r ⩾ 0,
subject to ∥ xxx − aaai ∥⩽ r for 1 ⩽ i ⩽ m.
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An equivalent formulation requires minimizing r2 and stating the
restrictions as ∥ xxx − aaai ∥2 −r2 ⩽ 0 for 1 ⩽ i ⩽ m. The Lagrangian of this
problem is:

L(r ,xxx ,uuu) = r2 +
m∑
i=1

ui (∥ xxx − aaai ∥2 −r2)

= r2

(
1−

m∑
i=1

ui

)
+

m∑
i=1

ui ∥ xxx − aaa2i ∥

and the dual function is:

g(uuu) = inf
r∈R⩾0,xxx∈Rn

L(r ,xxx ,uuu)

= inf
r∈R⩾0,xxx∈Rn

r2

(
1−

m∑
i=1

ui

)
+

m∑
i=1

ui ∥ xxx − aaai |2 ∥ .
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This leads to the following conditions:

∂L(r ,xxx ,uuu)

∂r
= 2r

(
1−

m∑
i=1

ui

)
= 0

∂L(r ,xxx ,uuu)

∂xp
= 2

m∑
i=1

ui (xxx − aaai )p = 0 for 1 ⩽ p ⩽ n.

The first equality yields
∑m

i=1 ui = 1. Therefore, from the second equality
we obtain xxx =

∑m
i=1 uiaaai . This shows that for xxx is a convex combination

of aaa1, . . . ,aaam. The dual function is

g(uuu) =
m∑
i=1

ui

(
m∑

h=1

uhaaah − aaai

)
= 0

because
∑m

i=1 ui = 1.
Note that the restriction functions gi (xxx , r) =∥ xxx − aaai ∥2 −r2 ⩽ 0 are not
convex.
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Example

Consider the primal problem
minimize x21 + x22 , where x1, x2 ∈ R,

subject to x1 − 1 ⩾ 0.
It is clear that the minimum of f (xxx) is obtained for x1 = 1 and x2 = 0 and
this minimum is 1. The Lagrangian is

L(uuu) = x21 + x22 + u1(x1 − 1)

and the dual function is

g(uuu) = inf
xxx
{x21 + x22 + u1(x1 − 1) | xxx ∈ R2} = −u21

4
.

Then sup{g(u1) | u1 ⩾ 0} = 0 and a gap exists between the minimal
value of the primal function and the maximal value of the dual function.
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Example

Let a, b > 0, p, q < 0 and let r > 0. Consider the following primal
problem:

minimize f (xxx) = ax21 + bx22
subject to px1 + qx2 + r ⩽ 0 and x1 ⩾ 0, x2 ⩾ 0.

The set C is {xxx ∈ R2 | x1 ⩾ 0, x2 ⩾ 0}. The constraint function is
c(xxx) = px1 + qx2 + r ⩽ 0 and the Lagrangian of the primal problem is

L(xxx , u) = ax21 + bx22 + u(px1 + qx2 + r),

where u is a Lagrangian multiplier.
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Thus, the dual problem objective function is

g(u) = inf
xxx∈C

L(xxx , u)

= inf
xxx∈C

ax21 + bx22 + u(px1 + qx2 + r)

= inf
xxx∈C

{ax21 + upx1 | x1 ⩾ 0}

+ inf
xxx∈C

{bx22 + uqx2 | x2 ⩾ 0}+ ur

The infima are achieved when x1 = −up
2a and x2 = −uq

2b if u ⩾ 0 and at
xxx = 0002 if u < 0. Thus,

g(u) =

{
−
(
p2

4a +
q2

4b

)
u2 + ru if u ⩾ 0,

ru if u < 0

which is a concave function.
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The maximum of g(u) is achieved when u = 2r
p2

a
+ q2

b

and equals

r2(
p2

a + q2

b

)

x1

x2

Family of Concentric Ellipses; the ellipse that “touches” the line
px1 + qx2 + r = 0 gives the optimum value for f . The dotted area is the

feasible region.
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Note that if xxx is located on an ellipse ax21 + bx22 − k = 0, then f (xxx) = k.
Thus, the minimum of f is achieved when k is chosen such that the ellipse
is tangent to the line px1 + qx2 + r = 0. In other words, we seek to

determine k such that the tangent of the ellipse at xxx0 =

(
x01
x02

)
located on

the ellipse coincides with the line given by px1 + qx2 + r = 0.
The equation of the tangent is

ax1x01 + bx2x02 − k = 0.

Therefore, we need to have:

ax01
p

=
bx02
q

=
−k

r
,

hence x01 = −kp
ar and x02 = −kq

br . Substituting back these coordinates in

the equation of the ellipse yields k1 = 0 and k2 =
r2

p2

a
+ q2

b

. In this case no

duality gap exists.
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