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Functions of One Real Variable

Let E be a subset of R.

A function f : E — R has a maximum M on E if there exists xg € E
such that f(xp) = M and f(x;) < M for every x; € E. The element xg is a
maximizer of f on E.

Similarly, f : E — R has a minimum m on E if there exists xg € E such
that f(xo) = m and f(x1) > m for every x; € E. The element xp is a
minimizer of f on E.
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e If f:[a,b] — R and f is continuous, then f has a global maximum
M and a global minimum m on [a,b].

e If f has a derivative on [a, b], and '(xp) = 0, then xg is a critical
point of f.

@ A local extremum (minimum or maximum) can occur only at a
critical point xg. If f”(x0) < 0, the critical point provides a local
maximum; if f”(xp) > 0 the critical point provides a local minimum.
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The V£ notation

(read “nabla 7).
Let f : X — R, where X C R”, and let z € X. The gradient of f in z is

the vector
of (Z)

Oxy
VAz)=| : |erm

(2)
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Example

Let f : R" — R be the function f(x) = x? + - -- + x2; in other words,
Fx) =l x |12

We have
of _ oy ﬁ
Ox1 1""’8x,,

Therefore, (Vf)(x) = 2x.

= 2Xp.
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Example

Let b € R" and ¢; € R for 1 <j < n, and let f : R” — R be the function
f(x) = Z(b}x —¢)%
j=1

We have 8L (x) = 37, 2bj(bix — ¢;), where bj = (byj - - - by;) for

1 <j < n. Thus, we obtain:

er":l 2b1j(bj-x — Cj)
(VF)(x) =2 5 =2(B'x — ¢')B =2B'xB —2¢'B,
271 2bnj(Bjx — ¢j)

where B = (b; ---b,) € R™",
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The matrix-valued function Hy : R — R¥*k defined by

O%f
Hr(x) = <('9X,~1 8x,~2>

is the Hessian matrix of f.
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Example

For the function f(x) = x? + - -- + x2 discussed on Slide 6 we have

2 0 --- 0
02 - 0
Hf(X): . .
0 0 2
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Definition

Let X be a open subset in R"” and let f : X — R be a function.

The point xg € X is a local minimum for f if there exists § > 0 such that
B(xo0,9) € X and f(xq) < f(x) for every x € B(xo, 9).

The point xq is a strict local minimum if f(xg) < f(x) for every

X € B(Xo,é) = {Xo}.
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Definition
A symmetric matrix A € R"™*" is positive semidefinite if x’ Ax > 0 for all

x € R".
Ais positive definite if x’Ax > 0 for all x € R" — {0,}.
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Example
The symmetric real matrix

a b
A= )
is positive definite if and only if 2 > 0 and b> — ac < 0. Indeed, we have
x'Ax > 0 for every x € R2 — {0} if and only if ax? + 2bx;x; + cx3 > 0,

where x’ = (x1 x2); elementary algebra considerations lead to a > 0 and
b? — ac < 0.
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Is the matrix

1 2
A=z 1)
positive definite?

No, because (x1 x2) G i) (2) = X12 + dx1x0 + x22 can be made

negative with x; = 1 and x» = —1.
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Theorem

A symmetric matrix A € R"*" s positive definite if and only if all its
leading principal minors are positive.

=-3.

The leading minors of the previous matrix are 1 and ‘1 2‘

2 1
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Theorem

Let f : B(xo,r) — R be a function that belongs to the class
C?(B(xo, r)), where B(xq,r) C R and xq is a critical point for f.
If the Hessian matrix H¢(xq) is positive semidefinite, then xo is a local

minimum for f; if Hg(xo) is negative semidefinite, then xq is a local
maximum for f.
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Let f : R> — R be a function in C2(B(xo, r)). The Hessian matrix in xo

IS

0°f &*f
_ Ox12 Oxy 0.
Hf(xo) - 8>§1f )§2fX2 (XO)
aXQ 8X1 8X22'
82f 2 2
Let a;; = W(Xo), alp = %(Xo), and ay = gng(xo). Note that
h/Hf(XO)h = allhf + 2a10h1hy + azzhg

= h (a€® + 2a12€ + an) ,

where £ = Z—;
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For a critical point xg we have:
e h'He(xo)h > 0 for every h if a;3 > 0 and 3%2 — aji1ax < 0; in this
case, Hr(xo) is positive semidefinite and xq is a local minimum;
@ h'H¢(xo)h < 0 for every h if a;; <0 and afz — ajiaz < 0; in this
case, Hr(xo) is negative semidefinite and xq is a local maximum;
o if a%z — ai1ax > 0; in this case, Hr(xo) is neither positive nor
negative definite, so xq is a saddle point.
Note that in the first two previous cases we have 3%2 < aj1az, so aip and
a2 have the same sign.
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Example

Let a1,...,am be m points in R". The function f(x) =37 || x —a; ||?
gives the sum of squares of the distances between x and the points
ai,...,am. We will prove that this sum has a global minimum obtained

when x is the barycenter of the set {a1,...,am}.
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Example (cont'd)
We have

fx) = m|x|? —2Za?X+Z ek

= m(xZ + —2223:1)94‘2”3: %,

j=1i=1

which implies
of ”
78)9- =2mx; — 2 El ajj

for 1 < j < n. Thus, there exists only one critical point given by

m

for1<j<n
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The Hessian matrix Hr = 2ml, is positive definite, so the critical point is a
local minimum and, in view of convexity of f, the global minimum. This
point is the barycenter of the set {a1,...,am}.
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Let f:R" — R, c:R" — R™ and d : R” — RP be three functions
defined on R”. A general formulation of a constrained optimization
problem is:
minimize f(x), where x € R",
subject to ¢(x) < 0, where ¢ : R" — R,
and d(x) = 0,, where d : R" — RP.
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Here ¢ specifies inequality constraints placed on x, while d defines equality
constraints.
The feasible region of the constrained optimization problem is the set

Red = {x €R" | ¢(x) <04 and d(x) =0,}.

If the feasible region R, 4 is non-empty and bounded, then, under certain
conditions a solution exists. If R. 4 = () we say that the constraints are
inconsistent.
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If only inequality constraints are present (as specified by the function ¢)
the feasible region is:

Re = {x € R" | ¢(x) < Om}.
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Let x € R.. The set of active constraints at x is
ACT(Re,c,x)={ie{1,...,m} | ci(x) =0}.

If i € ACT(Rc,c,x), we say that ¢; is an active constraint or that ¢; is
tight on x € S; otherwise, that is, if ¢j(x) < 0, ¢; is an inactive constraint
on Xx.
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Definition

Let f : R” — R and ¢ : R” — R be two functions. The minimization
problem MP(f,c) is:
minimize f(x), where x € R",
subject to x € Rc.
If xo exists in Re that f(xg) = min{f(x) | x € Rc} we refer to xqg as a
solution of MP(f,c).
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If h: R" — R™ we can write

where h; : R" — R are the components of h for 1 < j < m. If his a
differentiable function, the function (Dh)(x) is

(Vh)(x)'
(Dh)(x) = : e R™",
(Vhm)(x)
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Example

Let h : R> — R3 be given by

X1X2
h(x) = | x?
X3
Then
X2 X1
(Dh)(x)=12x3 O
0 2x

Observe that the rows of (Dh)(x) are the gradients of the components of
h.
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Theorem

(Existence Theorem of Lagrange Multipliers) Let f : R” — R and
h:R" — R™ be two functions such that:
e m<n,
o f € C}(R"),
e he CYR"), and
@ the matrix (Dh)(x) is of full rank, that is, rank((Dh)(x)) = m < n
(which means that the gradients (Vh1)(x),...,(Vhm)(x) are linearly
independent).
If xo is a local extremum of f subjected to the restriction h(xg) = 0,
then (V)(xo) is a linear combination of (Vhi)(xo),...,(Vhm)(xo0)-
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Example

Suppose that we wish to minimize f(x) = x; + x» subject to the condition
h(x) = x} +x3 = 2.

We have

e = ()
i) = (52).

2xo
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Example continued

X1+ xo

Xy

At the local minimum x* = (-1, —1)

we have (VF)(x*) = (1) and

(Vh) = (:3) so

(VF)(x*) + %(Vh) = 0.
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To apply the Lagrange multiplier technique the constraint gradients

(Vh)(), -+, (Vhm)(x)

must be linearly independent. In this case, x is said to be regular.
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If a local minimum is not regular Lagrange multipliers may not exist.

Example

Consider minimizing the function f(x) = x; + x2 subject to the constraints

hi(x)=(x1—1)2+x3 —1=0,hy(x) = (x1 —2)> +x3 —4=0.

0= (1)

(Tme) = (205 V) Tm = (25,2,

2x> 2x3

We have

and
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Example continued

The local minimum is at <8

>. At that point, we have

00 = (1) (7O = () (T = (')

The gradients (V h1)(0), (Vh2)(0) are not linearly independent because
2(Vh1)(0) + (Vh2)(0) = 02,

so 0 is not a regular point and Lagrange's multipliers do not exist.
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Example

Let A € R"™*" be a symmetric matrix and let f : R” — R be the function
defined by f(x) = x’Ax.

Optimization problem: minimize f subjected to the restriction || x ||= 1,
or equivalently h(x) =|| x [|> -1 =0.

Since (Vf) = 2Ax and (Vh)(x) = 2x there exists A such that

2Axo = 2Xxq for any extremum of f subjected to || xo ||[= 1. Thus, xo
must be a unit eigenvector of A and A must be an eigenvalue of the same
matrix.
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The next theorem provides necessary conditions for optimality that
@ include the linear independence of the gradients of the components of
the constraint (V¢;)(xo) for i € ACT(S,¢,x0)}, and
@ ensure that the coefficient of the gradient of the objective function
(VF)(xo) is not null.
These conditions are known as the Karush-Kuhn-Tucker conditions or the
KKT conditions.
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Theorem

(Karush-Kuhn-Tucker Theorem) Let S be a non-empty open subset of
R" and let f : R" — R and ¢ : R" — R™. Let xg be a local minimum in
S of f subjected to the restriction ¢(xo) < Op.

Suppose that f is differentiable in xqg, c¢; are differentiable in xo for

i € ACT(S,¢,x0), and c; are continuous in xo for i ¢ ACT(S, ¢, xo).
If{(Vci)(xo) | i € ACT(S,c,x0)} is a linearly independent set, then there
exist non-negative numbers w; for i € ACT(S, ¢,xqo) such that

(VF)(x0) + > _{wi(Vei)(xo) | i € ACT(S,€,x0)} = 0p.
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Theorem continued

Furthermore, if the functions ¢; are differentiable in xg for
i & ACT(S,¢,x0), then the previous condition can be written as:
o (Vf)(xo) + > 121 wi(Vci)(xo) = On;
e w'c(xg) =0;
w1
o w>0,, where w =

Wm
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The Primal Problem

Consider the following optimization problem for an object function
f:R" — R, a subset C C R”", and the constraint functions
c:R"—R"and d:R" — R”:
minimize f(x),where x € C,
subject to ¢(x) < 0,
and d(x) = 0,.
We refer to this optimization problem as the primal problem.
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Example

Let £ : R” — R be the linear function f(x) = a’x, A € RP*", and b € RP.
Consider the primal problem:
minimize a'x, where x € R",

subject to x > 0, and
Ax —b =0,.

The constraint functions are ¢(x) = —x and d(x) = Ax — b.
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Definition
The Lagrangian associated to the primal problem is the function
L:R"xR™ x RP — R given by:

L(x,u,v) = f(x) + u'c(x) + v'd(x)

forx € C, u € R™, and v € RP.

The component u; of u is the Lagrangian multiplier corresponding to the
constraint ¢j(x) < 0; the component v; of v is the Lagrangian multiplier
corresponding to the constraint d;(x) = 0.
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Example |

Let f : R” — R be the linear function f(x) = a’x, A € RP*", and b € RP.
Consider the primal problem:
minimize a'’x, where x € R",
subject to x > 0, and
Ax —b =0,.

The constraint functions are ¢(x) = —x and d(x) = Ax — b and
The Lagrangian L for the primal problem considered above is:

L(x,u,v) = a'x—ux+ Vv (Ax—b)
= —vb+(a —u +VAx.
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Lemma

At each feasible x we have
f(x) =sup{L(x,u,v)} | u>0pn,v €RP uci(x) =0 for1 < i< m}.

Proof: at each feasible x we have ¢;(x) < 0 and d;(x) = 0, hence
L(x,u,v) = f(x) + u'c(x) + v'd(x) < f(x).

The last inequality becomes an equality if ujci(x) =0for 1 < i< m.

43/65



Lemma
The optimal value of the primal problem f* is

f*=inf sup L(x,u,v).

X u>0p,,v

Proof: Consider feasible x (designated as x € C). In this case we have
f* = infxec f(x) = infxcc sup,=o,, v L(X, u,v).

When x is not feasible, since sup,-g, , L(X,u,v) = oo for any x & C, we
have infxgc supyo,, v L(X,u,v) = 0co. Thus, in either case,

f* = infxsup,sq,, v L(X, U, v).
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The Dual Optimization Problem

The dual optimization problem starts with the Lagrange dual function
g :R™ x RP — R defined by

g(u,v) = |2fc L(x,u,v) (1)

and consists of
maximize g(u,v), where u € R™ and v € RP,
subject to u > 0p,.
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Theorem

For every primal problem the Lagrange dual function g : R™ x RP — R
defined by Equality (1) is always concave over R™ x RP.
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Proof

For uy,ur € R™ and vy, v, € RP we have:

g(tur + (1 — t)uo, tvy + (1 — t)va)
= inf{f(x) + (tu] + (1 — t)uh)e(x) + (tv] + (1 — t)vh)d(x) | x € S}
= inf{t(f(x) + ujc + vid) + (1 — t)(f(x) + vhe(x) + vhd(x)) | x € S}
> tinf{f(x)+ujc+vid | x € S}
+(1 — t)inf{f(x) + uhe(x) + vod(x) | x € S}
= tg(u,v1) + (1 - t)g(u2, v2),

which shows that g is concave.

47 /65



@ The concavity of g is significant because a local optimum of g is a
global optimum regardless of convexity properties of f,c or d.

@ Although the dual function g is not given explicitly, the restrictions of
the dual have a simpler form and this may be an advantage in specific
cases.

@ The dual function produces lower bounds for the optimal value of the
primal problem.
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Theorem

(The Weak Duality Theorem) Suppose that x, is an optimum of f and
fo = f(x:), (Ux,vs) is an optimum for g, and g, = g(u.,v.). We have
g < fu.

Proof: Since ¢(x,) < 0, and d(x.) = 0, it follows that
Lxe,u,v) = Fx) + Ue(x.) + Vid(x.) < £.

Therefore, g(u,v) = infyec L(x,u,v) < f, for all u and v.
Since g is the optimal value of g, the last inequality implies g, < f,.
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The inequality of the previous theorem holds when f, and g, are finite or
infinite. The difference f, — g is the duality gap of the primal problem.
Strong duality holds when the duality gap is 0.
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Note that for the Lagrangian function of the primal problem we can write

sup L(x,u,v) = sup f(x)+u'c(x)+v'd(x)
u>0,,,v u>0p,v
{f(x) if ¢(x) < 0p,

00 otherwise

which implies f, = infycprn sup,~g,_ v L(x,u,v). By the definition of g we
also have
g« = sup inf L(x,u,v).

u>0,,,v XER"
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Thus, the weak duality amounts to the inequality

sup inf L(x,u,v) < inf sup L(x,u,v),
u>0m,vX€Rn x€R" u>0p,,v

and the strong duality is equivalent to the equality

sup inf L(x,u,v)= inf sup L(x,u,v).
u>0pm,v xeR" xeR" u>0m,v
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Example
Let £ : R"” — R be the linear function f(x) = a’x, A € RP*", and b € RP.
Consider the primal problem:

minimize a'x, where x € R",
subject to x > 0, and
Ax —b=0,.

The constraint functions are ¢(x) = —x and d(x) = Ax — b and the
Lagrangian L is

L(x,u,v) = a'x—u'x+ Vv (Ax—b)
= —vb+(a —uv +VAx.
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Example (cont'd)

This yields the dual function

g(u,v) = inf L(x,u,v)

= —vb+ inf (&' —u +VA)x.
x€R"
Unless @’ — v’ + v/A = 0/, we have g(u,v) = —oco. Therefore, we have
—v'b ifa—u+Av=0,,
g(u,v) =

—oo  otherwise.

Thus, the dual problem is
maximize g(u,v),
subject to u > 0.
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Example (cont'd)

An equivalent of the dual problem is
maximize —v'b,
subject toa—u+ A'v =0,
and u > 0,,.
In turn, this problem is equivalent to:
maximize —v'b,
subject toa+ A'v > 0,.
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Example

The following optimization problem
minimize %x' @x — r'x,
where x € R”,
subject to Ax > b,
where @ € R"*" is a positive definite matrix, r € R”, A € RP*", and
b € RP is known as a quadratic optimization problem.
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The Lagrangian L is
1/ / / 1/ / / /
L(x,u):ixQx—rx—l—u(Ax—b):§xQx+(uA—r)x—ub

and the dual function is g(u) = infxecrn L(x, u) subject to u > 0p,. Since x
is unconstrained in the definition of g, the minimum is attained when we
have the equalities

0
8X,'

<;X’Qx+(u’A—r’)x—u’b) =0

for 1 < i < n, which amount to x = Q1(r — Au). The dual optimization
function is: g(u) = —%U,PU —u'd— %r’Qr subject to u > 0, where

P=AQ 1A, d =b— AQ 'r. This shows that the dual problem of this
quadratic optimization problem is itself a quadratic optimization problem.
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Example

Let a1,...,am € R". We seek to determine a closed sphere Blx, r| of
minimal radius that includes all points a; for 1 < i < m. This is the
minimum bounding sphere problem, formulated by J. J. Sylvester. This
problem amounts to solving the following primal optimization problem:
minimize r, where r > 0,
subject to || x —a; ||<rforl1<i<m.
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An equivalent formulation requires minimizing r? and stating the
restrictions as || x — a; |2 —r? < 0 for 1 < i < m. The Lagrangian of this
problem is:

L(r,x,u) = r’+ Z ui(|| x —a; ||> —r?)
i=1
= r? (1—Zu;> +Zu,- | x —a? ||
i=1 i=1
and the dual function is:
g(u) = inf L(r,x,u)

I‘ER)&XGR”
m m
= inf r2<1—2u;>+2u,~Hx—a;\2H.
rER;O,XER" i1

i=1
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This leads to the following conditions:

OL(r,x,u) “
—ar - 2r<1—Zu;>:0

OL(r,x,u) 7
Txp — QZu,x—a p_Oforl p < n.

i=1
The first equality yields Y7 ; u; = 1. Therefore, from the second equality
we obtain x = 27;1 u;a;. This shows that for x is a convex combination
of a1,...,am. The dual function is

because > ", u; = 1.
Note that the restriction functions gi(x, r) =|| x — a;
convex.

|2 —r? < 0 are not
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Example

Consider the primal problem
minimize X12 4= X22, where x1,x> € R,
subject to x; — 1 > 0.
It is clear that the minimum of f(x) is obtained for x; =1 and xo = 0 and
this minimum is 1. The Lagrangian is

L(u) = x¢ +x3 4+ u1(xa — 1)
and the dual function is
vz

glu) =inf{xd +3 + mla —1) | x € R’} = —L.
X

Then sup{g(u1) | u1 > 0} =0 and a gap exists between the minimal
value of the primal function and the maximal value of the dual function.
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Example

Let a,b >0, p,g <0 and let r > 0. Consider the following primal
problem:

minimize f(x) = ax? + bx3
subject to px1 + gxo +r < 0 and x3 > 0, xop > 0.

The set Cis {x € R? | x; > 0,x > 0}. The constraint function is
c(x) = px1 + gx2 + r < 0 and the Lagrangian of the primal problem is

L(x, u) = ax? + bx3 + u(px1 + gxo + r),

where v is a Lagrangian multiplier.
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Thus, the dual problem objective function is

g(u) = inf L(x,u)
xeC
= inf ax? + bx3 + u(pxa + gxa + 1)
xeC
= inf{ax? +upx | x; >0}
xeC

+ inf {bx3 + ugxo | xo > 0} 4 ur
xeC

The infima are achieved when x; = —32 and x, = —5] if u > 0 and at
x =0, if u <0. Thus,
A .
(u) _<Ta+ﬂ>u +ru ifu>0,
g =
ru if u<O0

which is a concave function.
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2r
2

The maximum of g(u) is achieved when u = and equals

2

Family of Concentric Ellipses; the ellipse that “touches” the line
px1 + gx2 + r = 0 gives the optimum value for f. The dotted area is the

feasible region.
64/ 65



Note that if x is located on an ellipse ax? + bx3 — k = 0, then f(x) = k.
Thus, the minimum of f is achieved when k is chosen such that the ellipse
is tangent to the line px; + gxo + r = 0. In other words, we seek to

. . X
determine k such that the tangent of the ellipse at xg = <X01> located on
02

the ellipse coincides with the line given by px; + gx2 + r = 0.
The equation of the tangent is
axixo1 + bxoxgo — k = 0.

Therefore, we need to have:

axoi N ong —k
p g r’
hence xp1 = —% and xpp = —%. Substituting back these coordinates in
the equation of the ellipse yields k1 = 0 and ky = p2’2q2 . In this case no
R

duality gap exists.
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