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@ Linear Classification

© SVM - The Separable Case

© SVM - The Non-Separable Case

@ Margins

2/43



Problem Setting

@ the input space is X C R,

@ the output space is Y = {-1,1};

@ concept sought: a function f : X — Y ={-1,1};

e sample: a sequence S = ((x1,¥1), .-, (Xm,¥m)) € (X x Y)7
extracted from a distribution D.
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Problem Statement

We are exploring a hypothesis space H that consists of functions of the

form h: X — {—1,1} such that

h(x) = sign (W'x + b),

where

. 1 ifa>o0,
81(3)=1_1 iaco

such that the quantity

L(h) = Px~p(h(x) # f(x))

is small. This is the generalization error of h.
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A Fundamental Assumption: Linear Separability of S

If S is linearly separable there are, in general, infinitely many hyperplanes
that can do the separation.
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Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.
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The distance of a point xo to a hyperplane w'x + b =10

Equation of the line passing through xg and perpendicular on the
hyperplane is

X — Xg = tw;
Since z is a point on this line that belongs to the hyperplane, to find the
value of t that corresponds to z we must have w'(xo + tw) + b = 0, that

is,
w/xg + b

t= ——
w2

X0
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The distance of a point xo to a hyperplane w'x + b =10

X0

w/xo+b

Wiz W hence the distance from

Thus, z = xg —

Xo to the hyperplane is
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Primal Optimization Problem

We seek a hyperplane in R” having the equation
wx +b=0,

where w € R" is a vector normal to the hyperplane and b € R is a scalar.
A hyperplane w'x + b = 0 that does not pass through a point of S is in
canonical form relative to a sample S if

min _|w'x + b| = 1.
(x.y)es

Note that we may always assume that the separating hyperplane are in
canonical form relative by S by rescaling the coefficients of the equation
that define the hyperplane (the components of w and b).
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Example
Consider the points:

1 4 11 10 10
A=(o)-2=(c)- <= (3) 2= (5) 2= (5).
in R? and the hyperplane P (in this case, a line)

3x1 + 10x2 — 60 = 0.

For this hyperplane we have w = (130) and b = —60. Also,
| w[|=v109.

Note that A, B, C, D do not belong to he hyperplane (e.g.
3-14+10-9 =93 # 60), except E for which we have
3-10+10-3 —60 = 0. We say that E is a support point for P.
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Example (cont'd)

Example

Distances from the points to the hyperplane are:

d(A, P)
d(B, P)
d(C,P)
d(D, P)

d(E, P)

3+90-60] 33

v/109 109’
12+20-60] 28
v/109 V109’
33+10-60 17
V109 v/109’
30+60—-60 30
v/109 109’
30+30-60 0

—
o
(=]
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Example
The closest point to P is C (except E), which means that we can rescale
the coefficients of the hyperplane by dividing them by 17 Thus, the
equation of the hyperplane in canonical form becomes

10 60

3 et 0
—X — X2 — — = U.
1717 1y
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Example
The minimum distance from one of the external points to the hyperplane is

60 33 10 _ 60
d(C,P) = [+ e —% _mtm ol L .
v/109 v/109 v/109
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If the hyperplane w/x + b = 0 is in canonical form relative to the sample
S, then the distance to the hyperplane to the closest points in S (the
margin of the hyperplane) is the same, namely,

w'x+b 1
y)es lwl — fwl

p:
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Canonical Separating Hyperplane

For a canonical separating hyperplane we have
w'x +b| >1
for any point (x, y) of the sample and
w'x +b| =1

for every support point. The point (x;, y;) is classified correctly if y; has
the same sign as w'x; + b, that is, y;(w'x; + b) > 1.
Maximizing the margin is equivalent to minimizing || w || or, equivalently,
to minimizing % | w ||2. Thus, in the separable case the SVM problem is
equivalent to the following convex optimization problem:

e minimize 1 || w ||

@ subjected to yj(w'x; +b) = 1for 1 <i< m.
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Why 2 || w ||*?

Note that this objective function,

1 1
S llw 2= S0+ w?)

is differentiable!
We have V (% | w|[?) =w and that

Hijwiz = In,

which shows that 3 || w ||? is a convex function of w.
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Support Vectors

The Lagrangean of the optimization problem
o minimize 1 || w ||%;
@ subjected to y;(w'x; + b) > 1for 1 <i<m.
is .
1
L(w,b,a) = 5 | w|?— z; ai (yi(w'x; + b) — 1).
=
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The Karush-Kuhn-Tucker Optimality Conditions

m
Vwl = w—) ayx; =0,
i=1

Vpl = —Zaiy; =0,
=1
ai(yi(w'x; +b)—1) = 0forall i

imply

m
w = E a,-y,-x,-:0,
i=1

m
D aiyi = 0,
i=1
ai = Oory(wx;+b)=1for1<i<m.
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Consequences of the KKT Conditions

@ the weight vector is a linear combination of the training vectors
X1,...,Xm, where x; appears in this combination only if a; # 0
(support vectors);

@ since a; = 0 or y;(w'x; + b) =1 for all i, if a; # 0, then
yi(w'x; + b) = 1 for the support vectors; thus, all these vectors lie on
the marginal hyperplanes wx + b=1or w'x + b= —1,

@ if non-support vector are removed the solution remains the same;

@ while the solution of the problem w remains the same different
choices may be possible for the support vectors.
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Recall that the optimization problem for SVMs was
minimize 1 || w |2
subject to yi(w'x +b) =1 for1 <i<m
Equivalently, the constraints are

1—yj(w'x+b) <0

for1<i<m
The Lagrangean is

L(w,b,a)

1 m
= S lIwl?+ a1 - yi(w'xi + b))
i=1

1 m m m
= § H w H2 —l—Za,- — Za,-y,-w’x,- — bz ajyi.
i=1 i=1 i=1

21/43



The Dual Problem

maximize L(w, b, a)

The KKT conditions are

(Vwl) = W—Zai)/iXiZO,

_Zalyl_o

,'(1 — y;(w X+ b)) =

(Vpl) =

which are equivalent to

w

m
Z,‘:l ajyi
a; = 0

respectively.

or

m
Zi:l ajyiXj,
0,

y,'(W/X,' + b) =1,
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Implications

@ the weight vector w is a linear combination of the training vectors
X1,y Xm,
@ a vector x; appears in w if and only if a; # 0 (such vectors are called
support vectors);
e if a; # 0, then y;(w'x; + b) = £1.
Note that support vectors define the maximum margin hyperplane, or the
SVM solution.
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Transforming the Lagrangean

Since
1 m m m
L(w,b,a) = 5 | w2 —i—;a; - Zla,-y;w'x,- - b; aiyi,

w = jmzl ajyjx; (note that we changed the summation index from i to
J),and >°7, a;y; = 0, we have

1 m m m
L(w,b,a) = 5 | w2 +Z aj — Zzaiaj)/iijj-xi-
i=1

i=1 j=1
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Further Transformation of the Lagrangean

Note that
m m
lw? = ww=>" ayx] (Z a;y;x,-> ,
=1 i—1
m m
= DD iy
i—1 j—1
Therefore,
L(w,ba) = = H w|? +Za, Zzalajy,ij Xj
i=1 j=1
D S 5 S
=1

i=1 j=1
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The Dual Optimization Problem for Separable Sets

.. m 1 m m /
maximize Y " ai — 530701 370 aiajyiyiXiX;
subject to a; > 0 for 1 <i<mand) ", ajy; =0.

Note that the objective function depends on as, ..., am.
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@ in this case the strong duality holds; therefore, the primal and the
dual problems are equivalent;

@ the solution a of the dual problem can be used directly to determine
the hypothesis returned by the SVM as

h(x) = sign (w'x + b) = sign (ij 2iyi(xix) + b) :

i=1

@ since support vectors lie on the marginal hyperplanes, for every
support vector x; we have w'x; + b = y;, so

m
b=y — Z ajyj(xix).
j=1
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Slack Variables

If data is not separable the conditions y;(w'x; + b) > 1 cannot all hold
(for 1 < i < m). Instead, we impose a relaxed version, namely

yi(w'xi +b) > 1—-¢,

where &; are new variables known as slack variables.
A slack variable & measures the distance by which x; violates the desired

inequality y;(w'x; + b) > 1.
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L] L] .\
wx+b=—1-"

"X

A vector x; is an outlier if x; is not positioned correctly on the side of the

appropriate hyperplane.
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@ a vector x; with 0 < y;(w'x; + b) < 1 is still an outlier even if it is
correctly classified by the hyperplane w/x + b = 0 (see the red point);

@ if we omit the outliers the data is correctly separated by the
hyperplane w'x + b = 0 with a soft margin p = H%II;

@ we wish to limit the amount of slack due to outliers (3>°7"; &), but we
also seek a hyperplane with a large margin (even though this may
lead to more outliers).
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Optimization for Non-Separable Data

minimize 5 || w |2 +C Y7, &F
subject to y;(wW'x; +b) > 1—¢& and & >0 for1 < i< m.

The parameter C is determined in the process of cross-validation.
This is a convex optimization problem with affine constraints.
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Support Vectors

As in the separable case:
@ constraints are affine and thus, qualified;
@ the objective function and the affine constraints are convex and
differentiable;
@ thus, the KKT conditions apply.
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Variables

@ a; > 0 for 1 < i < m are variables associated with m constraints;
@ b; > 0 for 1 < i< m are variables associated with the non-negativity
constraints of the slack variables.
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The Lagrangean is defined as:

L(W7 b7 51) cee agmaa) b) = % H w H2 +CZ7;1 fi
=2 ailyi(w'x; + b) — 1+ &] = 201, bi&i.

The KKT conditions are:

VWL = w— 27;1 ajyiXi = 0 = w= Z?;l ajyiXi
Vol = =3 aiyi=0 = >iayi=0
Vgl = C—ai—bi=0 = aj+b=C

and

ailyiwx;+b)—14+&]=0for1<i<m=a =0or
yi(w'xj +b) =1-¢,
b,-§,-:0:>b,-:00r§,-:O.
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Consequences of the KKT Conditions

@ w is a linear combination of the training vectors x1, ..., Xm, where x;
appears in the combination only if a; # 0;

o if a; #0, then y;(w'x; + b) =1—¢&;;

e if § =0, then y;(w'x; + b) = 1 and x; lies on marginal hyperplane as
in the separable case; otherwise, x; is an outlier;

@ if x; is an outlier, b; = 0 and a; = C or x; is located on the marginal
hyperplane.

@ w is unique; the support vectors are not.
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The Dual Optimization Problem

The Lagrangean can be rewritten by substituting w:

2
_ 1 m m m /
L = EH >t a,-y,-x,-‘ -2 j=19idjYiYjXXj
m m
Z, 131)’/b+z, 14i
— m v v
= Y83 Z: 12.j=19idjYiyjXiXj,
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@ the Lagrangean has exactly the same form as in the separable case;
@ we need a; > 0 and, in addition b; > 0, which is equivalent to a; < C
(because a; + b; = C);
The dual optimization problem for the non-separable case becomes:
maximize for a 271:1 aj — %a,-ajy,-ijf-xj
subject to 0 < a; < C and ;" ; ajyi =0
forl1<i<m.
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Consequences

@ the objective function is concave and differentiable;
@ the solution can be used to determine the hypothesis

h(x) = sign (W'x + b);

@ for any support vector b; we have b = y; — ijzl ajyxix;.
@ the hypothesis returned depends only on the inner products between

the vectors and not directly on the vectors themselves.

38/43



Definition
The geometric margin relative to a linear classifier h(x) = w'x + b is its
distance to the hyperplane w'x + b = 0:
y(w'x + b)
p(x) =
| wl
The margin for a linear classifier h for a sample S = (x1,...,Xm) is
. /
— min yi(w'x + b)
1cism | w |
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Theorem

Let S be a sample included in a sphere of radius r, S C {x ||| x ||< r}.
The VC dimension of the set of canonical hyperplanes of the form

h(x) = sign (w'x), min w'x| =1 and | w||<A,
x€

verifies d < r2A2.
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Proof

Suppose that {x1,...,x4} is a set that can be fully shattered. Then, for
ally = (y1,...,yq) € {—1,1} there exists w such that 1 < y;(w'x) for
1<i<d.

Summing up these inequalities yields:

d d
d<w' Y yixi < w || yixi
i=1 i=1

d
< /\H Z YiXi
i—1
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Proof (cont’'d)

Since yi,...,yq are independent, if i # j, E(yiy;) = E(yi)E(y;) = 0; also,

E(yiyi) = 1.
Since d < /\H 27:1 YiXi
expectations and we have

holds for all y € {—1,1}9, it holds over

Jer(o (5))

. 1/2
= A (ZZ Ey(yfyj)(Xf-Xj))

i=1 j=1

Q
/N

re (|

J 1/2
= A (Zx?x,) < N(dr?)Y? = Ar/d.
i=1
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Thus,
d < N*r?

@ recall that when the data is linearly separable the margin p is given by:

w'x+bl 1
(xy)es | w | | w i’

p:

@ if we restrict the sample S such that the resulting w is such that
| wl= % = A, it follows that

2
r
d< .

R
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