Support Vector Machines - II Slide Set 14

Prof. Dan A. Simovici

UMB
(1) Linear Classification
(2) SVM - The Separable Case
(3) SVM - The Non-Separable Case
(4) Margins

Problem Setting

- the input space is $X \subseteq \mathbb{R}^{n}$;
- the output space is $y=\{-1,1\}$;
- concept sought: a function $f: \mathcal{X} \longrightarrow y=\{-1,1\}$;
- sample: a sequence $S=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right) \in(X \times y)^{m}$ extracted from a distribution \mathcal{D}.

Problem Statement

We are exploring a hypothesis space H that consists of functions of the form $h: X \longrightarrow\{-1,1\}$ such that

$$
h(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right),
$$

where

$$
\operatorname{sign}(a)= \begin{cases}1 & \text { if } a \geq 0 \\ -1 & \text { if } a<0\end{cases}
$$

such that the quantity

$$
L(h)=P_{x \sim \mathcal{D}}(h(x) \neq f(x))
$$

is small. This is the generalization error of h.

A Fundamental Assumption: Linear Separability of S

If S is linearly separable there are, in general, infinitely many hyperplanes that can do the separation.

Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.

The distance of a point \boldsymbol{x}_{0} to a hyperplane $\boldsymbol{w}^{\prime} \boldsymbol{x}+b=0$

Equation of the line passing through \boldsymbol{x}_{0} and perpendicular on the hyperplane is

$$
x-x_{0}=t w
$$

Since \boldsymbol{z} is a point on this line that belongs to the hyperplane, to find the value of t that corresponds to \boldsymbol{z} we must have $\boldsymbol{w}^{\prime}\left(\boldsymbol{x}_{0}+t \boldsymbol{w}\right)+b=0$, that is,

$$
t=-\frac{\boldsymbol{w}^{\prime} \boldsymbol{x}_{0}+b}{\|\boldsymbol{w}\|^{2}}
$$

The distance of a point \boldsymbol{x}_{0} to a hyperplane $\boldsymbol{w}^{\prime} \boldsymbol{x}+b=0$

Thus, $\boldsymbol{z}=\boldsymbol{x}_{0}-\frac{\boldsymbol{w}^{\prime} \boldsymbol{x}_{0}+b}{\|\boldsymbol{w}\|^{2}} \boldsymbol{w}$, hence the distance from x_{0} to the hyperplane is

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{z}\right\|=\frac{\left|\boldsymbol{w}^{\prime} \boldsymbol{x}_{0}+b\right|}{\|\boldsymbol{w}\|}
$$

Primal Optimization Problem

We seek a hyperplane in \mathbb{R}^{n} having the equation

$$
\boldsymbol{w}^{\prime} \boldsymbol{x}+b=0
$$

where $\boldsymbol{w} \in \mathbb{R}^{n}$ is a vector normal to the hyperplane and $b \in \mathbb{R}$ is a scalar. A hyperplane $\boldsymbol{w}^{\prime} \boldsymbol{x}+b=0$ that does not pass through a point of S is in canonical form relative to a sample S if

$$
\min _{(x, y) \in S}\left|\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right|=1
$$

Note that we may always assume that the separating hyperplane are in canonical form relative by S by rescaling the coefficients of the equation that define the hyperplane (the components of \boldsymbol{w} and b).

Example

Consider the points:

$$
A=\binom{1}{9}, B=\binom{4}{2}, C=\binom{11}{1} D=\binom{10}{6}, D=\binom{10}{3},
$$

in \mathbb{R}^{2} and the hyperplane P (in this case, a line)

$$
3 x_{1}+10 x_{2}-60=0
$$

For this hyperplane we have $\boldsymbol{w}=\binom{3}{10}$ and $b=-60$. Also,
$\|\boldsymbol{w}\|=\sqrt{109}$.
Note that A, B, C, D do not belong to he hyperplane (e.g.
$3 \cdot 1+10 \cdot 9=93 \neq 60$), except E for which we have
$3 \cdot 10+10 \cdot 3-60=0$. We say that E is a support point for P.

$$
A=\binom{1}{9}, B=\binom{4}{2}, C=\binom{11}{1} D=\binom{10}{6}, D=\binom{10}{3},
$$

Example (cont'd)

Example

Distances from the points to the hyperplane are:

$$
\begin{aligned}
& d(A, P)=\frac{|3+90-60|}{\sqrt{109}}=\frac{33}{\sqrt{109}} \\
& d(B, P)=\frac{|12+20-60|}{\sqrt{109}}=\frac{28}{\sqrt{109}} \\
& d(C, P)=\frac{33+10-60}{\sqrt{109}}=\frac{17}{\sqrt{109}} \\
& d(D, P)=\frac{30+60-60}{\sqrt{109}}=\frac{30}{\sqrt{109}} \\
& d(E, P)=\frac{30+30-60}{\sqrt{109}}=0
\end{aligned}
$$

Example

The closest point to P is C (except E), which means that we can rescale the coefficients of the hyperplane by dividing them by 17 Thus, the equation of the hyperplane in canonical form becomes

$$
\frac{3}{17} x_{1}+\frac{10}{17} x_{2}-\frac{60}{17}=0
$$

Example

The minimum distance from one of the external points to the hyperplane is

$$
d(C, P)=\frac{\left|\frac{3}{17} x_{1}+\frac{10}{17} x_{2}-\frac{60}{17}\right|}{\sqrt{109}}=\frac{\left|\frac{33}{17}+\frac{10}{17}-\frac{60}{17}\right|}{\sqrt{109}}=\frac{1}{\sqrt{109}} .
$$

If the hyperplane $\boldsymbol{w}^{\prime} \boldsymbol{x}+\boldsymbol{b}=0$ is in canonical form relative to the sample S, then the distance to the hyperplane to the closest points in S (the margin of the hyperplane) is the same, namely,

$$
\rho=\min _{(x, y) \in S} \frac{\left|\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right|}{\|\boldsymbol{w}\|}=\frac{1}{\|\boldsymbol{w}\|}
$$

Canonical Separating Hyperplane

For a canonical separating hyperplane we have

$$
\left|\boldsymbol{w}^{\prime} \mathbf{x}+b\right| \geqslant 1
$$

for any point $(\boldsymbol{x}, \boldsymbol{y})$ of the sample and

$$
\left|\boldsymbol{w}^{\prime} \mathbf{x}+b\right|=1
$$

for every support point. The point $\left(x_{i}, y_{i}\right)$ is classified correctly if y_{i} has the same sign as $\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b$, that is, $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right) \geqslant 1$.
Maximizing the margin is equivalent to minimizing $\|\boldsymbol{w}\|$ or, equivalently, to minimizing $\frac{1}{2}\|\boldsymbol{w}\|^{2}$. Thus, in the separable case the SVM problem is equivalent to the following convex optimization problem:

- minimize $\frac{1}{2}\|\boldsymbol{w}\|^{2}$;
- subjected to $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right) \geqslant 1$ for $1 \leqslant i \leqslant m$.

Why $\frac{1}{2}\|\boldsymbol{w}\|^{2} ?$

Note that this objective function,

$$
\frac{1}{2}\|\boldsymbol{w}\|^{2}=\frac{1}{2}\left(w_{1}^{2}+\cdots+w_{n}^{2}\right)
$$

is differentiable!
We have $\nabla\left(\frac{1}{2}\|\boldsymbol{w}\|^{2}\right)=\boldsymbol{w}$ and that

$$
H_{\frac{1}{2}\|\boldsymbol{w}\|^{2}}=\boldsymbol{I}_{n}
$$

which shows that $\frac{1}{2}\|\boldsymbol{w}\|^{2}$ is a convex function of \boldsymbol{w}.

Support Vectors

The Lagrangean of the optimization problem

- minimize $\frac{1}{2}\|\boldsymbol{w}\|^{2}$;
- subjected to $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right) \geqslant 1$ for $1 \leqslant i \leqslant m$.
is

$$
L(\boldsymbol{w}, b, \boldsymbol{a})=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i=1}^{m} a_{i}\left(y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)-1\right)
$$

The Karush-Kuhn-Tucker Optimality Conditions

$$
\begin{aligned}
\nabla_{\boldsymbol{w}} L & =\boldsymbol{w}-\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{x}_{i}=0, \\
\nabla_{b} L & =-\sum_{i=1}^{m} a_{i} y_{i}=0 \\
a_{i}\left(y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)-1\right) & =0 \text { for all } i
\end{aligned}
$$

imply

$$
\begin{aligned}
\boldsymbol{w} & =\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{x}_{i}=0 \\
\sum_{i=1}^{m} a_{i} y_{i} & =0 \\
a_{i} & =0 \text { or } y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)=1 \text { for } 1 \leqslant i \leqslant m
\end{aligned}
$$

Consequences of the KKT Conditions

- the weight vector is a linear combination of the training vectors x_{1}, \ldots, x_{m}, where \boldsymbol{x}_{i} appears in this combination only if $a_{i} \neq 0$ (support vectors);
- since $a_{i}=0$ or $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)=1$ for all i, if $a_{i} \neq 0$, then $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)=1$ for the support vectors; thus, all these vectors lie on the marginal hyperplanes $\boldsymbol{w}^{\prime} \boldsymbol{x}+b=1$ or $\boldsymbol{w}^{\prime} \boldsymbol{x}+b=-1$;
- if non-support vector are removed the solution remains the same;
- while the solution of the problem \boldsymbol{w} remains the same different choices may be possible for the support vectors.

Recall that the optimization problem for SVMs was
minimize $\frac{1}{2}\|\boldsymbol{w}\|^{2}$

$$
\text { subject to } y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right) \geqslant 1 \text { for } 1 \leqslant i \leqslant m
$$

Equivalently, the constraints are

$$
1-y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right) \leqslant 0
$$

for $1 \leqslant i \leqslant m$.
The Lagrangean is

$$
\begin{aligned}
& L(\boldsymbol{w}, b, \boldsymbol{a}) \\
& \quad=\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{m} a_{i}\left(1-y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)\right) \\
& \quad=\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{m} a_{i}-\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{w}^{\prime} \boldsymbol{x}_{i}-b \sum_{i=1}^{m} a_{i} y_{i} .
\end{aligned}
$$

The Dual Problem

maximize $L(\boldsymbol{w}, b, \boldsymbol{a})$
The KKT conditions are

$$
\begin{aligned}
\left(\nabla_{\boldsymbol{w}} L\right)= & \boldsymbol{w}-\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{x}_{i}=\mathbf{0} \\
\left(\nabla_{b} L\right)= & -\sum_{i=1}^{m} a_{i} y_{i}=0 \\
& a_{i}\left(1-y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)\right)=0,
\end{aligned}
$$

which are equivalent to

$$
\begin{aligned}
\boldsymbol{w} & =\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{x}_{i} \\
\sum_{i=1}^{m} a_{i} y_{i} & =0 \\
a_{i}=0 & \text { or } \quad y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)=1
\end{aligned}
$$

respectively.

Implications

- the weight vector \boldsymbol{w} is a linear combination of the training vectors x_{1}, \ldots, x_{m};
- a vector \boldsymbol{x}_{i} appears in \boldsymbol{w} if and only if $a_{i} \neq 0$ (such vectors are called support vectors);
- if $a_{i} \neq 0$, then $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)= \pm 1$.

Note that support vectors define the maximum margin hyperplane, or the SVM solution.

Transforming the Lagrangean

Since

$$
L(\boldsymbol{w}, b, \boldsymbol{a})=\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{m} a_{i}-\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{w}^{\prime} \boldsymbol{x}_{i}-b \sum_{i=1}^{m} a_{i} y_{i},
$$

$\boldsymbol{w}=\sum_{j=1}^{m} a_{j} y_{j} \boldsymbol{x}_{j}$ (note that we changed the summation index from i to j), and $\sum_{i=1}^{m} a_{i} y_{i}=0$, we have

$$
L(\boldsymbol{w}, b, \boldsymbol{a})=\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{m} a_{i}-\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j} y_{i} y_{j} \boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{i}
$$

Further Transformation of the Lagrangean

Note that

$$
\begin{aligned}
\|\boldsymbol{w}\|^{2} & =\boldsymbol{w}^{\prime} \boldsymbol{w}=\left(\sum_{j=1}^{m} a_{j} y_{j} \boldsymbol{x}_{j}^{\prime}\right)\left(\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{x}_{i}\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j} y_{i} y_{j} \boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{i}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
L(\boldsymbol{w}, b, \boldsymbol{a}) & =\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{m} a_{i}-\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j} y_{i} y_{j} \boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{i} \\
& =\sum_{i=1}^{m} a_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j} y_{i} y_{j} \boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{i} .
\end{aligned}
$$

The Dual Optimization Problem for Separable Sets

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i=1}^{m} a_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j} \\
& \text { subject to } a_{i} \geqslant 0 \text { for } 1 \leqslant i \leqslant m \text { and } \sum_{i=1}^{m} a_{i} y_{i}=0 .
\end{aligned}
$$

Note that the objective function depends on a_{1}, \ldots, a_{m}.

- in this case the strong duality holds; therefore, the primal and the dual problems are equivalent;
- the solution a of the dual problem can be used directly to determine the hypothesis returned by the SVM as

$$
h(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right)=\operatorname{sign}\left(\sum_{i=1}^{m} a_{i} y_{i}\left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{x}\right)+b\right)
$$

- since support vectors lie on the marginal hyperplanes, for every support vector \boldsymbol{x}_{i} we have $\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b=y_{i}$, so

$$
b=y_{i}-\sum_{j=1}^{m} a_{j} y_{j}\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}\right)
$$

Slack Variables

If data is not separable the conditions $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right) \geqslant 1$ cannot all hold (for $1 \leqslant i \leqslant m$). Instead, we impose a relaxed version, namely

$$
y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right) \geqslant 1-\xi_{i}
$$

where ξ_{i} are new variables known as slack variables.
A slack variable ξ_{i} measures the distance by which \boldsymbol{x}_{i} violates the desired inequality $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right) \geqslant 1$.

A vector $\boldsymbol{x}_{\boldsymbol{i}}$ is an outlier if $\boldsymbol{x}_{\boldsymbol{i}}$ is not positioned correctly on the side of the appropriate hyperplane.

- a vector \boldsymbol{x}_{i} with $0<y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)<1$ is still an outlier even if it is correctly classified by the hyperplane $\boldsymbol{w}^{\prime} \boldsymbol{x}+b=0$ (see the red point);
- if we omit the outliers the data is correctly separated by the hyperplane $\boldsymbol{w}^{\prime} \boldsymbol{x}+b=0$ with a soft margin $\rho=\frac{1}{\|\boldsymbol{w}\|}$;
- we wish to limit the amount of slack due to outliers ($\sum_{i=1}^{m} \xi_{i}$), but we also seek a hyperplane with a large margin (even though this may lead to more outliers).

Optimization for Non-Separable Data

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i=1}^{m} \xi_{i}^{p} \\
& \text { subject to } y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right) \geqslant 1-\xi_{i} \text { and } \xi_{i} \geqslant 0 \text { for } 1 \leqslant i \leqslant m .
\end{aligned}
$$

The parameter C is determined in the process of cross-validation. This is a convex optimization problem with affine constraints.

Support Vectors

As in the separable case:

- constraints are affine and thus, qualified;
- the objective function and the affine constraints are convex and differentiable;
- thus, the KKT conditions apply.

Variables

- $a_{i} \geqslant 0$ for $1 \leqslant i \leqslant m$ are variables associated with m constraints;
- $b_{i} \geqslant 0$ for $1 \leqslant i \leqslant m$ are variables associated with the non-negativity constraints of the slack variables.

The Lagrangean is defined as:

$$
\begin{aligned}
L\left(\boldsymbol{w}, b, \xi_{1}, \ldots, \xi_{m}, \boldsymbol{a}, \boldsymbol{b}\right)= & \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i=1}^{m} \xi_{i} \\
& -\sum_{i=1}^{m} a_{i}\left[y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)-1+\xi_{i}\right]-\sum_{i=1}^{n} b_{i} \xi_{i} .
\end{aligned}
$$

The KKT conditions are:

$$
\begin{aligned}
\nabla_{\boldsymbol{w}} L=\boldsymbol{w}-\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{x}_{i}=0 & \Rightarrow \boldsymbol{w}=\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{x}_{i} \\
\nabla_{b} L=-\sum_{i=1}^{m} a_{i} y_{i}=0 & \Rightarrow \sum_{i=1}^{m} a_{i} y_{i}=0 \\
\nabla_{\xi_{i}} L=C-a_{i}-b_{i}=0 & \Rightarrow a_{i}+b_{i}=C
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{i}\left[y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)-1+\xi_{i}\right]=0 \text { for } 1 \leqslant i \leqslant m \Rightarrow a_{i}=0 \text { or } \\
& y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)=1-\xi_{i} \\
& b_{i} \xi_{i}=0 \Rightarrow b_{i}=0 \text { or } \xi_{i}=0 .
\end{aligned}
$$

Consequences of the KKT Conditions

- \boldsymbol{w} is a linear combination of the training vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$, where \boldsymbol{x}_{i} appears in the combination only if $a_{i} \neq 0$;
- if $a_{i} \neq 0$, then $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)=1-\xi_{i}$;
- if $\xi_{i}=0$, then $y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}_{i}+b\right)=1$ and \boldsymbol{x}_{i} lies on marginal hyperplane as in the separable case; otherwise, $\boldsymbol{x}_{\boldsymbol{i}}$ is an outlier;
- if \boldsymbol{x}_{i} is an outlier, $b_{i}=0$ and $a_{i}=C$ or \boldsymbol{x}_{i} is located on the marginal hyperplane.
- \boldsymbol{w} is unique; the support vectors are not.

The Dual Optimization Problem

The Lagrangean can be rewritten by substituting \boldsymbol{w} :

$$
\begin{aligned}
L= & \frac{1}{2}\left\|\sum_{i=1}^{m} a_{i} y_{i} \boldsymbol{x}_{i}\right\|^{2}-\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j} \\
& -\sum_{i=1}^{m} a_{i} y_{i} b+\sum_{i=1}^{m} a_{i} \\
= & \sum_{i=1}^{m} a_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j},
\end{aligned}
$$

- the Lagrangean has exactly the same form as in the separable case;
- we need $a_{i} \geqslant 0$ and, in addition $b_{i} \geqslant 0$, which is equivalent to $a_{i} \leqslant C$ (because $a_{i}+b_{i}=C$);
The dual optimization problem for the non-separable case becomes:
maximize for a $\sum_{i=1}^{m} a_{i}-\frac{1}{2} a_{i} a_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j}$
subject to $0 \leqslant a_{i} \leqslant C$ and $\sum_{i=1}^{m} a_{i} y_{i}=0$ for $1 \leqslant i \leqslant m$.

Consequences

- the objective function is concave and differentiable;
- the solution can be used to determine the hypothesis

$$
h(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right)
$$

- for any support vector b_{i} we have $b=y_{i}-\sum_{j=1}^{m} a_{j} y_{j} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j}$.
- the hypothesis returned depends only on the inner products between the vectors and not directly on the vectors themselves.

Definition

The geometric margin relative to a linear classifier $h(\boldsymbol{x})=\boldsymbol{w}^{\prime} \boldsymbol{x}+b$ is its distance to the hyperplane $\boldsymbol{w}^{\prime} \boldsymbol{x}+b=0$:

$$
\rho(\boldsymbol{x})=\frac{y\left(\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right)}{\|\boldsymbol{w}\|}
$$

The margin for a linear classifier h for a sample $S=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)$ is

$$
\rho=\min _{1 \leqslant i \leqslant m} \frac{y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right)}{\|\boldsymbol{w}\|}
$$

Theorem

Let S be a sample included in a sphere of radius $r, S \subseteq\{\boldsymbol{x} \mid\|\boldsymbol{x}\| \leqslant r\}$. The VC dimension of the set of canonical hyperplanes of the form

$$
h(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}\right), \min _{\boldsymbol{x} \in S}\left|\boldsymbol{w}^{\prime} \boldsymbol{x}\right|=1 \text { and }\|\boldsymbol{w}\| \leqslant \Lambda,
$$

verifies $d \leqslant r^{2} \Lambda^{2}$.

Proof

Suppose that $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}\right\}$ is a set that can be fully shattered. Then, for all $\boldsymbol{y}=\left(y_{1}, \ldots, y_{d}\right) \in\{-1,1\}^{d}$ there exists \boldsymbol{w} such that $1 \leqslant y_{i}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}\right)$ for $1 \leqslant i \leqslant d$.
Summing up these inequalities yields:

$$
d \leqslant \boldsymbol{w}^{\prime} \sum_{i=1}^{d} y_{i} \boldsymbol{x}_{i} \leqslant\|\boldsymbol{w}\| \cdot\left\|\sum_{i=1}^{d} y_{i} \boldsymbol{x}_{i}\right\| \leqslant \Lambda\left\|\sum_{i=1}^{d} y_{i} \boldsymbol{x}_{i}\right\|
$$

Proof (cont'd)

Since y_{1}, \ldots, y_{d} are independent, if $i \neq j, E\left(y_{i} y_{j}\right)=E\left(y_{i}\right) E\left(y_{j}\right)=0$; also, $E\left(y_{i} y_{i}\right)=1$.
Since $d \leqslant \Lambda\left\|\sum_{i=1}^{d} y_{i} x_{i}\right\|$ holds for all $\boldsymbol{y} \in\{-1,1\}^{d}$, it holds over expectations and we have

$$
\begin{aligned}
d & \leqslant \Lambda E_{y}\left(\left\|\sum_{i=1}^{d} y_{i} x_{i}\right\|\right) \leqslant \Lambda\left(E_{y}\left(\left\|\sum_{i=1}^{d} y_{i} x_{i}\right\|^{2}\right)\right)^{1 / 2} \\
& =\Lambda\left(\sum_{i=1}^{m} \sum_{j=1}^{m} E_{y}\left(y_{i} y_{j}\right)\left(x_{i}^{\prime} x_{j}\right)\right)^{1 / 2} \\
& =\Lambda\left(\sum_{i=1}^{d} x_{i}^{\prime} x_{i}\right)^{1 / 2} \leqslant \Lambda\left(d r^{2}\right)^{1 / 2}=\Lambda r \sqrt{d} .
\end{aligned}
$$

Thus,

$$
d \leqslant \Lambda^{2} r^{2}
$$

- recall that when the data is linearly separable the margin ρ is given by:

$$
\rho=\min _{(x, y) \in S} \frac{\left|\boldsymbol{w}^{\prime} \boldsymbol{x}+b\right|}{\|\boldsymbol{w}\|}=\frac{1}{\|\boldsymbol{w}\|} ;
$$

- if we restrict the sample S such that the resulting \boldsymbol{w} is such that
$\|\boldsymbol{w}\|=\frac{1}{\rho}=\Lambda$, it follows that

$$
d \leqslant \frac{r^{2}}{\rho^{2}}
$$

