Support Vector Machines - II Slide Set 14

Prof. Dan A. Simovici

UMB

(日)

1/43

2 SVM - The Separable Case

Problem Setting

- the input space is $\mathfrak{X} \subseteq \mathbb{R}^n$;
- the output space is $\mathcal{Y} = \{-1, 1\}$;
- concept sought: a function $f : \mathcal{X} \longrightarrow \mathcal{Y} = \{-1, 1\};$
- sample: a sequence $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)) \in (\mathfrak{X} \times \mathfrak{Y})^m$ extracted from a distribution \mathfrak{D} .

Problem Statement

We are exploring a hypothesis space H that consists of functions of the form $h: \mathcal{X} \longrightarrow \{-1, 1\}$ such that

$$h(\boldsymbol{x}) = sign\,(\boldsymbol{w}'\boldsymbol{x} + b),$$

where

$$sign\left(a
ight) = egin{cases} 1 & ext{if } a \geq 0, \ -1 & ext{if } a < 0. \end{cases}$$

such that the quantity

$$L(h) = P_{x \sim \mathcal{D}}(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))$$

is small. This is the generalization error of h.

A Fundamental Assumption: Linear Separability of S

If S is linearly separable there are, in general, infinitely many hyperplanes that can do the separation.

Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.

The distance of a point \mathbf{x}_0 to a hyperplane $\mathbf{w}'\mathbf{x} + b = 0$

Equation of the line passing through \mathbf{x}_0 and perpendicular on the hyperplane is

$$\mathbf{x} - \mathbf{x}_0 = t\mathbf{w};$$

Since z is a point on this line that belongs to the hyperplane, to find the value of t that corresponds to z we must have $w'(x_0 + tw) + b = 0$, that is,

$$t = -\frac{\boldsymbol{w}' \boldsymbol{x}_0 + b}{\parallel \boldsymbol{w} \parallel^2}$$

イロト イヨト イヨト イヨト

7/43

The distance of a point \mathbf{x}_0 to a hyperplane $\mathbf{w}'\mathbf{x} + b = 0$

 \boldsymbol{x}_0 to the hyperplane is

$$\| \mathbf{x}_0 - \mathbf{z} \| = \frac{|\mathbf{w}'\mathbf{x}_0 + b|}{\| \mathbf{w} \|}.$$

Primal Optimization Problem

We seek a hyperplane in \mathbb{R}^n having the equation

$$\boldsymbol{w}'\boldsymbol{x}+b=0,$$

where $\boldsymbol{w} \in \mathbb{R}^n$ is a vector normal to the hyperplane and $b \in \mathbb{R}$ is a scalar. A hyperplane $\boldsymbol{w}'\boldsymbol{x} + b = 0$ that does not pass through a point of S is in canonical form relative to a sample S if

$$\min_{(\boldsymbol{x},y)\in S}|\boldsymbol{w}'\boldsymbol{x}+b|=1.$$

Note that we may always assume that the separating hyperplane are in canonical form relative by S by rescaling the coefficients of the equation that define the hyperplane (the components of w and b).

Example

Consider the points:

$$A = \begin{pmatrix} 1 \\ 9 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, C = \begin{pmatrix} 11 \\ 1 \end{pmatrix} D = \begin{pmatrix} 10 \\ 6 \end{pmatrix}, D = \begin{pmatrix} 10 \\ 3 \end{pmatrix},$$

in \mathbb{R}^2 and the hyperplane *P* (in this case, a line)

$$3x_1 + 10x_2 - 60 = 0$$

For this hyperplane we have $\boldsymbol{w} = \begin{pmatrix} 3 \\ 10 \end{pmatrix}$ and b = -60. Also, $\| \boldsymbol{w} \| = \sqrt{109}$. Note that A, B, C, D do not belong to he hyperplane (e.g. $3 \cdot 1 + 10 \cdot 9 = 93 \neq 60$), except E for which we have $3 \cdot 10 + 10 \cdot 3 - 60 = 0$. We say that E is a support point for P.

$$A = \begin{pmatrix} 1 \\ 9 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, C = \begin{pmatrix} 11 \\ 1 \end{pmatrix} D = \begin{pmatrix} 10 \\ 6 \end{pmatrix}, D = \begin{pmatrix} 10 \\ 3 \end{pmatrix},$$

Example (cont'd)

Example

Distances from the points to the hyperplane are:

$$d(A, P) = \frac{|3+90-60|}{\sqrt{109}} = \frac{33}{\sqrt{109}},$$

$$d(B, P) = \frac{|12+20-60|}{\sqrt{109}} = \frac{28}{\sqrt{109}},$$

$$d(C, P) = \frac{33+10-60}{\sqrt{109}} = \frac{17}{\sqrt{109}},$$

$$d(D, P) = \frac{30+60-60}{\sqrt{109}} = \frac{30}{\sqrt{109}},$$

$$d(E, P) = \frac{30+30-60}{\sqrt{109}} = 0.$$

Example

The closest point to P is C (except E), which means that we can rescale the coefficients of the hyperplane by dividing them by 17 Thus, the equation of the hyperplane in canonical form becomes

$$\frac{3}{17}x_1 + \frac{10}{17}x_2 - \frac{60}{17} = 0.$$

Example

The minimum distance from one of the external points to the hyperplane is

$$d(C,P) = \frac{\left|\frac{3}{17}x_1 + \frac{10}{17}x_2 - \frac{60}{17}\right|}{\sqrt{109}} = \frac{\left|\frac{33}{17} + \frac{10}{17} - \frac{60}{17}\right|}{\sqrt{109}} = \frac{1}{\sqrt{109}}.$$

If the hyperplane w'x + b = 0 is in canonical form relative to the sample S, then the distance to the hyperplane to the closest points in S (the margin of the hyperplane) is the same, namely,

$$\rho = \min_{(\mathbf{x}, \mathbf{y}) \in S} \frac{|\mathbf{w}'\mathbf{x} + b|}{\| \mathbf{w} \|} = \frac{1}{\| \mathbf{w} \|}$$

Canonical Separating Hyperplane

For a canonical separating hyperplane we have

 $|\mathbf{w}'\mathbf{x} + b| \ge 1$

for any point (\mathbf{x}, y) of the sample and

$$|\boldsymbol{w}'\boldsymbol{x}+b|=1$$

for every support point. The point (\mathbf{x}_i, y_i) is classified correctly if y_i has the same sign as $\mathbf{w}'\mathbf{x}_i + b$, that is, $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$.

Maximizing the margin is equivalent to minimizing $\| \boldsymbol{w} \|$ or, equivalently, to minimizing $\frac{1}{2} \| \boldsymbol{w} \|^2$. Thus, in the separable case the SVM problem is equivalent to the following convex optimization problem:

- minimize $\frac{1}{2} \parallel \boldsymbol{w} \parallel^2$;
- subjected to $y_i(\boldsymbol{w}'\boldsymbol{x}_i + b) \ge 1$ for $1 \le i \le m$.

Why $\frac{1}{2} \parallel w \parallel^2$?

Note that this objective function,

$$\frac{1}{2} \parallel \boldsymbol{w} \parallel^2 = \frac{1}{2} (w_1^2 + \dots + w_n^2)$$

is differentiable! We have $\nabla\left(\frac{1}{2} \parallel \boldsymbol{w} \parallel^2\right) = \boldsymbol{w}$ and that $H_{\frac{1}{2}\parallel \boldsymbol{w}\parallel^2} = \boldsymbol{I}_n,$

which shows that $\frac{1}{2} \parallel \boldsymbol{w} \parallel^2$ is a convex function of \boldsymbol{w} .

Support Vectors

The Lagrangean of the optimization problem

- minimize $\frac{1}{2} \parallel \boldsymbol{w} \parallel^2$;
- subjected to $y_i(\boldsymbol{w}'\boldsymbol{x}_i+b) \ge 1$ for $1 \le i \le m$.

is

$$L(\boldsymbol{w}, b, \boldsymbol{a}) = rac{1}{2} \parallel \boldsymbol{w} \parallel^2 - \sum_{i=1}^m a_i \left(y_i (\boldsymbol{w}' \boldsymbol{x}_i + b) - 1 \right).$$

The Karush-Kuhn-Tucker Optimality Conditions

$$\nabla_{\boldsymbol{w}} L = \boldsymbol{w} - \sum_{i=1}^{m} a_i y_i \boldsymbol{x}_i = 0,$$

$$\nabla_b L = -\sum_{i=1}^{m} a_i y_i = 0,$$

$$a_i (y_i (\boldsymbol{w}' \boldsymbol{x}_i + b) - 1) = 0 \text{ for all } i$$

imply

$$\boldsymbol{w} = \sum_{i=1}^{m} a_i y_i \boldsymbol{x}_i = 0,$$

$$\sum_{i=1}^{m} a_i y_i = 0,$$

$$a_i = 0 \text{ or } y_i (\boldsymbol{w}' \boldsymbol{x}_i + b) = 1 \text{ for } 1 \leq i \leq m.$$

19/43

Consequences of the KKT Conditions

- the weight vector is a linear combination of the training vectors x₁,..., x_m, where x_i appears in this combination only if a_i ≠ 0 (support vectors);
- since a_i = 0 or y_i(w'x_i + b) = 1 for all i, if a_i ≠ 0, then y_i(w'x_i + b) = 1 for the support vectors; thus, all these vectors lie on the marginal hyperplanes w'x + b = 1 or w'x + b = -1;
- if non-support vector are removed the solution remains the same;
- while the solution of the problem **w** remains the same different choices may be possible for the support vectors.

Recall that the optimization problem for SVMs was minimize $\frac{1}{2} \parallel \boldsymbol{w} \parallel^2$ subject to $y_i(\boldsymbol{w}'\boldsymbol{x} + b) \ge 1$ for $1 \le i \le m$ Equivalently, the constraints are

$$1-y_i(\boldsymbol{w}'\boldsymbol{x}+b)\leqslant 0$$

for $1 \leq i \leq m$. The Lagrangean is

$$L(\boldsymbol{w}, b, \boldsymbol{a}) = \frac{1}{2} \| \boldsymbol{w} \|^2 + \sum_{i=1}^m a_i (1 - y_i (\boldsymbol{w}' \boldsymbol{x}_i + b)) \\ = \frac{1}{2} \| \boldsymbol{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m a_i y_i \boldsymbol{w}' \boldsymbol{x}_i - b \sum_{i=1}^m a_i y_i.$$

<ロト < 回ト < 目ト < 目ト < 目ト 目 のQで 21/43

The Dual Problem

maximize L(**w**, b, **a**) The KKT conditions are

$$(\nabla_{\boldsymbol{w}} L) = \boldsymbol{w} - \sum_{i=1}^{m} a_i y_i \boldsymbol{x}_i = \boldsymbol{0},$$

$$(\nabla_b L) = -\sum_{i=1}^{m} a_i y_i = 0,$$

$$a_i (1 - y_i (\boldsymbol{w}' \boldsymbol{x}_i + b)) = 0,$$

which are equivalent to

respectively.

Implications

- the weight vector \boldsymbol{w} is a linear combination of the training vectors $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_m;$
- a vector x_i appears in w if and only if a_i ≠ 0 (such vectors are called support vectors);
- if $a_i \neq 0$, then $y_i(\boldsymbol{w}'\boldsymbol{x}_i + b) = \pm 1$.

Note that support vectors define the maximum margin hyperplane, or the SVM solution.

Transforming the Lagrangean

Since

$$L(\boldsymbol{w}, b, \boldsymbol{a}) = \frac{1}{2} \parallel \boldsymbol{w} \parallel^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m a_i y_i \boldsymbol{w}' \boldsymbol{x}_i - b \sum_{i=1}^m a_i y_i,$$

 $\mathbf{w} = \sum_{j=1}^{m} a_j y_j \mathbf{x}_j$ (note that we changed the summation index from *i* to *j*), and $\sum_{i=1}^{m} a_i y_i = 0$, we have

$$L(\boldsymbol{w}, b, \boldsymbol{a}) = \frac{1}{2} \parallel \boldsymbol{w} \parallel^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \boldsymbol{x}'_j \boldsymbol{x}_i.$$

<ロ><一><一><一><一><一><一><一</td>24/43

Further Transformation of the Lagrangean

Note that

$$\| \boldsymbol{w} \|^2 = \boldsymbol{w}' \boldsymbol{w} = \left(\sum_{j=1}^m a_j y_j \boldsymbol{x}'_j \right) \left(\sum_{i=1}^m a_i y_i \boldsymbol{x}_i \right),$$
$$= \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \boldsymbol{x}'_j \boldsymbol{x}_i.$$

Therefore,

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \mathbf{x}'_j \mathbf{x}_i$$
$$= \sum_{i=1}^m a_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \mathbf{x}'_j \mathbf{x}_i.$$

The Dual Optimization Problem for Separable Sets

maximize
$$\sum_{i=1}^{m} a_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j$$

subject to $a_i \ge 0$ for $1 \le i \le m$ and $\sum_{i=1}^{m} a_i y_i = 0$.

Note that the objective function depends on a_1, \ldots, a_m .

- in this case the strong duality holds; therefore, the primal and the dual problems are equivalent;
- the solution a of the dual problem can be used directly to determine the hypothesis returned by the SVM as

$$h(\mathbf{x}) = sign(\mathbf{w}'\mathbf{x} + b) = sign\left(\sum_{i=1}^{m} a_i y_i(\mathbf{x}'_i\mathbf{x}) + b\right);$$

• since support vectors lie on the marginal hyperplanes, for every support vector \mathbf{x}_i we have $\mathbf{w}'\mathbf{x}_i + b = y_i$, so

$$b = y_i - \sum_{j=1}^m a_j y_j(\mathbf{x}'_j \mathbf{x}).$$

27 / 43

イロト イロト イヨト イヨト 一日

If data is not separable the conditions $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$ cannot all hold (for $1 \le i \le m$). Instead, we impose a relaxed version, namely

$$y_i(\mathbf{w}'\mathbf{x}_i+b) \geqslant 1-\xi_i,$$

where ξ_i are new variables known as slack variables. A slack variable ξ_i measures the distance by which \mathbf{x}_i violates the desired

A stack variable ξ_i measures the distance by which \mathbf{x}_i violates the desired inequality $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$.

A vector \mathbf{x}_i is an outlier if \mathbf{x}_i is not positioned correctly on the side of the appropriate hyperplane.

- a vector x_i with 0 < y_i(w'x_i + b) < 1 is still an outlier even if it is correctly classified by the hyperplane w'x + b = 0 (see the red point);
- if we omit the outliers the data is correctly separated by the hyperplane w'x + b = 0 with a soft margin $\rho = \frac{1}{||w||}$;
- we wish to limit the amount of slack due to outliers $(\sum_{i=1}^{m} \xi_i)$, but we also seek a hyperplane with a large margin (even though this may lead to more outliers).

Optimization for Non-Separable Data

minimize
$$\frac{1}{2} \parallel \mathbf{w} \parallel^2 + C \sum_{i=1}^m \xi_i^p$$

subject to $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1 - \xi_i$ and $\xi_i \ge 0$ for $1 \le i \le m$.

The parameter C is determined in the process of cross-validation. This is a convex optimization problem with affine constraints.

Support Vectors

As in the separable case:

- constraints are affine and thus, qualified;
- the objective function and the affine constraints are convex and differentiable;
- thus, the KKT conditions apply.

Variables

a_i ≥ 0 for 1 ≤ i ≤ m are variables associated with m constraints;
b_i ≥ 0 for 1 ≤ i ≤ m are variables associated with the non-negativity constraints of the slack variables.

The Lagrangean is defined as:

$$L(\mathbf{w}, b, \xi_1, \dots, \xi_m, \mathbf{a}, \mathbf{b}) = \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^m \xi_i \\ -\sum_{i=1}^m a_i [y_i(\mathbf{w}' \mathbf{x}_i + b) - 1 + \xi_i] - \sum_{i=1}^n b_i \xi_i.$$

The KKT conditions are:

$$\nabla_{\boldsymbol{w}} L = \boldsymbol{w} - \sum_{i=1}^{m} a_i y_i \boldsymbol{x}_i = 0 \implies \boldsymbol{w} = \sum_{i=1}^{m} a_i y_i \boldsymbol{x}_i$$

$$\nabla_{\boldsymbol{b}} L = -\sum_{i=1}^{m} a_i y_i = 0 \implies \sum_{i=1}^{m} a_i y_i = 0$$

$$\nabla_{\boldsymbol{\xi}_i} L = C - a_i - b_i = 0 \implies a_i + b_i = C$$

 and

$$a_i[y_i(\boldsymbol{w}'\boldsymbol{x}_i+b)-1+\xi_i]=0 ext{ for } 1\leqslant i\leqslant m\Rightarrow a_i=0 ext{ or } y_i(\boldsymbol{w}'\boldsymbol{x}_i+b)=1-\xi_i, \ b_i\xi_i=0\Rightarrow b_i=0 ext{ or } \xi_i=0.$$

34 / 43

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Consequences of the KKT Conditions

- w is a linear combination of the training vectors x₁,...,x_m, where x_i appears in the combination only if a_i ≠ 0;
- if $a_i \neq 0$, then $y_i(\boldsymbol{w}'\boldsymbol{x}_i + b) = 1 \xi_i$;
- if ξ_i = 0, then y_i(w'x_i + b) = 1 and x_i lies on marginal hyperplane as in the separable case; otherwise, x_i is an outlier;
- if x_i is an outlier, $b_i = 0$ and $a_i = C$ or x_i is located on the marginal hyperplane.
- **w** is unique; the support vectors are not.

The Dual Optimization Problem

The Lagrangean can be rewritten by substituting \boldsymbol{w} :

$$L = \frac{1}{2} \left\| \sum_{i=1}^{m} a_i y_i \mathbf{x}_i \right\|^2 - \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j - \sum_{i=1}^{m} a_i y_i b + \sum_{i=1}^{m} a_i = \sum_{i=1}^{m} a_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j,$$

- the Lagrangean has exactly the same form as in the separable case;
- we need $a_i \ge 0$ and, in addition $b_i \ge 0$, which is equivalent to $a_i \le C$ (because $a_i + b_i = C$);

The dual optimization problem for the non-separable case becomes: maximize for $\mathbf{a} \sum_{i=1}^{m} a_i - \frac{1}{2} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j$ subject to $0 \le a_i \le C$ and $\sum_{i=1}^{m} a_i y_i = 0$ for $1 \le i \le m$.

Consequences

- the objective function is concave and differentiable;
- the solution can be used to determine the hypothesis

$$h(\mathbf{x}) = sign(\mathbf{w}'\mathbf{x} + b);$$

- for any support vector b_i we have $b = y_i \sum_{j=1}^m a_j y_j \mathbf{x}'_i \mathbf{x}_j$.
- the hypothesis returned depends only on the inner products between the vectors and not directly on the vectors themselves.

Definition

The geometric margin relative to a linear classifier $h(\mathbf{x}) = \mathbf{w}'\mathbf{x} + b$ is its distance to the hyperplane $\mathbf{w}'\mathbf{x} + b = 0$:

$$\rho(\mathbf{x}) = rac{y(\mathbf{w}'\mathbf{x}+b)}{\parallel \mathbf{w} \parallel}$$

The margin for a linear classifier h for a sample $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$ is

$$\rho = \min_{1 \leqslant i \leqslant m} \frac{y_i(\boldsymbol{w}'\boldsymbol{x} + b)}{\parallel \boldsymbol{w} \parallel}$$

Theorem

Let *S* be a sample included in a sphere of radius *r*, $S \subseteq \{x \mid || x || \leq r\}$. The VC dimension of the set of canonical hyperplanes of the form

$$h(\mathbf{x}) = sign(\mathbf{w}'\mathbf{x}), \min_{\mathbf{x}\in S} |\mathbf{w}'\mathbf{x}| = 1 \text{ and } ||\mathbf{w}|| \leq \Lambda_s$$

verifies $d \leq r^2 \Lambda^2$.

Proof

Suppose that $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ is a set that can be fully shattered. Then, for all $\mathbf{y} = (y_1, \ldots, y_d) \in \{-1, 1\}^d$ there exists \mathbf{w} such that $1 \leq y_i(\mathbf{w}'\mathbf{x})$ for $1 \leq i \leq d$.

Summing up these inequalities yields:

$$d \leq \mathbf{w}' \sum_{i=1}^{d} y_i \mathbf{x}_i \leq \parallel \mathbf{w} \parallel \cdot \parallel \sum_{i=1}^{d} y_i \mathbf{x}_i \parallel \leq \Lambda \parallel \sum_{i=1}^{d} y_i \mathbf{x}_i \parallel.$$

Proof (cont'd)

Since y_1, \ldots, y_d are independent, if $i \neq j$, $E(y_i y_j) = E(y_i)E(y_j) = 0$; also, $E(y_i y_i) = 1$. Since $d \leq \Lambda \left\| \sum_{i=1}^d y_i \mathbf{x}_i \right\|$ holds for all $\mathbf{y} \in \{-1, 1\}^d$, it holds over expectations and we have

$$d \leqslant \Lambda E_{\mathbf{y}} \left(\left\| \sum_{i=1}^{d} y_i \mathbf{x}_i \right\| \right) \leqslant \Lambda \left(E_{\mathbf{y}} \left(\left\| \sum_{i=1}^{d} y_i \mathbf{x}_i \right\|^2 \right) \right)^{1/2}$$
$$= \Lambda \left(\sum_{i=1}^{m} \sum_{j=1}^{m} E_{y}(y_i y_j) (\mathbf{x}'_i \mathbf{x}_j) \right)^{1/2}$$
$$= \Lambda \left(\sum_{i=1}^{d} \mathbf{x}'_i \mathbf{x}_i \right)^{1/2} \leqslant \Lambda (dr^2)^{1/2} = \Lambda r \sqrt{d}.$$

 Thus,

$$d \leqslant \Lambda^2 r^2$$

• recall that when the data is linearly separable the margin ρ is given by:

$$\rho = \min_{(\mathbf{x}, y) \in S} \frac{|\mathbf{w}' \mathbf{x} + b|}{\parallel \mathbf{w} \parallel} = \frac{1}{\parallel \mathbf{w} \parallel}$$

• if we restrict the sample S such that the resulting \boldsymbol{w} is such that $\| \boldsymbol{w} \| = \frac{1}{\rho} = \Lambda$, it follows that

$$d\leqslant \frac{r^2}{\rho^2}.$$