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Problem Setting

the input space is X ⊆ Rn;
the output space is Y = {−1, 1};
concept sought: a function f : X −→ Y = {−1, 1};
sample: a sequence S = ((xxx1, y1), . . . , (xxxm, ym)) ∈ (X× Y)m

extracted from a distribution D.

3 / 43



Problem Statement

We are exploring a hypothesis space H that consists of functions of the
form h : X −→ {−1, 1} such that

h(xxx) = sign (www ′xxx + b),

where

sign (a) =

{
1 if a ≥ 0,

−1 if a < 0.

such that the quantity

L(h) = Px∼D(h(xxx) ̸= f (xxx))

is small. This is the generalization error of h.

4 / 43



A Fundamental Assumption: Linear Separability of S

y

x

If S is linearly separable there are, in general, infinitely many hyperplanes
that can do the separation.
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Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.
y

x
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The distance of a point xxx0 to a hyperplane www ′xxx + b = 0

Equation of the line passing through xxx0 and perpendicular on the
hyperplane is

xxx − xxx0 = twww ;

Since zzz is a point on this line that belongs to the hyperplane, to find the
value of t that corresponds to zzz we must have www ′(xxx0 + twww) + b = 0, that
is,

t = −www ′xxx0 + b

∥ www ∥2

z

x0

x
w
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The distance of a point xxx0 to a hyperplane www ′xxx + b = 0

z

x0

x

w

Thus, zzz = xxx0 − www ′xxx0+b
∥www∥2 www , hence the distance from

xxx0 to the hyperplane is

∥ xxx0 − zzz ∥= |www ′xxx0 + b|
∥ www ∥

.
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Primal Optimization Problem

We seek a hyperplane in Rn having the equation

www ′xxx + b = 0,

where www ∈ Rn is a vector normal to the hyperplane and b ∈ R is a scalar.
A hyperplane www ′xxx + b = 0 that does not pass through a point of S is in
canonical form relative to a sample S if

min
(xxx ,y)∈S

|www ′xxx + b| = 1.

Note that we may always assume that the separating hyperplane are in
canonical form relative by S by rescaling the coefficients of the equation
that define the hyperplane (the components of www and b).
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Example

Consider the points:

A =

(
1
9

)
,B =

(
4
2

)
,C =

(
11
1

)
D =

(
10
6

)
,D =

(
10
3

)
,

in R2 and the hyperplane P (in this case, a line)

3x1 + 10x2 − 60 = 0.

For this hyperplane we have www =

(
3
10

)
and b = −60. Also,

∥ www ∥=
√
109.

Note that A,B,C ,D do not belong to he hyperplane (e.g.
3 · 1 + 10 · 9 = 93 ̸= 60), except E for which we have
3 · 10 + 10 · 3− 60 = 0. We say that E is a support point for P.
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(
1
9

)
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(
4
2

)
,C =

(
11
1

)
D =

(
10
6

)
,D =

(
10
3

)
,
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Example (cont’d)

Example

Distances from the points to the hyperplane are:

d(A,P) =
|3 + 90− 60|√

109
=

33√
109

,

d(B,P) =
|12 + 20− 60|√

109
=

28√
109

,

d(C ,P) =
33 + 10− 60√

109
=

17√
109

,

d(D,P) =
30 + 60− 60√

109
=

30√
109

,

d(E ,P) =
30 + 30− 60√

109
= 0.
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Example

The closest point to P is C (except E ), which means that we can rescale
the coefficients of the hyperplane by dividing them by 17 Thus, the
equation of the hyperplane in canonical form becomes

3

17
x1 +

10

17
x2 −

60

17
= 0.
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Example

The minimum distance from one of the external points to the hyperplane is

d(C ,P) =
| 317x1 +

10
17x2 −

60
17 |√

109
=

|3317 + 10
17 − 60

17 |√
109

=
1√
109

.
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If the hyperplane www ′xxx + b = 0 is in canonical form relative to the sample
S , then the distance to the hyperplane to the closest points in S (the
margin of the hyperplane) is the same, namely,

ρ = min
(xxx ,y)∈S

|www ′xxx + b|
∥ www ∥

=
1

∥ www ∥
.

y

x

ρ
ρ
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Canonical Separating Hyperplane

For a canonical separating hyperplane we have

|www ′xxx + b| ⩾ 1

for any point (xxx , y) of the sample and

|www ′xxx + b| = 1

for every support point. The point (xxx i , yi ) is classified correctly if yi has
the same sign as www ′xxx i + b, that is, yi (www

′xxx i + b) ⩾ 1.
Maximizing the margin is equivalent to minimizing ∥ www ∥ or, equivalently,
to minimizing 1

2 ∥ www ∥2. Thus, in the separable case the SVM problem is
equivalent to the following convex optimization problem:

minimize 1
2 ∥ www ∥2;

subjected to yi (www
′xxx i + b) ⩾ 1 for 1 ⩽ i ⩽ m.
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Why 1
2 ∥ www ∥2?

Note that this objective function,

1

2
∥ www ∥2= 1

2
(w2

1 + · · ·+ w2
n )

is differentiable!
We have ∇

(
1
2 ∥ www ∥2

)
= www and that

H 1
2
∥www∥2 = III n,

which shows that 1
2 ∥ www ∥2 is a convex function of www .

17 / 43



Support Vectors

The Lagrangean of the optimization problem
minimize 1

2 ∥ www ∥2;
subjected to yi (www

′xxx i + b) ⩾ 1 for 1 ⩽ i ⩽ m.
is

L(www , b,aaa) =
1

2
∥ www ∥2 −

m∑
i=1

ai
(
yi (www

′xxx i + b)− 1
)
.
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The Karush-Kuhn-Tucker Optimality Conditions

∇wwwL = www −
m∑
i=1

aiyixxx i = 0,

∇bL = −
m∑
i=1

aiyi = 0,

ai (yi (www
′xxx i + b)− 1) = 0 for all i

imply

www =
m∑
i=1

aiyixxx i = 0,

m∑
i=1

aiyi = 0,

ai = 0 or yi (www
′xxx i + b) = 1 for 1 ⩽ i ⩽ m.
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Consequences of the KKT Conditions

the weight vector is a linear combination of the training vectors
xxx1, . . . ,xxxm, where xxx i appears in this combination only if ai ̸= 0
(support vectors);
since ai = 0 or yi (www

′xxx i + b) = 1 for all i , if ai ̸= 0, then
yi (www

′xxx i + b) = 1 for the support vectors; thus, all these vectors lie on
the marginal hyperplanes www ′xxx + b = 1 or www ′xxx + b = −1;
if non-support vector are removed the solution remains the same;
while the solution of the problem www remains the same different
choices may be possible for the support vectors.
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Recall that the optimization problem for SVMs was
minimize 1

2 ∥ www ∥2
subject to yi (www

′xxx + b) ⩾ 1 for 1 ⩽ i ⩽ m
Equivalently, the constraints are

1− yi (www
′xxx + b) ⩽ 0

for 1 ⩽ i ⩽ m.
The Lagrangean is

L(www , b,aaa)

=
1

2
∥ www ∥2 +

m∑
i=1

ai (1− yi (www
′xxx i + b))

=
1

2
∥ www ∥2 +

m∑
i=1

ai −
m∑
i=1

aiyiwww
′xxx i − b

m∑
i=1

aiyi .
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The Dual Problem

maximize L(www , b,aaa)

The KKT conditions are

(∇wwwL) = www −
m∑
i=1

aiyixxx i = 000,

(∇bL) = −
m∑
i=1

aiyi = 0,

ai (1− yi (www
′xxx i + b)) = 0,

which are equivalent to

www =
∑m

i=1 aiyixxx i ,∑m
i=1 aiyi = 0,
ai = 0 or yi (www

′xxx i + b) = 1,

respectively.
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Implications

the weight vector www is a linear combination of the training vectors
xxx1, . . . ,xxxm;
a vector xxx i appears in www if and only if ai ̸= 0 (such vectors are called
support vectors);
if ai ̸= 0, then yi (www

′xxx i + b) = ±1.

Note that support vectors define the maximum margin hyperplane, or the
SVM solution.
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Transforming the Lagrangean

Since

L(www , b,aaa) =
1

2
∥ www ∥2 +

m∑
i=1

ai −
m∑
i=1

aiyiwww
′xxx i − b

m∑
i=1

aiyi ,

www =
∑m

j=1 ajyjxxx j (note that we changed the summation index from i to
j), and

∑m
i=1 aiyi = 0, we have

L(www , b,aaa) =
1

2
∥ www ∥2 +

m∑
i=1

ai −
m∑
i=1

m∑
j=1

aiajyiyjxxx
′
jxxx i .
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Further Transformation of the Lagrangean

Note that

∥ www ∥2 = www ′www =

 m∑
j=1

ajyjxxx
′
j

( m∑
i=1

aiyixxx i

)
,

=
m∑
i=1

m∑
j=1

aiajyiyjxxx
′
jxxx i .

Therefore,

L(www , b,aaa) =
1

2
∥ www ∥2 +

m∑
i=1

ai −
m∑
i=1

m∑
j=1

aiajyiyjxxx
′
jxxx i

=
m∑
i=1

ai −
1

2

m∑
i=1

m∑
j=1

aiajyiyjxxx
′
jxxx i .
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The Dual Optimization Problem for Separable Sets

maximize
∑m

i=1 ai −
1
2

∑m
i=1

∑m
j=1 aiajyiyjxxx

′
ixxx j

subject to ai ⩾ 0 for 1 ⩽ i ⩽ m and
∑m

i=1 aiyi = 0.

Note that the objective function depends on a1, . . . , am.
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in this case the strong duality holds; therefore, the primal and the
dual problems are equivalent;
the solution aaa of the dual problem can be used directly to determine
the hypothesis returned by the SVM as

h(xxx) = sign (www ′xxx + b) = sign

(
m∑
i=1

aiyi (xxx
′
ixxx) + b

)
;

since support vectors lie on the marginal hyperplanes, for every
support vector xxx i we have www ′xxx i + b = yi , so

b = yi −
m∑
j=1

ajyj(xxx
′
jxxx).
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Slack Variables

If data is not separable the conditions yi (www
′xxx i + b) ⩾ 1 cannot all hold

(for 1 ⩽ i ⩽ m). Instead, we impose a relaxed version, namely

yi (www
′xxx i + b) ⩾ 1− ξi ,

where ξi are new variables known as slack variables.
A slack variable ξi measures the distance by which xxx i violates the desired
inequality yi (www

′xxx i + b) ⩾ 1.
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y

x

www ′xxx + b = 1

www ′xxx + b = 0

www ′xxx + b = −1

ξi

ξi

A vector xxx i is an outlier if xxx i is not positioned correctly on the side of the
appropriate hyperplane.
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a vector xxx i with 0 < yi (www
′xxx i + b) < 1 is still an outlier even if it is

correctly classified by the hyperplane www ′xxx + b = 0 (see the red point);
if we omit the outliers the data is correctly separated by the
hyperplane www ′xxx + b = 0 with a soft margin ρ = 1

∥www∥ ;

we wish to limit the amount of slack due to outliers (
∑m

i=1 ξi ), but we
also seek a hyperplane with a large margin (even though this may
lead to more outliers).
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Optimization for Non-Separable Data

minimize 1
2 ∥ www ∥2 +C

∑m
i=1 ξ

p
i

subject to yi (www
′xxx i + b) ⩾ 1− ξi and ξi ⩾ 0 for 1 ⩽ i ⩽ m.

The parameter C is determined in the process of cross-validation.
This is a convex optimization problem with affine constraints.
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Support Vectors

As in the separable case:
constraints are affine and thus, qualified;
the objective function and the affine constraints are convex and
differentiable;
thus, the KKT conditions apply.
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Variables

ai ⩾ 0 for 1 ⩽ i ⩽ m are variables associated with m constraints;
bi ⩾ 0 for 1 ⩽ i ⩽ m are variables associated with the non-negativity
constraints of the slack variables.
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The Lagrangean is defined as:

L(www , b, ξ1, . . . , ξm,aaa,bbb) = 1
2 ∥ www ∥2 +C

∑m
i=1 ξi

−
∑m

i=1 ai [yi (www
′xxx i + b)− 1 + ξi ]−

∑n
i=1 biξi .

The KKT conditions are:

∇wwwL = www −
∑m

i=1 aiyixxx i = 0 ⇒ www =
∑m

i=1 aiyixxx i
∇bL = −

∑m
i=1 aiyi = 0 ⇒

∑m
i=1 aiyi = 0

∇ξiL = C − ai − bi = 0 ⇒ ai + bi = C

and

ai [yi (www
′xxx i + b)− 1 + ξi ] = 0 for 1 ⩽ i ⩽ m ⇒ ai = 0 or

yi (www
′xxx i + b) = 1− ξi ,

biξi = 0 ⇒ bi = 0 or ξi = 0.
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Consequences of the KKT Conditions

www is a linear combination of the training vectors xxx1, . . . ,xxxm, where xxx i
appears in the combination only if ai ̸= 0;
if ai ̸= 0, then yi (www

′xxx i + b) = 1− ξi ;
if ξi = 0, then yi (www

′xxx i + b) = 1 and xxx i lies on marginal hyperplane as
in the separable case; otherwise, xxx i is an outlier;
if xxx i is an outlier, bi = 0 and ai = C or xxx i is located on the marginal
hyperplane.
www is unique; the support vectors are not.
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The Dual Optimization Problem

The Lagrangean can be rewritten by substituting www :

L = 1
2

∣∣∣∣∣∣∑m
i=1 aiyixxx i

∣∣∣∣∣∣2 −∑m
i=1

∑m
j=1 aiajyiyjxxx

′
ixxx j

−
∑m

i=1 aiyib +
∑m

i=1 ai
=

∑m
i=1 ai −

1
2

∑m
i=1

∑m
j=1 aiajyiyjxxx

′
ixxx j ,
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the Lagrangean has exactly the same form as in the separable case;
we need ai ⩾ 0 and, in addition bi ⩾ 0, which is equivalent to ai ⩽ C
(because ai + bi = C );

The dual optimization problem for the non-separable case becomes:
maximize for aaa

∑m
i=1 ai −

1
2aiajyiyjxxx

′
ixxx j

subject to 0 ⩽ ai ⩽ C and
∑m

i=1 aiyi = 0
for 1 ⩽ i ⩽ m.
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Consequences

the objective function is concave and differentiable;
the solution can be used to determine the hypothesis

h(xxx) = sign (www ′xxx + b);

for any support vector bi we have b = yi −
∑m

j=1 ajyjxxx
′
ixxx j .

the hypothesis returned depends only on the inner products between
the vectors and not directly on the vectors themselves.
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Definition

The geometric margin relative to a linear classifier h(xxx) = www ′xxx + b is its
distance to the hyperplane www ′xxx + b = 0:

ρ(xxx) =
y(www ′xxx + b)

∥ www ∥
.

The margin for a linear classifier h for a sample S = (xxx1, . . . ,xxxm) is

ρ = min
1⩽i⩽m

yi (www
′xxx + b)

∥ www ∥

39 / 43



Theorem

Let S be a sample included in a sphere of radius r , S ⊆ {xxx | ∥ xxx ∥⩽ r}.
The VC dimension of the set of canonical hyperplanes of the form

h(xxx) = sign (www ′xxx),min
xxx∈S

|www ′xxx | = 1 and ∥ www ∥⩽ Λ,

verifies d ⩽ r2Λ2.
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Proof

Suppose that {xxx1, . . . ,xxxd} is a set that can be fully shattered. Then, for
all yyy = (y1, . . . , yd) ∈ {−1, 1}d there exists www such that 1 ⩽ yi (www

′xxx) for
1 ⩽ i ⩽ d .
Summing up these inequalities yields:

d ⩽ www ′
d∑

i=1

yixxx i ⩽∥ www ∥ ·
∣∣∣∣∣∣ d∑

i=1

yixxx i

∣∣∣∣∣∣ ⩽ Λ
∣∣∣∣∣∣ d∑

i=1

yixxx i

∣∣∣∣∣∣.

41 / 43



Proof (cont’d)

Since y1, . . . , yd are independent, if i ̸= j , E (yiyj) = E (yi )E (yj) = 0; also,
E (yiyi ) = 1.

Since d ⩽ Λ
∣∣∣∣∣∣∑d

i=1 yixxx i

∣∣∣∣∣∣ holds for all yyy ∈ {−1, 1}d , it holds over
expectations and we have

d ⩽ ΛEyyy

(∣∣∣∣∣∣ d∑
i=1

yixxx i

∣∣∣∣∣∣) ⩽ Λ

(
Eyyy

(∣∣∣∣∣∣ d∑
i=1

yixxx i

∣∣∣∣∣∣2))1/2

= Λ

 m∑
i=1

m∑
j=1

Ey (yiyj)(xxx
′
ixxx j)

1/2

= Λ

(
d∑

i=1

xxx ′ixxx i

)1/2

⩽ Λ(dr2)1/2 = Λr
√
d .
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Thus,
d ⩽ Λ2r2

recall that when the data is linearly separable the margin ρ is given by:

ρ = min
(xxx ,y)∈S

|www ′xxx + b|
∥ www ∥

=
1

∥ www ∥
;

if we restrict the sample S such that the resulting www is such that
∥ www ∥= 1

ρ = Λ, it follows that

d ⩽
r2

ρ2
.
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