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Consider a simple data

set that consists of four points in R:

G

)

W
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It is impossible to separate the red point (the positive examples) from the
negative examples (the blue points) using a line, no matter how you draw
the line!
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Reminder: eigenvalues and eigenvectors of a matrix
Definition
An eigenvalue for a matrix A € C"™" is a number \ such that

Ax = \x

for some non-zero vector x € C" referred to as an eigenvector for .

This implies x"Ax = MxHx, so

For real matrices we have
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The Characteristic Polynomial of a Matrix

If X is an eigenvalue of the matrix A € C"*", there exists a non-zero
eigenvector x € C" such that Ax = Ax. Therefore, the linear system

(Mp—Ax =0,

has a non-trivial solution. This is possible if and only if det(\/, — A) =0,
so eigenvalues are the solutions of the equation

det(\, — A) = 0.

det(Al, — A) is a polynomial of degree n in A\, known as the characteristic
polynomial matrix A. We denote this polynomial by pa.
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Example
The characteristic polynomial of the matrix

(Y

A—a —b
p(A) = det(leA):' _Ca g

= D=ah=ad)= ke = = (g4 d)h 4+ a8 = e

Thus, the eigenvalues are

a+d+/(a—d)?+4bc
)\172: 5 .
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Example

Let
a;l a ans
A= |ax ax ax
431 d32 4as3

be a matrix in C3*3. Its characteristic polynomial is

A—ain  —a —ai3
g 2
pa = | —a1 A—ax —ax | =X — (a1 + ax + as3)\
—as1 —a3x A —as3

+(311322 + a22a33 + aszail — aigaz1 — a23a32 — 313331))\

_(311322333 + @12a23a31 + a13d32a21 — 8124a21a33 — d23d32d11 — 413
v
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Recall that a matrix A € R"™" is positive definite if x’Ax > 0 for x # 0.

Theorem J

The eigenvalues of a real symmetric positive matrix are positive.

Proof: The eigenvalues of real symmetric matrices are real. If A is an
eigenvalue of A with the eigenvector x, then Ax = Ax, hence
X' Ax = MAx'x = X || x ||>> 0. Thus, A > 0.
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Theorem

If the eigenvalues if a real symmetric matrix are positive, then A is positive
definite.

Proof: For a real symmetric matrix there exists an orthogonal matrix @
such that Q'AQ = D, where

M O -0
0 X -+ 0
D=1 . ) )
0 0 - A\,

If x #0,, then X’ Ax = x'Q'DQx = y'Dy, where y = Qx.
Then, y'Dy = A1y? + -+ + Any2 > 0 beacuse y = Q'x is a non-zero
vector. Here we used the fact that Q1 = Q.
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Hilbert spaces, named after David Hilbert, generalize the notion of
Euclidean space. They extend the methods of vector algebra and calculus
from the two-dimensional Euclidean plane and three-dimensional space to
spaces with any finite or infinite number of dimensions.
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An inner product (x, y) defined on a linear space H generates a norm
I x 1= v/(x. ).

A norm on a linear space generates a distance (a metric)

d(x,y) =|| x — y ||. Thus, every normed space becomes a metric
space.

A Cauchy sequence in a metric space is a sequence (x,) such that for
every € > 0 there exists a number n, such that m, p > n. imply
d(Xm, xp) < €.

A metric space is complete if every Cauchy sequence has a limit in
that space.
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What is a Hilbert Space?

Hilbert spaces are generalizations of Euclidean spaces.

A Hilbert space is a linear space that is equipped with an inner product
such that the metric space generated by the inner product is complete.

As above, the inner product of two elements x, y of a Hilbert space H is
denoted by (x, y). Note that in the case of R” (which is a special case of a
Hilbert space) the inner product of x,y was denoted by x’y.
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Example
The Euclidean space R” equipped with the inner product

(x,¥) =xwy1 + - + XnYn

is a Hilbert space.
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Example
The space £2 that consists of infinite sequences of the form

Zz = (21, 5 0 o
where the innner product is defined as

o
(z,w) = Z ZyW,.
n=1

.) such that the series >_ |z,|? converges is a Hilbert space,
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Example

For two function f, g such that f f2(x) dx and f g2(x) dx exist, an
inner product can be defined as

b
(f.g) = / F(x)g(x) dx.

The resulting linear space is a Hilbert space.
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Definition

Let H is a Hilbert space called the feature space and let X be the input
space that is mapped by a function ® : X — H into a Hilbert space.
A kernel over X is a function K : X x X' — R such that there exists a
function ® : X — H that satisfies the condition

K(u,v) = (®(u), ®(v))

for every u,v € X.
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@ The purpose of ® is to map the input space X into a Hilbert space
where data may become lineraly separable.

o If a kernel K exists, then the inner product (®(u), ®(v)) in the
Hilbert space that may be difficult to calculate. This is the case
because we would have to compute both ®(u) and ®(v) and then
compute the inner product (®(u), ®(v)) in the Hilbert space. But, if
there exists a kernel K, the inner product (®(u), ®(v)) may be
obtained directly using the equality K(u, v) = (®(u), P(v)).

18/59



Recall the general form of the dual optimization problem for SVMs:
maximize fora y ;" aj — %a,-ajy,-ijf-xj
subject to 0 < a; < C and Y ;"1 ajyi =0
forl1<i<m.
Note the presence of the inner product x’x;. This is replaced by the inner
product (P(x;), ®(x;)), in the Hilbert feature space, that is, by K(x;,x;),
where K is a suitable kernel function.
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A More General SVM Formulation

. . 1
maximize for a Y " | a;i — sa;ajyiy;K(x;i, x;)
subject to0 < a; < Cand Y. aiyi =0
forl1 <i<m.

The hypothesis returned by the SVM algorithm is now

h(x) = sign (i ajyiK(x;,x) + b) :
i=1

with b = y; — ijzl ajyiK(xj, x;) for any x; with 0 < a; < C.

Note that we do not work with the feature mapping ®; instead we use the

kernel only!
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Definition

Let S be a non-empty set. A complex-valued function K : S xS — C is
of positive type if for every n > 1 we have:

n n
> aiK(x,x)2 > 0
i=1 j=1

for every a; € C and x; € S, where 1 < i < n.

K :S5 xS — Ris real and of positive type if for every n > 1 we have

ii aiK(x;, xj)a; > 0

i=1 j=1

for every a; € R and x; € S, where 1 < i < n.
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If K:S xS — Cis of positive type, then taking n =1 we have
aK(x,x)a = K(x,x)|a|?> > 0 for every a € C and x € S. This implies
K(x,x) >0 for x € S.

Note that K : S x S — C is of positive type if for every n > 1 and for
every xi,...,Xs the matrix A, k(x1,...,xn) = (K(xi,X;j)) is positive
definite, and, therefore it has positive eigenvalues.
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Example

The function K : R x R — R given by K(x,y) = cos(x — y) is of positive
type because

n

Zzn:a,-K(x,-,xj)a? = Zn:zn:c?icos(xi—xj)aij

i=1 j=1 i=1 j=1

n n
= E g aj(cos x; cos x; + sin x; sin x;)a;
i=1 j=1

n 2 n
= ‘ E a;cosx,-’ —I—‘ E a; sin x;
i=1 i=1

for every a; € C and x; € S, where 1 < i < n.

2
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Definition

Let S be a non-empty set. A complex-valued function K : S xS — C is
Hermitian if K(x,y) = K(y, x) for every x,y € S.
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Theorem

Let H be a Hilbert space, S be a non-empty set and let f : S — H be a

function. The function K : S x S — C defined by

K(s, t) = (f(s), f(1))

is of positive type.
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Proof

We can write

Zzai?jK(ti,tj) = Zzaijj(f(ti)vf(tj))

i=1 j=1 i=1 j=1
n
= H Z a,-f(a,-)
i=1

which means that K is of positive type.

2
\20,

26 /59



Theorem

Let S be a set and let F : S x S — C be a positive type function. The
following statements hold:

e F(x,y) = F(y,x) for every x,y € S, that is, F is Hermitian;

e F is a positive type function;

o |[F(x,y)I> < F(x,x)F(y,y).
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Proof

Take n = 2 in the definition of positive type functions. We have
a1a1F(x1,x1) + a132F (x1, x2) + axa1 F(x2, x1) + @232 F (x2, x2) > 0, (1)
which amounts to
|a1|2F (x1,x1) + a132F (x1, x2) + @231 F (x2, x1) + |a2|* F(x2, x2) > 0,
By taking a; = a» = 1 we obtain
p= F(x1,x1) + F(x1,x2) + F(x2,x1) + F(x2,x2) > 0,

where p is a positive real number.
Similarly, by taking a; = i and a, = 1 we have

q = —F(x1,x1) + iF(x1,x2) — iF(x2, x1) + F(x2,x2) > 0,

where g is a positive real number.
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Proof (cont'd)

Thus, we have

F(X17X2) =+ F(X27X1) = p- F(X17X1) - F(X27X2)7
iF(x1,x2) — iIF(x2,x1) = q+ F(x1,x1) — F(x2, x2).

These equalities imply

2F(X1,X2) = P—iQ
2F(X2,X1) = P—i—iQ,

where P = p — F(x1,x1) — F(x2,x2) and Q@ = g+ F(x1,x1) — F(x2, x2),
which shows the first statement holds.

29/59



The second part of the theorem follows by applying the conjugation in the
equality of Definition.
For the final part, note that if F(x;,x2) = 0 the desired inequality holds
immediately. Therefore, assume that F(x1,x2) # 0 and take a; = a € R
and to a; = F(x1,x2). We have
a’F(x1,x1) + aF (x1, x0) F (x1, x2)
+F(X1,X2)3F(X2,X1) + F(Xl,XQ)F(Xl,XQ)F(XQ,XQ) >0,

which amounts to
a*F(x1,x1) + 2a|F(x1, x)| + |F(x1, %) |*F(x2, x2) > 0.
If F(x1,x1) this trinomial in @ must be non-negative for every a, which
implies
’F(Xl,XQ)‘4 — |F(X1,X2)’2F(X1,X1)F(X2,X2) < 0.

Since F(x1,x2) # 0, the desired inequality follows.
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Theorem

A real-valued function G : S x S — R is a positive type function if it is

symmetric and
n n
ZZa,—ajG(x,-,xj) >0
i=1 i=1
forai,...,an € R and xq,...,x, € S.

In other words G is a positive type function iff (G(x;, x;)) is a
positive-definite matrix for any xi,...,x, € S.

(2)
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Theorem

Let S be a non-empty set. If K;: S xS — C for i = 1,2 are functions of
positive type, then their pointwise product K1 K> defined by
(KiK2)(x,y) = Ki(x,y)Ka(x,y) is of positive type.
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Proof
Since K; is a function of positive type, the matrix
Anki (X1, ..., xn) = (Ki(xj, xn))
is positive, where i = 1,2. Thus, such matrices can be factored as
Ank (X1, .., xn) = PP and A g, (x1,..., %) = R"R

for i = 1,2. Therefore, we have:

n

Z Z aiK1(xi, x;) Ka(xi, xj)aj

i—1 j—1
n n n
E E aiK(xi, x;) - E Tmifmj | 4}
i—1 j—1 m—1
E (E alrml> XHXJ § rimdj | 2 0,
m=1

which shows that (K1K2)(x, y) is a function of positive type.
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Theorem

Let S be a non-empty set. The set of functions of positive type is closed

with respect to multiplication with non-negative scalars and with respect
to addition.
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@ A function K : S x S — C defined by K(s,t) = (f(s), f(t)), where
f S — H is of positive type, where H is a Hilbert space.

@ The reverse is also true:
If K is of positive type a special Hilbert space exists such that K can
be expressed as an inner product on this space (Aronszajn's Theorem).

@ This fact is essential for data kernelization that, in turn, is essential
for support vector machines.
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Theorem

(Aronszajn’s Theorem) Let K : X x X — R be a positive type kernel.
Then, there exists a Hilbert space H of functions and a feature mapping
®: X — H such that K(x,y) = (®(x), P(y)) for all x,y € X.
Furthermore, H has the reproducing property which means that for every
h € H we have

h(x) = (h, K(x,")).

v

The function space H is called a reproducing Hilbert space associated with
K.
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Which of the following functions are kernels?
For x,y € R™:

n

K(x,y) = Z(x,- +yi)

i=1

K is not a kernel. Indeed, for x = <(1)> and y = <2> we have
k11 = K(X,X) = 2, k12 = K(x,y) =3= k21, and k22 = K(y,y) =4,

The matrix of K is
k11 k12 . 2 3
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Its characteristic polynomial is

2-XA 3 ) _
det<3 4_)\>—/\—6)\—1.

and has a negative eigenvalue.
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o Xji—C i—C
K2(X7.y): h( a2 >h<y 2 >a
1

j=
2

where h(x) = cos(1.75x)e” 7 .
K3 is a kernel because it can be written as a product Ky = f(x)f(y).
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()
[ ([ y
K3 is not a kernel because it has negative eigenvalues.

Ks(x,y) =
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Ka(x,y) = /Il x =y [I? +1

Ky is not a kernel. Indeed, for x = (é) and y = (2) the matrix

ki1 k12 . 1 5
kot ko) \5 1

has a negative eigenvalue.
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Example

A special case of functions of positive type on R” are obtained by defining
K:R"XR" — R as K¢(x,y) = f(x —y), where f : R” — C is a
continuous function on R"”. K is translation invariant and is designated as
a stationary kernel.
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Definition

A continuous linear operator h: H — H on a Hilbert space H is positive
if (h(x),x)) = 0 for every x € H.

h is positive definite if it is positive and invertible.

If his an operator on a space of functions and h(f) is the function defined
as h(f)(x) = [ K(x,y)f(y) dy, then we say that K is the kernel of h.
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Theorem

(Mercer’s Theorem) Let K : [0,1] x [0,1] — R be a function
continuous in both variables that is the kernel of a positive operator h on
L2([0,1]). If the eigenfunctions of h are ¢1, ¢, ... and they correspond to
the eigenvalues ji1, 2, . . ., respectively then we have:

K(x,y) =D 1migi(x)éiy),
j=1

o0

where the series 1 11j¢;(x)$;(y) converges uniformly and absolutely to
K(x,y).
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From the equality for the kernel of a positive operator
K(Ua V) = Z an¢n(u)¢n(v)
n=0

with a, > 0 we can constract a mapping ® into a feature space (in this
case the potentially infinite /) as

O(u) = Y Vandn(u)-
n=0
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Example
For ¢ > 0 a polynomial kernel of degree d is the kernel defined over R” by

K(u,v) = (u'v + ¢)“.

As an example, consider n = 2, d = 2 and the kernel
K(u,v) = (u'v + c)?. We have:

2
K(U,V) = (U1V1+U2V2+C)
2 2 2

= u%vf—}—uzvz + ¢+ 2uivipvo + 2uivic + 2up o,
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Example (cont'd)

Feature space is RO

!/
u? vi
5 2
uy V2

47/59



In general, features associated to a polynomial kernel of degree d are all
monomials of degree d associated to the original features. It is possible to
show that polynomial kernels of degree d on R"” map the input space to a

space of dimension ("Zd).
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For the kernel K(u,v) = (u'v + 1)? we have
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QxT)Q\
®e--—_|____ e ____----»® )
// \\\
- N
\
it \ V2x
’ \
/ 1
/
, !
) e ¢ °
-1 1y~~ /
—1 1 ‘\\\ e
For the kernel K(u,v) = (u’v + 1)? we have
1 1 1
1 1 1
1 V2 -1 V2 -1 V2 1
SOR - RE N EA RN B
V2 —V2 V2
1 1 1

For this set of points differences occur in the third,fourth, and fifth features.
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Definition
To any kernel K we can associate a normalized kernel K’ defined by

if K(u,u)=0o0r K(v,v) =0,

0
! —
K'(u,v) = K(u,v) otherwise.

v K(u,u)r/K(v,v)
If K(u,u) #0, then K'(u,u) = 1.
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Theorem
Let K be a positive type kernel. For any u,v € X we have

K(u,v)? < K(u, u)K(v, v).

Proof: Consider the matrix

K is positive, so its eigenvalues A1, A, must be non-negative. lts
characteristic equation is

‘K(u, W -\ K(u,v)

K(viu)  K(v,v)— /\' =0
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Equivalently,
N — (K(u,u) + K(v,v))A + det(K) = 0
Therefore, A1 A2 = det(K) > 0 and this implies

K(u, u)K(v,v) — K(u,v)? > 0.
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Theorem

Let K be a positive type kernel. Its normalized kernel is a positive type
kernel.

Proof: Let {x1,...,xm} C X and ¢ € R™. We prove that

>y GiGK (xi,x) 2 0

If K(xi,x;) =0, then K(x;,x;) =0 and, thus, K'(x;,xj) =0for 1 <j<m
Thus, we may assume that K(x;, x;) > 0 for 1 < i < m. We have

_ Xlan)
ZC,CJ (xi, %) = ZC'CJ\/K (xi, i) K (x5, ;)
G))

x;) |lH

- Tas (00x). Sl
ITo00) Tl o

- HZ||¢X, ||HH 0

where @ is the feature mapping associated to K.
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Example
Let K be the kernel
K(u,v) =eo?,

] Iv))?
where o > 0. Note that K(u,u) = e > and K(v,v) = e o2, hence its

normalized kernel is

K'(u,v) =
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Example

For a positive constant o a Gaussian kernel or a radial basis function is the
function K : R” x R” — R defined by

_ Jlu—v|?

K(u,v) =e 272

We prove that K is of positive type by showing that
K(x,y) = (¢(x), ¢(y)), where ¢ : RX — £2(R). Note that for this
example ¢ ranges over an infinite-dimensional space.
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We have
llx—ylI?
Kix.y) = e =2

_IxIP+ly 2 —2(x.y)
= e 20

57 /59



Taking into account that

| 0'2J
=’
we can write
o0
(C ) I G 17 (x,yY _IxI> 2
e o e 202 e 2052 = - —e 2052 e 2052
Z jlo%
j=0
Ixl2 Lyl J

where

Jvariesin Nand ny + -+ ng = j.
58 /59



Example
For a, b > 0, a sigmoid kernel is defined as

K(x,y) = tanh(ax’y + b)

With a, b > 0 the kernel is of positive type.
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