# Support Vector Machines - III 

Prof. Dan A. Simovici

UMB
(1) Linearly Inseparable Data Sets
(2) Eigenvalues and Eigenvectors
(3) Positive Definite Matrices

4 Hilbert Spaces
(5) Kernels
(6) Functions of Positive Type
(7) Examples of Positive Definite Kernels

Consider a simple data set that consists of four points in $\mathbb{R}^{2}$ :


It is impossible to separate the red point (the positive examples) from the negative examples (the blue points) using a line, no matter how you draw the line!

## Reminder: eigenvalues and eigenvectors of a matrix

## Definition

An eigenvalue for a matrix $A \in \mathbb{C}^{n \times n}$ is a number $\lambda$ such that

$$
A x=\lambda x
$$

for some non-zero vector $\boldsymbol{x} \in \mathbb{C}^{n}$ referred to as an eigenvector for $\lambda$.
This implies $x^{H} A \boldsymbol{x}=\lambda \boldsymbol{x}^{\boldsymbol{H}} \boldsymbol{x}$, so

$$
\lambda=\frac{\boldsymbol{x}^{H} A \boldsymbol{x}}{\boldsymbol{x}^{H} \boldsymbol{x}} .
$$

For real matrices we have

$$
\lambda=\frac{\boldsymbol{x}^{\prime} A \boldsymbol{x}}{\boldsymbol{x}^{\prime} \boldsymbol{x}} .
$$

## The Characteristic Polynomial of a Matrix

If $\lambda$ is an eigenvalue of the matrix $A \in \mathbb{C}^{n \times n}$, there exists a non-zero eigenvector $\boldsymbol{x} \in \mathbb{C}^{n}$ such that $A \boldsymbol{x}=\lambda \boldsymbol{x}$. Therefore, the linear system

$$
\left(\lambda I_{n}-A\right) \boldsymbol{x}=\mathbf{0}_{n}
$$

has a non-trivial solution. This is possible if and only if $\operatorname{det}\left(\lambda I_{n}-A\right)=0$, so eigenvalues are the solutions of the equation

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=0
$$

$\operatorname{det}\left(\lambda I_{n}-A\right)$ is a polynomial of degree $n$ in $\lambda$, known as the characteristic polynomial matrix $A$. We denote this polynomial by $p_{A}$.

## Example

The characteristic polynomial of the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is

$$
\begin{aligned}
p(\lambda) & =\operatorname{det}\left(I_{2} \lambda-A\right)=\left|\begin{array}{cc}
\lambda-a & -b \\
-c & \lambda-d
\end{array}\right| \\
& =(\lambda-a)(\lambda-d)-b c=\lambda^{2}-(a+d) \lambda+a d-b c
\end{aligned}
$$

Thus, the eigenvalues are

$$
\lambda_{1,2}=\frac{a+d \pm \sqrt{(a-d)^{2}+4 b c}}{2}
$$

## Example

Let

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

be a matrix in $\mathbb{C}^{3 \times 3}$. Its characteristic polynomial is

$$
\begin{aligned}
p_{A}= & \left|\begin{array}{ccc}
\lambda-a_{11} & -a_{12} & -a_{13} \\
-a_{21} & \lambda-a_{22} & -a_{23} \\
-a_{31} & -a_{32} & \lambda-a_{33}
\end{array}\right|=\lambda^{3}-\left(a_{11}+a_{22}+a_{33}\right) \lambda^{2} \\
& +\left(a_{11} a_{22}+a_{22} a_{33}+a_{33} a_{11}-a_{12} a_{21}-a_{23} a_{32}-a_{13} a_{31}\right) \lambda \\
& -\left(a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{32} a_{21}-a_{12} a_{21} a_{33}-a_{23} a_{32} a_{11}-a_{13} a\right.
\end{aligned}
$$

Recall that a matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if $\boldsymbol{x}^{\prime} A \boldsymbol{x}>0$ for $\boldsymbol{x} \neq 0$.

## Theorem

The eigenvalues of a real symmetric positive matrix are positive.
Proof: The eigenvalues of real symmetric matrices are real. If $\lambda$ is an eigenvalue of $A$ with the eigenvector $\boldsymbol{x}$, then $A \boldsymbol{x}=\lambda \boldsymbol{x}$, hence $\boldsymbol{x}^{\prime} A \boldsymbol{x}=\lambda \boldsymbol{x}^{\prime} \boldsymbol{x}=\lambda\|\boldsymbol{x}\|^{2}>0$. Thus, $\lambda>0$.

## Theorem

If the eigenvalues if a real symmetric matrix are positive, then $A$ is positive definite.

Proof: For a real symmetric matrix there exists an orthogonal matrix $Q$ such that $Q^{\prime} A Q=D$, where

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

If $\boldsymbol{x} \neq \mathbf{0}_{n}$, then $\boldsymbol{x}^{\prime} A \boldsymbol{x}=\boldsymbol{x}^{\prime} Q^{\prime} D Q \boldsymbol{x}=\boldsymbol{y}^{\prime} D \boldsymbol{y}$, where $\boldsymbol{y}=Q \boldsymbol{x}$.
Then, $\boldsymbol{y}^{\prime} \boldsymbol{D} \boldsymbol{y}=\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}>0$ beacuse $\boldsymbol{y}=Q^{\prime} \boldsymbol{x}$ is a non-zero vector. Here we used the fact that $Q^{-1}=Q^{\prime}$.

Hilbert spaces, named after David Hilbert, generalize the notion of Euclidean space. They extend the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions.

- An inner product $(x, y)$ defined on a linear space $H$ generates a norm $\|x\|=\sqrt{( } x, x)$.
- A norm on a linear space generates a distance (a metric) $d(x, y)=\|x-y\|$. Thus, every normed space becomes a metric space.
- A Cauchy sequence in a metric space is a sequence $\left(x_{n}\right)$ such that for every $\epsilon>0$ there exists a number $n_{\epsilon}$ such that $m, p>n_{\epsilon}$ imply $d\left(x_{m}, x_{p}\right)<\epsilon$.
- A metric space is complete if every Cauchy sequence has a limit in that space.


## What is a Hilbert Space?

Hilbert spaces are generalizations of Euclidean spaces.
A Hilbert space is a linear space that is equipped with an inner product such that the metric space generated by the inner product is complete. As above, the inner product of two elements $x, y$ of a Hilbert space $H$ is denoted by $(x, y)$. Note that in the case of $\mathbb{R}^{n}$ (which is a special case of a Hilbert space) the inner product of $\boldsymbol{x}, \boldsymbol{y}$ was denoted by $\boldsymbol{x}^{\prime} \boldsymbol{y}$.

## Example

The Euclidean space $\mathbb{R}^{n}$ equipped with the inner product

$$
(\boldsymbol{x}, \boldsymbol{y})=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

is a Hilbert space.

## Example

The space $\ell^{2}$ that consists of infinite sequences of the form $\boldsymbol{z}=\left(z_{1}, z_{2}, \ldots\right)$ such that the series $\sum_{n}\left|z_{n}\right|^{2}$ converges is a Hilbert space, where the innner product is defined as

$$
(\boldsymbol{z}, \boldsymbol{w})=\sum_{n=1}^{\infty} z_{n} \overline{w_{n}} .
$$

## Example

For two function $f, g$ such that $\int_{a}^{b} f^{2}(x) d x$ and $\int_{a}^{b} g^{2}(x) d x$ exist, an inner product can be defined as

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

The resulting linear space is a Hilbert space.

## Definition

Let $H$ is a Hilbert space called the feature space and let $X$ be the input space that is mapped by a function $\Phi: X \longrightarrow H$ into a Hilbert space. A kernel over $\mathcal{X}$ is a function $K: X \times X \longrightarrow \mathbb{R}$ such that there exists a function $\Phi: X \longrightarrow H$ that satisfies the condition

$$
K(u, v)=\langle\Phi(u), \Phi(v)\rangle
$$

for every $u, v \in \mathcal{X}$.

- The purpose of $\Phi$ is to map the input space $X$ into a Hilbert space where data may become lineraly separable.
- If a kernel $K$ exists, then the inner product $\langle\Phi(\boldsymbol{u}), \Phi(\boldsymbol{v})\rangle$ in the Hilbert space that may be difficult to calculate. This is the case because we would have to compute both $\Phi(\boldsymbol{u})$ and $\Phi(\boldsymbol{v})$ and then compute the inner product $\langle\Phi(u), \Phi(v)\rangle$ in the Hilbert space. But, if there exists a kernel $K$, the inner product $\langle\Phi(u), \Phi(v)\rangle$ may be obtained directly using the equality $K(u, v)=\langle\Phi(u), \Phi(v)\rangle$.

Recall the general form of the dual optimization problem for SVMs:

$$
\begin{aligned}
& \text { maximize for a } \sum_{i=1}^{m} a_{i}-\frac{1}{2} a_{i} a_{j} y_{i} y_{j} x_{i}^{\prime} x_{j} \\
& \\
& \text { subject to } 0 \leqslant a_{i} \leqslant C \text { and } \sum_{i=1}^{m} a_{i} y_{i}=0
\end{aligned}
$$

$$
\text { for } 1 \leqslant i \leqslant m
$$

Note the presence of the inner product $x_{i}^{\prime} x_{j}$. This is replaced by the inner product $\left(\Phi\left(\boldsymbol{x}_{i}\right), \Phi\left(\boldsymbol{x}_{j}\right)\right)$, in the Hilbert feature space, that is, by $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$, where $K$ is a suitable kernel function.

## A More General SVM Formulation

$$
\begin{aligned}
\text { maximize for a } & \sum_{i=1}^{m} a_{i}-\frac{1}{2} a_{i} a_{j} y_{i} y_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \\
& \text { subject to } 0 \leqslant a_{i} \leqslant C \text { and } \sum_{i=1}^{m} a_{i} y_{i}=0 \\
& \text { for } 1 \leqslant i \leqslant m .
\end{aligned}
$$

The hypothesis returned by the SVM algorithm is now

$$
h(\boldsymbol{x})=\operatorname{sign}\left(\sum_{i=1}^{m} a_{i} y_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)+b\right) .
$$

with $b=y_{i}-\sum_{j=1}^{m} a_{j} y_{j} K\left(x_{j}, x_{i}\right)$ for any $\boldsymbol{x}_{i}$ with $0<a_{i}<C$.
Note that we do not work with the feature mapping $\Phi$; instead we use the kernel only!

## Definition

Let $S$ be a non-empty set. A complex-valued function $K: S \times S \longrightarrow \mathbb{C}$ is of positive type if for every $n \geqslant 1$ we have:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} K\left(x_{i}, x_{j}\right) \overline{a_{j}} \geqslant 0
$$

for every $a_{i} \in \mathbb{C}$ and $x_{i} \in S$, where $1 \leqslant i \leqslant n$.
$K: S \times S \longrightarrow \mathbb{R}$ is real and of positive type if for every $n \geqslant 1$ we have

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} K\left(x_{i}, x_{j}\right) a_{j} \geqslant 0
$$

for every $a_{i} \in \mathbb{R}$ and $x_{i} \in S$, where $1 \leqslant i \leqslant n$.

If $K: S \times S \longrightarrow \mathbb{C}$ is of positive type, then taking $n=1$ we have $a K(x, x) \bar{a}=K(x, x)|a|^{2} \geqslant 0$ for every $a \in \mathbb{C}$ and $x \in S$. This implies $K(x, x) \geqslant 0$ for $x \in S$.
Note that $K: S \times S \longrightarrow \mathbb{C}$ is of positive type if for every $n \geqslant 1$ and for every $x_{1}, \ldots, x_{s}$ the matrix $A_{n, K}\left(x_{1}, \ldots, x_{n}\right)=\left(K\left(x_{i}, x_{j}\right)\right)$ is positive definite, and, therefore it has positive eigenvalues.

## Example

The function $K: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ given by $K(x, y)=\cos (x-y)$ is of positive type because

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} K\left(x_{i}, x_{j}\right) \overline{a_{j}} & =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \cos \left(x_{i}-x_{j}\right) \overline{a_{j}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}\left(\cos x_{i} \cos x_{j}+\sin x_{i} \sin x_{j}\right) \overline{a_{j}} \\
& =\left|\sum_{i=1}^{n} a_{i} \cos x_{i}\right|^{2}+\left|\sum_{i=1}^{n} a_{i} \sin x_{i}\right|^{2}
\end{aligned}
$$

for every $a_{i} \in \mathbb{C}$ and $x_{i} \in S$, where $1 \leqslant i \leqslant n$.

## Definition

Let $S$ be a non-empty set. A complex-valued function $K: S \times S \longrightarrow \mathbb{C}$ is Hermitian if $K(x, y)=\overline{K(y, x)}$ for every $x, y \in S$.

## Theorem

Let $H$ be a Hilbert space, $S$ be a non-empty set and let $f: S \longrightarrow H$ be a function. The function $K: S \times S \longrightarrow \mathbb{C}$ defined by

$$
K(s, t)=(f(s), f(t))
$$

is of positive type.

## Proof

We can write

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a_{j}} K\left(t_{i}, t_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a_{j}}\left(f\left(t_{i}\right), f\left(t_{j}\right)\right) \\
& =\left\|\sum_{i=1}^{n} a_{i} f\left(a_{i}\right)\right\|^{2} \geqslant 0
\end{aligned}
$$

which means that $K$ is of positive type.

## Theorem

Let $S$ be a set and let $F: S \times S \longrightarrow \mathbb{C}$ be a positive type function. The following statements hold:

- $F(x, y)=\overline{F(y, x)}$ for every $x, y \in S$, that is, $F$ is Hermitian;
- $\bar{F}$ is a positive type function;
- $|F(x, y)|^{2} \leqslant F(x, x) F(y, y)$.


## Proof

Take $n=2$ in the definition of positive type functions. We have

$$
\begin{equation*}
a_{1} \overline{a_{1}} F\left(x_{1}, x_{1}\right)+a_{1} \overline{a_{2}} F\left(x_{1}, x_{2}\right)+a_{2} \overline{\bar{a}_{1}} F\left(x_{2}, x_{1}\right)+a_{2} \overline{a_{2}} F\left(x_{2}, x_{2}\right) \geqslant 0, \tag{1}
\end{equation*}
$$

which amounts to

$$
\left|a_{1}\right|^{2} F\left(x_{1}, x_{1}\right)+a_{1} \overline{a_{2}} F\left(x_{1}, x_{2}\right)+a_{2} \overline{a_{1}} F\left(x_{2}, x_{1}\right)+\left|a_{2}\right|^{2} F\left(x_{2}, x_{2}\right) \geqslant 0
$$

By taking $a_{1}=a_{2}=1$ we obtain

$$
p=F\left(x_{1}, x_{1}\right)+F\left(x_{1}, x_{2}\right)+F\left(x_{2}, x_{1}\right)+F\left(x_{2}, x_{2}\right) \geqslant 0
$$

where $p$ is a positive real number.
Similarly, by taking $a_{1}=i$ and $a_{2}=1$ we have

$$
q=-F\left(x_{1}, x_{1}\right)+i F\left(x_{1}, x_{2}\right)-i F\left(x_{2}, x_{1}\right)+F\left(x_{2}, x_{2}\right) \geqslant 0
$$

where $q$ is a positive real number.

## Proof (cont'd)

Thus, we have

$$
\begin{aligned}
F\left(x_{1}, x_{2}\right)+F\left(x_{2}, x_{1}\right) & =p-F\left(x_{1}, x_{1}\right)-F\left(x_{2}, x_{2}\right) \\
i F\left(x_{1}, x_{2}\right)-i F\left(x_{2}, x_{1}\right) & =q+F\left(x_{1}, x_{1}\right)-F\left(x_{2}, x_{2}\right) .
\end{aligned}
$$

These equalities imply

$$
\begin{aligned}
& 2 F\left(x_{1}, x_{2}\right)=P-i Q \\
& 2 F\left(x_{2}, x_{1}\right)=P+i Q
\end{aligned}
$$

where $P=p-F\left(x_{1}, x_{1}\right)-F\left(x_{2}, x_{2}\right)$ and $Q=q+F\left(x_{1}, x_{1}\right)-F\left(x_{2}, x_{2}\right)$, which shows the first statement holds.

The second part of the theorem follows by applying the conjugation in the equality of Definition.
For the final part, note that if $F\left(x_{1}, x_{2}\right)=0$ the desired inequality holds immediately. Therefore, assume that $F\left(x_{1}, x_{2}\right) \neq 0$ and take $a_{1}=a \in \mathbb{R}$ and to $a_{2}=F\left(x_{1}, x_{2}\right)$. We have

$$
\begin{aligned}
& a^{2} F\left(x_{1}, x_{1}\right)+a \overline{F\left(x_{1}, x_{2}\right)} F\left(x_{1}, x_{2}\right) \\
& \quad+F\left(x_{1}, x_{2}\right) a F\left(x_{2}, x_{1}\right)+F\left(x_{1}, x_{2}\right) \overline{F\left(x_{1}, x_{2}\right)} F\left(x_{2}, x_{2}\right) \geqslant 0
\end{aligned}
$$

which amounts to

$$
a^{2} F\left(x_{1}, x_{1}\right)+2 a\left|F\left(x_{1}, x_{2}\right)\right|+\left|F\left(x_{1}, x_{2}\right)\right|^{2} F\left(x_{2}, x_{2}\right) \geqslant 0 .
$$

If $F\left(x_{1}, x_{1}\right)$ this trinomial in a must be non-negative for every $a$, which implies

$$
\left|F\left(x_{1}, x_{2}\right)\right|^{4}-\left|F\left(x_{1}, x_{2}\right)\right|^{2} F\left(x_{1}, x_{1}\right) F\left(x_{2}, x_{2}\right) \leqslant 0
$$

Since $F\left(x_{1}, x_{2}\right) \neq 0$, the desired inequality follows.

## Theorem

A real-valued function $G: S \times S \longrightarrow \mathbb{R}$ is a positive type function if it is symmetric and

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{i=1}^{n} a_{i} a_{j} G\left(x_{i}, x_{j}\right) \geqslant 0 \tag{2}
\end{equation*}
$$

for $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $x_{1}, \ldots, x_{n} \in S$. In other words $G$ is a positive type function iff $\left(G\left(x_{i}, x_{j}\right)\right)$ is a positive-definite matrix for any $x_{1}, \ldots, x_{n} \in S$.

## Theorem

Let $S$ be a non-empty set. If $K_{i}: S \times S \longrightarrow \mathbb{C}$ for $i=1,2$ are functions of positive type, then their pointwise product $K_{1} K_{2}$ defined by $\left(K_{1} K_{2}\right)(x, y)=K_{1}(x, y) K_{2}(x, y)$ is of positive type.

## Proof

Since $K_{i}$ is a function of positive type, the matrix

$$
A_{n, K_{i}}\left(x_{1}, \ldots, x_{n}\right)=\left(K_{i}\left(x_{j}, x_{h}\right)\right)
$$

is positive, where $i=1,2$. Thus, such matrices can be factored as

$$
A_{n, K_{1}}\left(x_{1}, \ldots, x_{n}\right)=P^{H} P \text { and } A_{n, K_{2}}\left(x_{1}, \ldots, x_{n}\right)=R^{H} R
$$

for $i=1,2$. Therefore, we have:

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} K_{1}\left(x_{i}, x_{j}\right) K_{2}\left(x_{i}, x_{j}\right) \overline{a_{j}} \\
& \quad=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} K\left(x_{i}, x_{j}\right) \cdot\left(\sum_{m=1}^{n} \overline{r_{m i}} r_{m j}\right) \overline{a_{j}} \\
& \quad=\sum_{m=1}^{n}\left(\sum_{i=1}^{n} a_{i} \overline{r_{m i}}\right) K\left(x_{i}, x_{j}\right)\left(\sum_{j=1}^{n} r_{j m} \overline{a_{j}}\right) \geqslant 0
\end{aligned}
$$

which shows that $\left(K_{1} K_{2}\right)(x, y)$ is a function of positive type.

# Theorem 

Let $S$ be a non-empty set. The set of functions of positive type is closed with respect to multiplication with non-negative scalars and with respect to addition.

- A function $K: S \times S \longrightarrow \mathbb{C}$ defined by $K(s, t)=(f(s), f(t))$, where $f: S \longrightarrow H$ is of positive type, where $H$ is a Hilbert space.
- The reverse is also true:

If $K$ is of positive type a special Hilbert space exists such that $K$ can be expressed as an inner product on this space (Aronszajn's Theorem).

- This fact is essential for data kernelization that, in turn, is essential for support vector machines.


## Theorem

(Aronszajn's Theorem) Let $K: X \times X \longrightarrow \mathbb{R}$ be a positive type kernel. Then, there exists a Hilbert space $H$ of functions and a feature mapping $\Phi: X \longrightarrow H$ such that $K(\boldsymbol{x}, \boldsymbol{y})=(\Phi(\boldsymbol{x}), \Phi(\boldsymbol{y}))$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}$.
Furthermore, $H$ has the reproducing property which means that for every $h \in H$ we have

$$
h(\boldsymbol{x})=(h, K(\boldsymbol{x}, \cdot)) .
$$

The function space $H$ is called a reproducing Hilbert space associated with $K$.

Which of the following functions are kernels?
For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ :

$$
K(\boldsymbol{x}, \boldsymbol{y})=\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)
$$

$K$ is not a kernel. Indeed, for $\boldsymbol{x}=\binom{1}{0}$ and $\boldsymbol{y}=\binom{0}{2}$ we have $k_{11}=K(\boldsymbol{x}, \boldsymbol{x})=2, k_{12}=K(\boldsymbol{x}, \boldsymbol{y})=3=k_{21}$, and $k_{22}=K(\boldsymbol{y}, \boldsymbol{y})=4$.
The matrix of $K$ is

$$
\left(\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right)=\left(\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right) .
$$

Its characteristic polynomial is

$$
\operatorname{det}\left(\begin{array}{cc}
2-\lambda & 3 \\
3 & 4-\lambda
\end{array}\right)=\lambda^{2}-6 \lambda-1 .
$$

and has a negative eigenvalue.

$$
K_{2}(\boldsymbol{x}, \boldsymbol{y})=\prod_{j=1}^{n} h\left(\frac{x_{i}-c}{a}\right) h\left(\frac{y_{i}-c}{a}\right)
$$

where $h(x)=\cos (1.75 x) e^{-\frac{x^{2}}{2}}$.
$K_{2}$ is a kernel because it can be written as a product $K_{2}=f(\boldsymbol{x}) f(\boldsymbol{y})$.

$$
K_{3}(x, y)=-\frac{(x, y)}{\|x\|\|y\|}
$$

$K_{3}$ is not a kernel because it has negative eigenvalues.

$$
K_{4}(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\|\boldsymbol{x}-\boldsymbol{y}\|^{2}+1}
$$

$K_{4}$ is not a kernel. Indeed, for $\boldsymbol{x}=\binom{1}{0}$ and $\boldsymbol{y}=\binom{0}{1}$ the matrix

$$
\left(\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right)=\left(\begin{array}{ll}
1 & 5 \\
5 & 1
\end{array}\right)
$$

has a negative eigenvalue.

## Example

A special case of functions of positive type on $\mathbb{R}^{n}$ are obtained by defining $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ as $K_{f}(\boldsymbol{x}, \boldsymbol{y})=f(\boldsymbol{x}-\boldsymbol{y})$, where $f: \mathbb{R}^{n} \longrightarrow \mathbb{C}$ is a continuous function on $\mathbb{R}^{n}$. $K$ is translation invariant and is designated as a stationary kernel.

## Definition

A continuous linear operator $h: H \longrightarrow H$ on a Hilbert space $H$ is positive if $(h(x), x)) \geqslant 0$ for every $x \in H$.
$h$ is positive definite if it is positive and invertible.
If $h$ is an operator on a space of functions and $h(f)$ is the function defined as $h(f)(x)=\int K(x, y) f(y) d y$, then we say that $K$ is the kernel of $h$.

## Theorem

(Mercer's Theorem) Let $K:[0,1] \times[0,1] \longrightarrow \mathbb{R}$ be a function continuous in both variables that is the kernel of a positive operator $h$ on $L^{2}([0,1])$. If the eigenfunctions of $h$ are $\phi_{1}, \phi_{2}, \ldots$ and they correspond to the eigenvalues $\mu_{1}, \mu_{2}, \ldots$, respectively then we have:

$$
K(x, y)=\sum_{j=1}^{\infty} \mu_{j} \phi_{j}(x) \overline{\phi_{j}(y)}
$$

where the series $\sum_{j=1}^{\infty} \mu_{j} \phi_{j}(x) \overline{\phi_{j}(y)}$ converges uniformly and absolutely to $K(x, y)$.

From the equality for the kernel of a positive operator

$$
K(u, v)=\sum_{n=0}^{\infty} a_{n} \phi_{n}(u) \phi_{n}(v)
$$

with $a_{n}>0$ we can constract a mapping $\Phi$ into a feature space (in this case the potentially infinite $\ell_{2}$ ) as

$$
\Phi(u)=\sum_{n=0}^{\infty} \sqrt{a_{n}} \phi_{n}(u) .
$$

## Example

For $c>0$ a polynomial kernel of degree $d$ is the kernel defined over $\mathbb{R}^{n}$ by

$$
K(\boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{u}^{\prime} \boldsymbol{v}+c\right)^{d} .
$$

As an example, consider $n=2, d=2$ and the kernel $K(\boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{u}^{\prime} \boldsymbol{v}+c\right)^{2}$. We have:

$$
\begin{aligned}
K(\boldsymbol{u}, \boldsymbol{v}) & =\left(u_{1} v_{1}+u_{2} v_{2}+c\right)^{2} \\
& =u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+c^{2}+2 u_{1} v_{1} u_{2} v_{2}+2 u_{1} v_{1} c+2 u_{2} v_{2} c
\end{aligned}
$$

## Example (cont'd)

Feature space is $\mathbb{R}^{6}$

$$
K(\boldsymbol{u}, \boldsymbol{v})=\left(\begin{array}{c}
u_{1}^{2} \\
u_{2}^{2} \\
\sqrt{2} u_{1} u_{2} \\
\sqrt{2 c} u_{1} \\
\sqrt{2 c} u_{2} \\
c
\end{array}\right)^{\prime}\left(\begin{array}{c}
v_{1}^{2} \\
v_{2}^{2} \\
\sqrt{2} v_{1} v_{2} \\
\sqrt{2 c} v_{1} \\
\sqrt{2 c} v_{2} \\
c
\end{array}\right)=\Phi(\boldsymbol{u})^{\prime} \Phi(\boldsymbol{v}) \text { and } \Phi(\boldsymbol{x})=\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2} \\
\sqrt{2 c} x_{1} \\
\sqrt{2 c} x_{2} \\
c
\end{array}\right)
$$

In general, features associated to a polynomial kernel of degree $d$ are all monomials of degree $d$ associated to the original features. It is possible to show that polynomial kernels of degree $d$ on $\mathbb{R}^{n}$ map the input space to a space of dimension $\binom{n+d}{d}$.

For the kernel $K(\boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{u}^{\prime} \boldsymbol{v}+1\right)^{2}$ we have

$$
\Phi\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2} \\
\sqrt{2} x_{1} \\
\sqrt{2} x_{2} \\
1
\end{array}\right) .
$$



For the kernel $K(\boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{u}^{\prime} \boldsymbol{v}+1\right)^{2}$ we have

$$
\Phi\binom{1}{1}=\left(\begin{array}{c}
1 \\
1 \\
\sqrt{2} \\
\sqrt{2} \\
\sqrt{2} \\
1
\end{array}\right), \Phi\binom{-1}{-1}=\left(\begin{array}{c}
1 \\
1 \\
\sqrt{2} \\
-\sqrt{2} \\
-\sqrt{2} \\
1
\end{array}\right), \Phi\binom{-1}{1}=\left(\begin{array}{c}
1 \\
1 \\
-\sqrt{2} \\
-\sqrt{2} \\
\sqrt{2} \\
1
\end{array}\right), \Phi\binom{1}{-1}=\left(\begin{array}{c}
1 \\
1 \\
-\sqrt{2} \\
\sqrt{2} \\
-\sqrt{2} \\
1
\end{array}\right)
$$

For this set of points differences occur in the third,fourth, and fifth features.

## Definition

To any kernel $K$ we can associate a normalized kernel $K^{\prime}$ defined by

$$
K^{\prime}(u, v)= \begin{cases}0 & \text { if } K(u, u)= \\ \frac{K(u, v)}{\sqrt{K(u, u)} \sqrt{K(v, v)}} & \text { otherwise. }\end{cases}
$$

If $K(u, u) \neq 0$, then $K^{\prime}(u, u)=1$.

## Theorem

Let $K$ be a positive type kernel. For any $u, v \in X$ we have

$$
K(u, v)^{2} \leqslant K(u, u) K(v, v) .
$$

Proof: Consider the matrix

$$
\boldsymbol{K}=\left(\begin{array}{ll}
K(u, u) & K(u, v) \\
K(v, u) & K(v, v)
\end{array}\right)
$$

$\boldsymbol{K}$ is positive, so its eigenvalues $\lambda_{1}, \lambda_{2}$ must be non-negative. Its characteristic equation is

$$
\left|\begin{array}{cc}
K(u, u)-\lambda & K(u, v) \\
K(v, u) & K(v, v)-\lambda
\end{array}\right|=0
$$

Equivalently,

$$
\lambda^{2}-(K(u, u)+K(v, v)) \lambda+\operatorname{det}(\boldsymbol{K})=0
$$

Therefore, $\lambda_{1} \lambda_{2}=\operatorname{det}(\boldsymbol{K}) \geqslant 0$ and this implies

$$
K(u, u) K(v, v)-K(u, v)^{2} \geqslant 0
$$

## Theorem

Let $K$ be a positive type kernel. Its normalized kernel is a positive type kernel.

Proof: Let $\left\{x_{1}, \ldots, x_{m}\right\} \subseteq X$ and $\boldsymbol{c} \in \mathbb{R}^{m}$. We prove that $\sum_{i, j} c_{i} c_{j} K^{\prime}\left(x_{i}, x_{j}\right) \geqslant 0$.
If $K\left(x_{i}, x_{i}\right)=0$, then $K\left(x_{i}, x_{j}\right)=0$ and, thus, $K^{\prime}\left(x_{i}, x_{j}\right)=0$ for $1 \leqslant j \leqslant m$. Thus, we may assume that $K\left(x_{i}, x_{i}\right)>0$ for $1 \leqslant i \leqslant m$. We have

$$
\begin{aligned}
\sum_{i, j} c_{i} c_{j} K^{\prime}\left(x_{i}, x_{j}\right) & =\sum_{i, j} c_{i} c_{j} \frac{K\left(x_{i}, x_{j}\right)}{\sqrt{K\left(x_{i}, x_{i}\right) K\left(x_{j}, x_{j}\right)}} \\
& =\sum_{i, j} c_{i} c_{j} \frac{\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle}{\left\|\Phi\left(x_{i}\right)\right\|_{H}\left\|\Phi\left(x_{j}\right)\right\|_{H}} \\
& =\left\|\sum_{i} \frac{c_{i} \Phi\left(x_{i}\right)}{\left\|\Phi\left(x_{i}\right)\right\|_{H}}\right\| \geqslant 0,
\end{aligned}
$$

where $\Phi$ is the feature mapping associated to $K$.

## Example

Let $K$ be the kernel

$$
K(\boldsymbol{u}, \boldsymbol{v})=e^{\frac{u^{\prime} \boldsymbol{v}}{\sigma^{2}}}
$$

where $\sigma>0$. Note that $K(\boldsymbol{u}, \boldsymbol{u})=e^{\frac{\|\boldsymbol{u}\|^{2}}{\sigma^{2}}}$ and $K(\boldsymbol{v}, \boldsymbol{v})=e^{\frac{\|v\|^{2}}{\sigma^{2}}}$, hence its normalized kernel is

$$
\begin{aligned}
K^{\prime}(\boldsymbol{u}, \boldsymbol{v}) & =\frac{K(u, v)}{\sqrt{K(u, u)} \sqrt{K(v, v)}} \\
& =\frac{e^{\frac{u^{\prime} v}{\sigma^{2}}}}{e^{\frac{\|\boldsymbol{u}\|^{2}}{2 \sigma^{2}}} e^{\frac{\|v\|^{2}}{2 \sigma^{2}}}} \\
& =e^{-\frac{\|u-\boldsymbol{v}\|^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

## Example

For a positive constant $\sigma$ a Gaussian kernel or a radial basis function is the function $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ defined by

$$
K(\boldsymbol{u}, \boldsymbol{v})=e^{-\frac{\|\boldsymbol{u}-\boldsymbol{v}\|^{2}}{2 \sigma^{2}}} .
$$

We prove that $K$ is of positive type by showing that $K(\boldsymbol{x}, \boldsymbol{y})=(\phi(\boldsymbol{x}), \phi(\boldsymbol{y}))$, where $\phi: \mathbb{R}^{k} \longrightarrow \ell^{2}(\mathbb{R})$. Note that for this example $\phi$ ranges over an infinite-dimensional space.

We have

$$
\begin{aligned}
K(\boldsymbol{x}, \boldsymbol{y}) & =e^{-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|^{2}}{2 \sigma^{2}}} \\
& =e^{-\frac{\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}-2(\boldsymbol{x}, \boldsymbol{y})}{2 \sigma^{2}}} \\
& =e^{-\frac{\|\boldsymbol{x}\|^{2}}{2 \sigma^{2}}} \cdot e^{-\frac{\|\boldsymbol{y}\|^{2}}{2 \sigma^{2}}} \cdot e^{\frac{(\boldsymbol{x}, \boldsymbol{y})}{\sigma^{2}}}
\end{aligned}
$$

Taking into account that

$$
e^{\frac{(x, y)}{\sigma^{2}}}=\sum_{j=0}^{\infty} \frac{1}{j!} \frac{(x, y)^{j}}{\sigma^{2 j}}
$$

we can write

$$
\begin{aligned}
e^{\frac{(x, y)}{\sigma^{2}}} \cdot e^{-\frac{\|\boldsymbol{x}\|^{2}}{2 \sigma^{2}}} \cdot e^{-\frac{\|\boldsymbol{y}\|^{2}}{2 \sigma^{2}}} & =\sum_{j=0}^{\infty} \frac{(\boldsymbol{x}, \boldsymbol{y})^{j}}{j!\sigma^{2 j}} e^{-\frac{\|x\|^{2}}{2 \sigma^{2}}} \cdot e^{-\frac{\|\boldsymbol{y}\|^{2}}{2 \sigma^{2}}} \\
& =\sum_{j=0}^{\infty}\left(\frac{e^{-\frac{\|\boldsymbol{x}\|^{2}}{2 j \sigma^{2}}}}{\sigma \sqrt{j!^{\frac{1}{j}}}} \frac{e^{-\frac{\|\boldsymbol{y}\|^{2}}{2 j \sigma^{2}}}}{\sigma \sqrt{j!^{\frac{1}{j}}}}(\boldsymbol{x}, \boldsymbol{y})\right)^{j}=(\phi(\boldsymbol{x}), \phi(\boldsymbol{y})),
\end{aligned}
$$

where

$$
\phi(\boldsymbol{x})=\left(\ldots, \frac{e^{-\frac{\|x\|^{2}}{2 j \sigma^{2}}}}{\sigma^{j} \sqrt{j!^{\frac{1}{j}}}}\binom{j}{n_{1}, \ldots, n_{k}}^{\frac{1}{2}} x_{1}^{n_{1}} \cdots x_{k}^{n_{k}}, \ldots\right) .
$$

$j$ varies in $\mathbb{N}$ and $n_{1}+\cdots+n_{k}=j$.

## Example

For $a, b \geqslant 0$, a sigmoid kernel is defined as

$$
K(\boldsymbol{x}, \boldsymbol{y})=\tanh \left(a x^{\prime} \boldsymbol{y}+b\right)
$$

With $a, b \geqslant 0$ the kernel is of positive type.

