CS724: Topics in Algorithms Linear Spaces Slide Set 2

Prof. Dan A. Simovici

< ∃⇒

2 Subspaces

- 3 Linear Independence
- 4 Linear Mappings
- 5 Bases in Linear Spaces
- 6 Direct Sums of Subspaces
 - Dual Linear Spaces

< ∃⇒

The Definition of Linear Spaces - I

Let \mathbb{F} be the field of real numbers \mathbb{R} or the field of complex numbers \mathbb{C} . An \mathbb{F} -*linear space* is a set L on which two operations are defined: the addition $\mathbf{x} + \mathbf{y}$ of elements \mathbf{x} and \mathbf{y} of L and the multiplication of an element \mathbf{x} of L with a member a of \mathbb{F} , denoted by $a\mathbf{x}$, such that the following conditions are satisfied:

- I. Additive Conditions:
 - addition is associative, that is, $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$;
 - addition is commutative, that is, $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$;
 - for every $\mathbf{x} \in L$ there is an element $(-\mathbf{x})$ in L such that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}_L$.

The Definition of Linear Spaces - II

II. Multiplicative Conditions:

• *L* contains an element $\mathbf{0}_L$ such that $0\mathbf{x} = \mathbf{0}_L$;

•
$$(a+b)\mathbf{x} = a\mathbf{x} + b\mathbf{x};$$

•
$$a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y};$$

•
$$(ab)\mathbf{x}) = a(b\mathbf{x});$$

for every $a, b \in F$ and $\boldsymbol{x}, \boldsymbol{y} \in L$.

The elements of the field \mathbb{F} are referred to as *scalars* while the elements of *L* are referred to as *vectors*.

If the field \mathbb{F} is irrelevant, or it is clearly designated from the context we refer to an \mathbb{F} -linear space just as a linear space. On another hand if \mathbb{F} is the real field \mathbb{R} or the complex field \mathbb{C} we designate an \mathbb{R} -linear space as a *real linear space* and a \mathbb{C} -linear space as a *complex linear space*.

< ∃ →

If \mathbb{F} is a field, then the one-element linear space $L = \{\mathbf{0}_L\}$, where $a\mathbf{0}_L = \mathbf{0}_L$ for every $a \in \mathbb{F}$ is the zero \mathbb{F} -linear space, or, for short, the zero linear space.

The field \mathbb{F} itself is an \mathbb{F} -linear space, where the Abelian group is $(\mathbb{F}, \{0, +, -\})$ and scalar multiplication coincides with the scalar multiplication of \mathbb{F} .

Note that the zero $\mathbb F\text{-linear}$ space is the smallest linear space.

The set of all sequences of real numbers, $Seq(\mathbb{R})$ is a real linear space, where the sum of two sequences $\mathbf{x} = (x_0, x_1, \ldots)$ and $\mathbf{y} = (y_0, y_1, \ldots)$ is the sequence $\mathbf{x} + \mathbf{y}$ defined by $\mathbf{x} + \mathbf{y} = (x_0 + y_0, x_1 + y_1, ...)$ and the multiplication of **x** by a scalar *a* is $a\mathbf{x} = (ax_0, ax_1, \ldots)$. A related real linear space is the set $\mathbf{Seq}_n(\mathbb{R})$ of all sequences of real numbers having length n, where the sum and the scalar multiplications are defined in a similar manner. Namely, if $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$ and $\mathbf{y} = (y_0, y_1, \dots, y_{n-1})$, the sequence $\mathbf{x} + \mathbf{y}$ is defined by $\mathbf{x} + \mathbf{y} = (x_0 + y_0, x_1 + y_1, \dots, x_{n-1} + y_{n-1})$ and the multiplication of \mathbf{x} by a scalar *a* is $a\mathbf{x} = (ax_0, ax_1, \dots, ax_{n-1})$. This linear space is denoted by \mathbb{R}^n and its zero element is denoted by $\mathbf{0}_n$.

If the real field \mathbb{R} is replaced by the complex field \mathbb{C} , we obtain the linear space **Seq**(\mathbb{C}) of all sequences of complex numbers. Similarly, we have the complex linear space \mathbb{C}^n which consists of all sequences of length *n* of complex numbers.

Let *L* be an \mathbb{F} -linear space and let *S* be a non-empty set. The set *L^S* that consists of all functions of the form $f : S \longrightarrow L$ is an \mathbb{F} -linear space. The addition of functions is defined by

$$(f+g)(s)=f(s)+g(s),$$

while the multiplication by a scalar is given by (af)(s) = af(s), for $s \in S$ and $a \in \mathbb{F}$.

Let $\mathbb{R}[x]$ be the set of polynomials of variable x with coefficients in \mathbb{R} . For example, $p \in \mathbb{R}[x]$, where

$$p(x) = 3x^7 - 5x^3 + x - 6.$$

The sum of two polynomials $p, q \in \mathbb{R}[x]$ belongs to $\mathbb{R}[x]$. Also, for every $a \in \mathbb{R}$, *ap* is again a polynomial with coefficients in \mathbb{R} .

Definition

Let L be an \mathbb{F} -linear space. A subset U of L is a *linear subspace* of L (or just a subspace of L) if it satisfies the following conditions:

• if
$$\boldsymbol{x}, \boldsymbol{y} \in U$$
, then $\boldsymbol{x} + \boldsymbol{y} \in U$;

• if
$$a \in \mathbb{F}$$
 and $\mathbf{x} \in U$, then $a\mathbf{x} \in U$.

If U is a subspace of a linear space L and $\mathbf{x} \in L$, we denote the set $\{\mathbf{x} + \mathbf{u} \mid \mathbf{u} \in U\}$ by $\mathbf{x} + U$.

The set of polynomials $P_{\leq k}$ of degree less or equal to k is a subspace of the linear space of polynomials. Indeed, $p, q \in P_{\leq k}$ their sum has degree less or equal to k; also, if $a \in \mathbb{R}$ and $p \in P_{\leq k}$, then $ap \in P_{\leq k}$.

The following statements are immediate for an \mathbb{F} -linear space *L*:

- the sets L and $\{\mathbf{0}_L\}$ are subspaces of L;
- each subspace U of L contains $\mathbf{0}_L$.

The subset $\{\mathbf{0}_L\}$ of any \mathbb{F} -linear space L is a subspace of L named the zero subspace. This is the smallest subspace of L.

Theorem

If $\mathcal{L} = \{L_i \mid i \in I\}$ is a collection of subspaces of an \mathbb{F} -linear space L, then $\bigcap \mathcal{L}$ is a subspace of L.

Proof.

Suppose that $\mathbf{x}, \mathbf{y} \in \bigcap \mathcal{L}$. Then, $\mathbf{x}, \mathbf{y} \in L_i$, so $\mathbf{x} + \mathbf{y} \in L_i$ and $a\mathbf{x} \in L_i$ for every $i \in I$. Thus, $\mathbf{x} + \mathbf{y} \in \bigcap \mathcal{L}$ and $a\mathbf{x} \in \bigcap \mathcal{L}$, which allows us to conclude that $\bigcap \mathcal{L}$ is a subspace of L.

Since *L* itself is a subspace of *L* it follows that the collection of subspaces of a linear space is a closure system \mathcal{C} . If K_{sub} is the closure operator induced by \mathcal{C} , then for every subset *X* of *L*, $K_{sub}(X)$ is the smallest subspace of *L* that contains *X*.

Let SUBSP(*M*) be the collection of subspaces of a linear space *M*. If this set is equipped with the inclusion relation \subseteq (which is a partial order), then for any two subspaces *K*, *L* both sup{*K*, *L*} and inf{*K*, *L*} exist and are given by:

$$\sup\{K, L\} = \{x + y \mid x \in K \text{ and } y \in L\}$$
(1)
$$\inf\{K, L\} = K \cap L.$$
(2)

• = • • = •

Let $H = \{x + y \mid x \in K \text{ and } y \in L\}$. Observe that we have both $K \subseteq H$ and $L \subseteq H$ because **0** belongs to both K and L.

If **u** and **v** belong to *H*, then $\mathbf{u} = \mathbf{x}_1 + \mathbf{y}_1$ and $\mathbf{v} = \mathbf{x}_2 + \mathbf{y}_2$, where

 $x_1, x_2 \in K$ and $y_1, y_2 \in L$. Since $x_1 + x_2 \in K$ and $y_1 + y_2 \in L$ (because K and L are subspaces), it follows that

$$u + v = x_1 + y_1 + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) \in H.$$

We have $a\mathbf{u} = a\mathbf{x}_1 + a\mathbf{x}_2 \in H$ because $a\mathbf{x}_1 \in K$ and $a\mathbf{x}_2 \in L$. Thus, H is a subspace of M and is an upper bound of $\{K, L\}$ in the partially ordered set $(SUBSP(M), \subseteq)$.

If G is a subspace of M that contains both K and L, then $\mathbf{x} + \mathbf{y} \in G$ for $\mathbf{x} \in K$ and $\mathbf{y} \in L$, so $H \subseteq G$. Thus, $H = \sup\{K, L\}$. We denote $H = \sup\{K, L\}$ by K + L.

- (同) (回) (回) (回) (回) (回) (回) (回) (回) (回) (回) (回) (回) (回) (回) (回) (回) (回) (回) (\Pi) (\Pi

Next, we prove the *modularity* of SUBSP(M).

Theorem

Let *M* be an \mathbb{F} -linear space. For any $P, Q, R \in SUBSP(M)$ such that $Q \subseteq P$ we have $P \cap (Q + R) = Q + (P \cap R)$.

Proof.

Note that $Q \subseteq P \cap (Q + R)$, $P \cap R \subseteq P \cap (Q + R)$. Therefore, we have the inclusion $Q + (P \cap R) \subseteq P \cap (Q + R) =$, which leaves us with the reverse inclusion to prove. Let $z \in P \cap (Q + R)$. This implies $z \in P$ and z = x + y, where $x \in Q \subseteq P$ and $y \in R$. Therefore, $y = z - x \in P$, so $y \in P \cap R$. Consequently, $z \in Q + (P \cap R)$, so $P \cap (Q + R) \subseteq Q + (P \cap R)$.

< ∃ →

Definition

If L is an \mathbb{F} -linear space, and X is a subset of L, an X-linear combination is an element \boldsymbol{w} of L that can be written as

$$\boldsymbol{w}=\sum_{i=1}^n c_i \boldsymbol{x}_i,$$

where $x_i \in X$. A *linear combination of L* is an X-linear combination, where X is a subset of L.

The set of all X-linear combinations is denoted by $\langle X \rangle$ and is referred to as the *set spanned by* X.

Theorem

Let L be an \mathbb{F} -linear space. If $X \subseteq L$, then $\langle X \rangle$ is the smallest subspace of L that contains the set X. In other words, we have:

- $\langle X \rangle$ is a subspace of L;
- $X \subseteq \langle X \rangle$;
- if $X \subseteq M$, where M is a subspace of L, then $\langle X \rangle \subseteq M$.

Proof

It is clear that if \boldsymbol{u} and \boldsymbol{v} are two X-linear combinations, then $\boldsymbol{u} + \boldsymbol{v}$ and $a\boldsymbol{u}$ are also X-linear combinations, so $\langle X \rangle$ is a subspace of L. For $\boldsymbol{x} \in X$ we can write $1\boldsymbol{x} = \boldsymbol{x}$, so $X \subseteq \langle X \rangle$. Finally, suppose that $X \subseteq M$, where M is a subspace of L and $a_1\boldsymbol{x}_1 + \cdots + a_n\boldsymbol{x}_n \in \langle X \rangle$, where $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in X$. Since $X \subseteq M$, we have $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in M$, hence $a_1\boldsymbol{x}_1 + \cdots + a_n\boldsymbol{x}_n \in M$ because M is a subspace. Thus, $\langle X \rangle \subseteq M$.

Definition

Let *L* be an \mathbb{F} -linear space. A finite subset $U = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ of *L* is *linearly dependent* if $a_1\mathbf{x}_1 + \dots + a_n\mathbf{x}_n = \mathbf{0}_L$, where at least one element a_i of \mathbb{F} is not equal to 0. If this condition is not satisfied then *U* is said to be *linearly independent*.

A set U that consists of one vector $\mathbf{x} \neq \mathbf{0}_L$ is linearly independent.

 $U = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ of L is linearly independent if $a_1\mathbf{x}_1 + \dots + a_n\mathbf{x}_n = \mathbf{0}_L$ implies $a_1 = \dots = a_n = 0$. Also, note that a set U that is linearly independent does not contain $\mathbf{0}_L$.

Example

Let *L* be an \mathbb{F} -linear space. If $\mathbf{u} \in L$, then the set $L_{\mathbf{u}} = \{a\mathbf{u} \mid a \in F\}$ is a linear subspace of *L*. Moreover, if $\mathbf{u} \neq \mathbf{0}_L$, then the set $\{\mathbf{u}\}$ is linearly independent. Indeed, if $a\mathbf{u} = \mathbf{0}_L$ and $a \neq 0$, then multiplying both sides of the above equality by a^{-1} we obtain $(a^{-1}a)\mathbf{u} = \mathbf{a}^{-1}\mathbf{0}$, or equivalently, $\mathbf{u} = \mathbf{0}_L$, which contradicts the initial assumption. Thus, $\{\mathbf{u}\}$ is a linearly independent set.

Definition

Let L be an \mathbb{F} -linear space. A subset W of L is *linearly dependent* if it contains a finite subset U that is linearly dependent. A subset W is *linearly independent* if it is not linearly dependent.

Thus, W is linearly independent if every finite subset of W is linearly independent. Further, any subset of a linearly independent subset is linearly independent and any superset of a linearly dependent set is linearly dependent.

< ∃ →

For every $\mathbb F\text{-linear}$ space L the set $\{\boldsymbol 0_L\}$ is linearly dependent because we have $1\boldsymbol 0_L=\boldsymbol 0_L.$

< 1 →

Theorem

Let L be an \mathbb{F} -linear space and let W be a linearly independent subset of L. If **y** is a linear combination

 $\mathbf{y} = a_1 \mathbf{x}_1 + \cdots + a_n \mathbf{x}_n,$

for some finite subset $\{x_1, \ldots, x_n\}$ of W, then the coefficients a_1, \ldots, a_n are uniquely determined.

Proof

Suppose that \boldsymbol{y} can be alternatively written as

$$\mathbf{y}=b_1\mathbf{x}_1+\cdots+b_n\mathbf{x}_n,$$

for some $b_1, \ldots, b_n \in \mathbb{F}$. Since W is linearly independent this implies

$$(a_1-b_1)\mathbf{x}_1+\cdots+(a_n-b_n)\mathbf{x}_n=\mathbf{0}_L,$$

which, in turn, yields $a_1 - b_1 = \cdots = a_n - b_n = 0$. This, we have $a_i = b_i$ for $1 \le i \le n$.

• E • • E • •

Definition

Let \mathbb{F} be a field and let L and M be two \mathbb{F} -linear spaces. A *linear mapping* is a function $h : L \longrightarrow M$ such that

$$h(ax + by) = ah(x) + bh(y)$$

for every scalars $a, b \in \mathbb{F}$ and $\mathbf{x}, \mathbf{y} \in L$. An *affine mapping* is a function $\mathbf{f} : L \longrightarrow M$ such that there exists a linear mapping $\mathbf{h} : L \longrightarrow M$ and $\mathbf{b} \in M$ such that $\mathbf{f}(\mathbf{x}) = \mathbf{h}(\mathbf{x}) + \mathbf{b}$ for $\mathbf{x} \in L$.

Linear mappings are also referred to as *linear spaces homomorphisms*, as *linear morphisms*, or as *linear operators*.

The set of morphisms between two \mathbb{F} -linear spaces L and M is denoted by Hom(L, M). The set of affine mappings between two \mathbb{F} -linear spaces L and M is denoted by Aff(L, M).

Let $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the transformation defined by

$$h\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}x_2\\x_1\end{pmatrix}$$

This is a linear mapping $h : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$.

э

Define the mapping $h: \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ as

$$h(p)(x) = \int_0^x p(t) dt.$$

For example, for $p(x) = x^2 + \frac{1}{3}x$ we have

$$h(p)(x) = \int_0^x (t^2 + \frac{1}{3}t) dt = \frac{1}{3}x^3 + \frac{1}{6}x^2.$$

It is easy to see that $h(p_1 + p_2) = h(p_1) + h(p_2)$ and h(ap) = ah(p), which means that h is indeed a linear mapping

The notion of subspace is closely linked to the notion of linear mapping as we show next.

Theorem

Let L,M be two $\mathbb F\text{-linear spaces.}$ If $h:L\longrightarrow M$ is a linear mapping than the sets

$$Im(h) = \{h(\boldsymbol{x}) \mid \boldsymbol{x} \in L\},\$$

and

$$Ker(h) = \{ \boldsymbol{x} \in L \mid h(\boldsymbol{x}) = \boldsymbol{0}_M \}$$

are subspaces of the linear spaces M and L, respectively.

Proof

Let u and v be two elements of Im(h). There exist $x, y \in L$ such that u = h(x) and v = h(y). Since h is a linear mapping we have

$$\boldsymbol{u} + \boldsymbol{v} = h(\boldsymbol{x}) + h(\boldsymbol{y}) = h(\boldsymbol{x} + \boldsymbol{y}).$$

Thus, $\mathbf{u} + \mathbf{v} \in \text{Im}(h)$. Further, if $a \in \mathbb{F}$, then $a\mathbf{u} = ah(\mathbf{x}) = h(a\mathbf{x})$, so $a\mathbf{u} \in \text{Im}(h)$. Thus, Im(h) is indeed a subspace of M. Suppose now that \mathbf{s} and \mathbf{t} belong to Ker(h), that is $h(\mathbf{s}) = h(\mathbf{t}) = \mathbf{0}_M$. Then, $h(\mathbf{s} + \mathbf{t}) = h(\mathbf{s}) + h(\mathbf{t}) = \mathbf{0}_M$, so $\mathbf{s} + \mathbf{t} \in \text{Ker}(h)$. Also, $h(a\mathbf{s}) = ah(\mathbf{s}) = a\mathbf{0}_M = \mathbf{0}_M$, which allows us to conclude that Ker(h) is a subspace of L.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

We refer to Im(h) as the *image* of *h*, and to Ker(h) as the *kernel* of *h*.

Definition

Let $h, g \in Hom(L, M)$ be two linear mappings between the \mathbb{F} -linear spaces L and M. The sum of h and g is the mapping h + g defined by

$$(\boldsymbol{h}+\boldsymbol{g})(\boldsymbol{x})=\boldsymbol{h}(\boldsymbol{x})+\boldsymbol{g}(\boldsymbol{x})$$

for $\mathbf{x} \in L$. If $a \in \mathbb{F}$, the product $a\mathbf{f}$ is defined as $(a\mathbf{f})(\mathbf{x}) = a\mathbf{f}(\mathbf{x})$ for $\mathbf{x} \in L$.

If L, M are two \mathbb{F} -linear spaces, then the set Hom(L, M) is never empty because the zero morphism $\mathbf{0}_{L,M} : L \longrightarrow M$ defined as $\mathbf{0}_{L,M}(\mathbf{x}) = \mathbf{0}_M$ for $\mathbf{x} \in L$ is always an element of Hom(L, M).

Note that

$$(f + g)(ax + by) = f(ax + by) + g(ax + by)$$

= $af(x) + bf(y) + ag(x) + bg(y)$
= $f(ax + by) + g(ax + by),$

for all $a, b \in F$ and $\mathbf{x}, \mathbf{y} \in L$. This shows that the sum of two linear mappings is also a linear mapping.

Theorem

Hom(L, M) equipped with the sum and product defined above is an \mathbb{F} -linear space.

Proof: The zero element of Hom(L, M) is the mapping $\mathbf{0}_{L,M}$.

Definition

Let *L* be an \mathbb{F} -linear space. A *linear form* on *L* is a morphism in Hom (L, \mathbb{F}) , where the field \mathbb{F} is regarded as a linear space.

< 一 →

Definition

A basis of an \mathbb{F} -linear space L is a linearly independent subset W such that $\langle W \rangle = L$. If an \mathbb{F} -linear space L has a finite basis, then we say that L is a *linear space* of finite type.

Theorem

Every non-zero \mathbb{F} -linear space L has a basis.

Corollary

(Independent Set Extension Corollary) Let L be an \mathbb{F} -linear space. If W is a linearly independent set, then there exists a basis T of L such that $W \subseteq T$.

Proof: Since W is a linearly independent set, if $\langle T \rangle = L$, then $W \cup T$ is also generating L.

If an \mathbb{F} -linear space *L* has a finite basis, then we say that *L* is a linear space of *finite type*.

Lemma

Let L be a finite type \mathbb{F} -linear space and let T be a finite subset of L that is not linearly independent. If $k = |T| \ge 2$ and $(\mathbf{t}_1, \ldots, \mathbf{t}_k)$ is a list of the vectors in T, then there exists a number j such that $2 \le j \le k$ and \mathbf{t}_j is a linear combination of its predecessors in the sequence. Furthermore, we have $\langle T - \{\mathbf{t}_j\} \rangle = \langle T \rangle$.

Proof

Since T is not linearly in dependent, there exists a linear combination $\sum_{i=1}^{k} a^{i} \mathbf{t}_{i} = \mathbf{0}_{L}$ such that some of the scalars a^{1}, \ldots, a^{k} are different from 0.

Let *j* the largest number such that $1 \le j \le k$ and $a_j \ne 0$. The definition of *j* implies

$$a^1 t_1 + \cdots + a^j t_j = \mathbf{0}_L,$$

so $\mathbf{t}_j = -\sum_{i=1}^{j-1} \frac{a^i}{a^j} \mathbf{t}_i$, which shows that \mathbf{t}_j is a linear combination of its predecessors in the list. Consequently, the set of linear combinations of the vectors in $T - {\mathbf{t}_j}$ equals $\langle T \rangle$.

(The Replacement Theorem) Let *L* be a finite type \mathbb{F} -linear space such that the set *W* spans the linear space *L* and |W| = n. If *U* is a linearly independent set in *V* such that |U| = m, then $m \leq n$ and there exists a subset *W'* of *W* such that *W'* contains n - m vectors and $U \cup W'$ spans the space *L*.

Proof

Suppose that $W = \{\boldsymbol{w}_1, \dots, \boldsymbol{w}_n\}$ and $U = \{\boldsymbol{u}_1, \dots, \boldsymbol{u}_m\}$ is linearly independent, where $m \leq n$. The argument is by induction on m. The basis case. m = 0, is immediate. Suppose the statement holds for *m* and let $U = \{u_1, \ldots, u_m, u_{m+1}\}$ be a linearly independent set that contains m+1 vectors. The set $\{u_1, \ldots, u_m\}$ is linearly independent, so by the inductive hypothesis there exists a subset W' of W that contains n - m vectors such that $\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_m\} \cup W'$ spans the space L. Without loss of generality we may assume that $W' = \{ \boldsymbol{w}_1, \dots, \boldsymbol{w}_{n-m} \}$. Thus, \boldsymbol{u}_{m+1} is a linear combination of the vectors of $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_m,\boldsymbol{w}_1,\ldots,\boldsymbol{w}_{n-m}\}$, so we have

$$\boldsymbol{u}_{m+1} = a^1 \boldsymbol{u}_1 + \cdots + a^m \boldsymbol{u}_m + b^1 \boldsymbol{w}_1 + \cdots + b^{n-m} \boldsymbol{w}_{n-m}.$$

Proof (cont'd)

We have $m + 1 \leq n$ because, otherwise, m + 1 = n and u_{m+1} would be a linear combination of u_1, \ldots, u_m , thereby contradicting the linear independence of the set U.

The set $\{u_1, \ldots, u_m, u_{m+1}, w_1, \ldots, w_{n-m}\}$ is not linearly independent. Let v be the first member of the sequence $(u_1, \ldots, u_m, u_{m+1}, w_1, \ldots, w_{n-m})$ that is a linear combination of its predecessors. Then, v cannot be one of the u_i (with $1 \le i \le m$) because this would contradict the linear independence of the set U. Therefore, there exists k such that w_k is a linear combination of its predecessors and $1 \le k \le n-m$. By a previous lemma we can remove this element from the set

 $\{u_1, \ldots, u_m, u_{m+1}, w_1, \ldots, w_{n-m}\}$ without affecting the set spanned.

Corollary

Let L be a finite type \mathbb{F} -linear space and let U, W be two bases of L. Then |U| = |W|.

Proof.

Since U is a linearly independent set and $\langle W \rangle = L$ we have $|U| \leq |W|$. The reverse inequality, $|W| \leq |U|$, is obtained by asserting that W is linearly independent and $\langle U \rangle = L$. Thus, |U| = |W|.

This allows the introduction of the notion of dimension for a linear space.

Definition

The dimension of a finite type linear space L is the number of elements of any basis of L. The dimension of L is denoted by dim(L). If a linear space L is not of finite type than we say that dim(L) is infinite.

Theorem

Let *L* be an \mathbb{F} -linear space of finite type having the basis $B = \{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ and let $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}$ be a subset of an \mathbb{F} -linear space *M*. There exists a unique linear mapping $f : L \longrightarrow M$ such that $f(\mathbf{x}_i) = \mathbf{y}_i$ for $1 \le i \le n$.

Proof: If $\mathbf{x} \in L$ we have $\mathbf{x} = a_1\mathbf{x}_1 + \cdots + a_n\mathbf{x}_n$ because $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ is a basis of *L*. Define $f(\mathbf{x})$ as $f(\mathbf{x}) = \sum_{i=1}^n a_i \mathbf{y}_i$. The uniqueness of the expression of \mathbf{x} as a linear combination of the elements of *B* makes *f* well-defined. The linearity of *f* is immediate. For uniqueness, note that the value of *f* is determined by the values of $f(\mathbf{x}_i)$.

• = • • = •

Let L, M be two linear spaces of finite type with dim(L) = p and dim(M) = q. Then, dim(Hom(L, M)) = pq.

Proof

Suppose that $\{\mathbf{x}_1, \ldots, \mathbf{x}_p\}$ is a basis in L and $\{\mathbf{y}_1, \ldots, \mathbf{y}_q\}$ is a basis in M. For every *i* such that $1 \leq i \leq p$ and *j* such that $1 \leq i \leq q$ there exists a unique linear mapping $f_{ii}: \{\mathbf{x}_1, \dots, \mathbf{x}_p\} \longrightarrow M$ such that:

$$f_{ij}(oldsymbol{x}_k) = egin{cases} oldsymbol{y}_j & ext{if } i=k, \ oldsymbol{0}_M & ext{otherwise}, \end{cases}$$

for $1 \leq k \leq p$. Note that if $\mathbf{x} = \sum_{k=1}^{p} a_k \mathbf{x}_k$, the linearity of f_{ij} implies:

$$f_{ij}(\boldsymbol{x}) = f_{ij}\left(\sum_{k=1}^{p} a_k \boldsymbol{x}_k\right) = \sum_{k=1}^{p} a_k f_{ij}(\boldsymbol{x}_k) = a_i f_{ij}(\boldsymbol{x}_i).$$

We claim that the set $\{f_{ii} \mid 1 \leq i \leq p, 1 \leq j \leq q\}$ is a basis for Hom(L, M).

• = • • = • •

Proof cont'd

Let $f: L \longrightarrow M$ be a linear mapping. If $\mathbf{x} \in L$ we can write $\mathbf{x} = \sum_{i=1}^{p} a_i \mathbf{x}_i$, so $f(\mathbf{x}) = \sum_{i=1}^{p} a_i f(\mathbf{x}_i)$. In turn, since $\{\mathbf{y}_1, \dots, \mathbf{y}_q\}$ is a basis in M, $f(\mathbf{x}_i) = \sum_{j=1}^{q} b_{ij} \mathbf{y}_j$, for some $b_{ij} \in F$. This allows us to write:

$$f(\mathbf{x}) = \sum_{i=1}^{p} a_i \sum_{j=1}^{q} b_{ij} \mathbf{y}_j = \sum_{i=1}^{p} \sum_{j=1}^{q} a_i b_{ij} \mathbf{y}_j = \sum_{i=1}^{p} \sum_{j=1}^{q} a_i b_{ij} f_{ij}(\mathbf{x}),$$

which shows that each linear mapping in Hom(L, M) is a linear combination of functions f_{ij} .

• = • • = •

Proof cont'd

Furthermore, the set $\{f_{ij} \mid 1 \leq i \leq p, 1 \leq j \leq p\}$ is linearly independent in Hom(L, M). Indeed, suppose that $\sum_{i=1}^{p} \sum_{j=1}^{q} c_{ij} f_{ij}(\mathbf{x}) = \mathbf{0}_{M}$. Then, for $\mathbf{x} = \mathbf{x}_{i}$ we have $\sum_{j=1}^{q} c_{ij} \mathbf{y}_{j} = \mathbf{0}_{M}$, which implies $c_{ij} = 0$. We may conclude that $\dim(\text{Hom}(L, M)) = \dim(L) \dim(M)$.

If W is a subspace of a finite type linear space L, then $\dim(W) \leq \dim(L)$.

Proof.

If U is a linearly independent set in the subspace W, then it is clear that U is linearly independent in L. There exists a basis V of L such that $U \subseteq V$ and $|V| = \dim(L)$. Therefore, $\dim(W) \leq \dim(L)$.

The notion of subspace is closely linked to the notion of linear mapping as we show next.

Theorem

Let L, M be two \mathbb{F} -linear spaces. If $h : L \longrightarrow M$ is a linear mapping than Im(h) is a subspace of M and Ker(h) is a subspace of L.

< ∃ →

Proof

Let u and v be two elements of Im(h). There exist $x, y \in L$ such that u = h(x) and v = h(y). Since h is a linear mapping we have

$$\boldsymbol{u}-\boldsymbol{v}=h(\boldsymbol{x})-h(\boldsymbol{y})=h(\boldsymbol{x}-\boldsymbol{y}).$$

Thus, $\mathbf{u} - \mathbf{v} \in \text{Im}(h)$. Further, if $a \in S$, then $a\mathbf{u} = ah(\mathbf{x}) = h(a\mathbf{x})$, so $a\mathbf{u} \in \text{Im}(h)$. Thus, Im(h) is indeed a subspace of P. Suppose now that \mathbf{s} and \mathbf{t} belong to Ker(h), that is $h(\mathbf{s}) = h(\mathbf{t}) = \mathbf{0}_M$. Then, $h(\mathbf{s} - \mathbf{t}) = h(\mathbf{s}) - h(\mathbf{t}) = \mathbf{0}_M$, so $\mathbf{s} - \mathbf{t} \in \text{Ker}(h)$. Also, $h(a\mathbf{s}) = ah(\mathbf{s}) = a\mathbf{0}_M = \mathbf{0}_M$, which allows us to conclude that Ker(h) is a subspace of h.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let L and M be two linear spaces, where dim(L) = n, and let $h : L \longrightarrow M$ be a linear mapping. Then, we have

 $\dim(\mathit{Ker}(h)) + \dim(\mathit{Im}(h)) = n.$

Proof

Suppose that $\{e_1, \ldots, e_m\}$ is a basis for the subspace Ker(h) of L. Each such basis can be extended to a basis

$$\{\boldsymbol{e}_1,\ldots,\boldsymbol{e}_m,\boldsymbol{e}_{m+1},\ldots,\boldsymbol{e}_n\}$$

of the space *L*. Any $\boldsymbol{v} \in L$ can be written as

$$oldsymbol{v} = \sum_{i=1}^n a^i oldsymbol{e}_i.$$

Since $\{\boldsymbol{e}_1,\ldots,\boldsymbol{e}_m\}\subseteq \operatorname{Ker}(h)$ we have $h(\boldsymbol{e}_i)=\boldsymbol{0}_M$ for $1\leqslant i\leqslant m$, so

$$h(\boldsymbol{v}) = \sum_{i=m+1}^{n} a^{i} h(\boldsymbol{e}_{i}).$$

This means that the set $\{h(\boldsymbol{e}_{m+1}), \ldots, h(\boldsymbol{e}_n)\}$ spans the suppose $\operatorname{Im}(h)$ of M.

Proof cont'd

We show now that this set is linearly independent.

Indeed, suppose that $\sum_{i=m+1}^{n} b^{i}h(\boldsymbol{e}_{i}) = \boldsymbol{0}_{M}$. This implies $h(\sum_{i=m+1}^{n} b^{i}\boldsymbol{e}_{i}) = \boldsymbol{0}_{M}$, that is, $\sum_{i=m+1}^{n} b^{i}\boldsymbol{e}_{i} \in \operatorname{Ker}(h)$. Since $\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\}$ is a basis for $\operatorname{Ker}(h)$ there exist m scalars c^{1}, \ldots, c^{m} such that

$$\sum_{i=m+1}^{n} b^{i} \boldsymbol{e}_{i} = c^{1} \boldsymbol{e}_{1} + \dots + c^{m} \boldsymbol{e}_{m}$$

The fact that $\{e_1, \ldots, e_m, e_{m+1}, \ldots, e_n\}$ is a basis for *L* implies that $c^1 = \cdots = c^m = b^{m+1} = \cdots = b^n = 0$, so the set $\{h(e_{m+1}), \ldots, h(e_n)\}$ is linearly independent and, therefore, a basis for Im(h). Thus, dim(Im(h)) = n - m, which concludes the argument.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition

Let L and M be two \mathbb{F} -linear spaces and let $h \in \text{Hom}(L, M)$. The rank of h is rank $(h) = \dim(\text{Im}(h))$; the nullity of h is nullity $(h) = \dim(\text{Ker}(h))$.

If $h: L \longrightarrow M$ is a linear mapping and L is a linear space of finite type, then

$$\dim(L) = \operatorname{rank}(h) + \operatorname{nullity}(h).$$

Let $h: L \longrightarrow M$ be a linear mapping between two linear spaces. Then, $rank(h) \leq \min\{\dim(L), \dim(M)\}.$

Proof.

It is clear that $rank(h) \leq \dim(L)$. On the other hand, $rank(h) = \dim(Im(h)) \leq \dim(M)$ because Im(h) is a subspace of M, so the inequality of the theorem follows.

Example

Let L, M be two \mathbb{F} -linear spaces. For $h \in L^*$ and $\mathbf{y} \in M$ define the mapping $\ell_{h,\mathbf{y}}$ as $\ell_{h,\mathbf{y}}(\mathbf{x}) = h(\mathbf{x})\mathbf{y}$ for $\mathbf{x} \in L$. It is easy to verify that $\ell_{h,\mathbf{y}}$ is a linear mapping, that is, $\ell_{h,\mathbf{y}} \in \text{Hom}(L, M)$. Furthermore, we have $\text{rank}(\ell_{h,\mathbf{y}}) = 1$ because $\text{Im}(\ell_{h,\mathbf{y}})$ consists of the multiples of the vector \mathbf{y} .

< ∃ > < ∃ >

Definition

Let L and M two \mathbb{F} -linear spaces. An *isomorphism* between these linear spaces is a linear mapping $h: L \longrightarrow M$ that is a bijection. If an isomorphism exists between two \mathbb{F} -linear spaces L and M we say that these linear spaces are *isomorphic* and we write $L \cong M$.

Two \mathbb{F} -linear spaces that are isomorphic are indiscernible from an algebraic point of view.

If L_1, L_2 are subspaces of an \mathbb{F} -linear space L, then their intersection is non-empty because $\mathbf{0}_L \in L_1 \cap L_2$. Moreover, it is easy to see that $L_1 \cap L_2$ is also a subspace of L.

Let L_1, L_2 be two subspaces of a linear space *L*. Their *sum* is the subset $L_1 + L_2$ of *L* defined by

$$L_1 + L_2 = \{ \boldsymbol{x} + \boldsymbol{y} \mid \boldsymbol{x} \in L_1 \text{ and } \boldsymbol{y} \in L_2 \}.$$

It is immediate to verify that $L_1 + L_2$ is a subspace of L and that $\mathbf{0}_L \in L_1 \cap L_2$.

Let L_1, L_2 be two subspaces of the \mathbb{F} -linear space L. If $L_1 \cap L_2 = \{\mathbf{0}_L\}$, then any vector $\mathbf{x} \in L_1 + L_2$ can be uniquely written as $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, where $\mathbf{x}_1 \in L_1$ and $\mathbf{x}_2 \in L_2$.

Proof.

By the definition of the sum $L_1 + L_2$ it is clear that any vector $\mathbf{x} \in L_1 + L_2$ can be written as $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$. We need to prove only the uniqueness of \mathbf{x}_1 and \mathbf{x}_2 .

Suppose that $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 = \mathbf{y}_1 + \mathbf{y}_2$, where $\mathbf{x}_1, \mathbf{y}_1 \in L_1$ and $\mathbf{x}_2, \mathbf{y}_2 \in L_2$. This implies $\mathbf{x}_1 - \mathbf{y}_1 = \mathbf{y}_2 - \mathbf{x}_2$ and, since $\mathbf{x}_1 - \mathbf{y}_1 \in L_1$ and $\mathbf{y}_2 - \mathbf{x}_2 \in L_2$ it follows that $\mathbf{x}_1 - \mathbf{y}_1 = \mathbf{y}_2 - \mathbf{x}_2 = \mathbf{0}_L$ by hypothesis. Therefore, $\mathbf{x}_1 = \mathbf{y}_1$ and $\mathbf{x}_2 = \mathbf{y}_2$.

Let L_1, L_2 be two subspaces of the \mathbb{F} -linear space L. If every vector $\mathbf{x} \in L_1 + L_2$ can be uniquely written as $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, then $L_1 \cap L_2 = \mathbf{0}_L$.

Proof.

Suppose that the uniqueness of the expression of \mathbf{x} holds but $\mathbf{z} \in L_1 \cap L_2$ and $\mathbf{z} \neq \mathbf{0}_L$. If $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, then we can also write $\mathbf{x} = (\mathbf{x}_1 + \mathbf{z}) + (\mathbf{x}_2 - \mathbf{z})$, where $\mathbf{x}_1 + \mathbf{z} \in L_1$ and $\mathbf{x}_2 - \mathbf{z} \in L_2$, $\mathbf{x}_1 + \mathbf{z} \neq \mathbf{x}_1$ and $\mathbf{x}_2 - \mathbf{z} \neq \mathbf{x}_2$, and this contradicts the uniqueness property.

Let *L* be an \mathbb{F} -linear space. The set of linear forms defined on *L* is denoted by *L*^{*}. This set has the natural structure of an \mathbb{F} -linear space known as the *dual of the space L*.

The elements of L^* are also referred to as *covariant vectors* or *covectors*. Frequently, we will refer to the vectors of the original linear space as *contravariant vectors*.

Let $B = \{\mathbf{u}_i \in L \mid 1 \leq i \leq n\}$ be a basis in an n-dimensional \mathbb{F} -linear space L. If $\{a_i \in \mathbb{F} \mid 1 \leq i \leq n\}$ is a set of scalars, then there is a unique covector $\mathbf{f} \in L^*$ such that $\mathbf{f}(\mathbf{u}_i) = a_i$ for $1 \leq i \leq n$.

Proof.

Since *B* is a basis in *L* we can write $\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{u}_i$ for every $\mathbf{v} \in L$. Thus,

$$f(\mathbf{v}) = f\left(\sum_{i=1}^n c_i \mathbf{u}_i\right) = \sum_{i=1}^n c_i a_i,$$

which shows that the covector \boldsymbol{f} is uniquely determined by the *n*-tuple of scalars $\boldsymbol{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.

< ロ > < 同 > < 回 > < 回 >

Corollary

Let L be an n-dimensional \mathbb{F} -linear space. Then, its dual L^{*} is isomorphic to \mathbb{F}^n , and, thus, dim $(L^*) = \dim(L) = n$.

Proof.

The function $h : \mathbb{F}^n \longrightarrow \text{Hom}(L, \mathbb{F})$ that maps the vector

$$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

to the function \boldsymbol{f} defined as

$$\boldsymbol{f}(\boldsymbol{v}) = \boldsymbol{f}\left(\sum_{i=1}^{n} c_i \boldsymbol{u}_i\right) = \sum_{i=1}^{n} c_i a_i,$$

where $B = \{ \boldsymbol{u}_i \in L \mid 1 \leq i \leq n \}$ is a basis in L and $\boldsymbol{v} = \sum_{i=1}^n c_i \boldsymbol{u}_i$ is an isomorphism.

Prof. Dan A. Simovici

A linear form $f \in L^*$ is uniquely determined by its values on a basis of the space *L*. This allows us to prove the following extension theorem.

Theorem

Let U be a subspace of a finite-dimensional \mathbb{F} -linear space L. A linear function $g: U \longrightarrow \mathbb{F}$ belongs to U^* if and only if there exists a linear form $f \in L^*$ such that g is the restriction of f to U.

Proof

If g is the restriction of f to U, then it is immediate that $g \in U^*$. Conversely, let $g \in U^*$ and let $B = \{u_1, \ldots, u_p\}$ be a basis of U, where dim(U) = p. Consider an extension of B to a basis of the entire space $B_1 = \{u_1, \ldots, u_p, u_{p+1}, \ldots, u_n\}$, where $n = \dim(L)$ and define the linear form $f : L \longrightarrow \mathbb{F}$ by

$$\boldsymbol{f}(\boldsymbol{u}_i) = \begin{cases} g(\boldsymbol{u}_i) & \text{if } i \leq p, \\ 0 & \text{if } p+1 \leq i \leq n. \end{cases}$$

Since f and g coincide for all members of the basis of U if follows that g is the restriction of f to U.

We refer to f as the *zero-extension* of the linear form g defined on the subspace U.

If $\{u_1, \ldots, u_n\}$ is a basis of the \mathbb{F} -linear space L, then the set of linear forms $\{f^j \mid 1 \leq j \leq n\}$ defined by

$$oldsymbol{f}^{j}(oldsymbol{u}_{i}) = egin{cases} 1 & ext{if } i=j, \ 0 & ext{otherwise} \end{cases}$$

is a basis of the dual linear space L*.

▶ ∢ ⊒ ▶

Proof

The set $F = \{f^1, \ldots, f^n\}$ spans the entire dual space L^* . Indeed, let $f \in L^*$ be defined by $f(u_i) = a_i$ for $1 \le i \le n$. Then, we have:

$$\boldsymbol{f}(\boldsymbol{x}) = a_1 \boldsymbol{f}^1(\boldsymbol{x}) + \cdots + a_n \boldsymbol{f}^n(\boldsymbol{x})$$

for $\boldsymbol{x} \in L$. Indeed, if $\boldsymbol{x} = c^{i} \boldsymbol{u}_{i}$, then

$$\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{f}(c^{i}\boldsymbol{u}_{i}) = c^{i}\boldsymbol{f}(\boldsymbol{u}_{i}) = c^{i}\boldsymbol{a}_{i}.$$

On another hand,

$$a_i \boldsymbol{f}^i(\boldsymbol{x}) = a_i \boldsymbol{f}^i(u_j) = a_i c^j \boldsymbol{f}^i(\boldsymbol{u}_j) = a_i c^i,$$

due to the definition of the linear forms f_1, \ldots, f_n . Therefore, $f = a_1 f^1 + \cdots + a_n f^n$, which shows that $\langle F \rangle = L^*$.

• = • • = •

Proof cont'd

To prove that the set F is linearly independent in L^* suppose that $a_1 f^1 + \cdots + a_n f_n = \mathbf{0}_{L^*}$. This implies $a_1 f^1(\mathbf{x}) + \cdots + a_n f^n(\mathbf{x}) = \mathbf{0}_L$ for every $\mathbf{x} \in L$. Choosing $\mathbf{x} = \mathbf{u}_j$ we obtain $a_j f^j(\mathbf{u}_j) = 0$, hence $a_j = 0$, and this can be shown for $1 \leq j \leq n$, which implies the linear independence.

The basis $F = \{f^1, \dots, f^n\}$ of L^* constructed before is the *dual basis* of the basis $U = \{u_1, \dots, u_n\}$ of L. We refer to the pair (U, F) as a pair of *dual bases*.

Corollary

The dual of an n-dimensional $\mathbb F$ -linear space is an n-dimensional linear space.

Example

Let $P_2[x]$ the linear space of polynomials of degree 2 in x, that consists of polynomials of the form $p(x) = ax^2 + bx + c$. The set $\{p_0, p_1, p_2\}$ given by $p_0(x) = 1$, $p_1(x) = x$, and $p_2(x) = x^2$ is a basis in $P_2[x]$. Note that we have

$$c = p(0),$$

$$b = \frac{1}{2}(p(1) - p(-1)),$$

$$a = \frac{1}{2}(p(1) + p(-1) - 2p(0))$$

If $f : P_2[x] \longrightarrow \mathbb{R}$ is a linear form we have

$$f(p) = af(x^{2}) + bf(x) + cf(0)$$

= $\frac{1}{2}(p(1) + p(-1) - 2p(0))f(x^{2}) + \frac{1}{2}(p(1) - p(-1))f(x) + p(0)f(1).$

Example cont'd

Example

Therefore, a basis in $P_2[x]^*$ consists of the functions

$$\begin{array}{lll} f^0(p) &=& p(0), \\ f^1(p) &=& \frac{1}{2}(p(1)-p(-1)), \\ f^2(p) &=& \frac{1}{2}(p(1)+p(-1)-2p(0)) \end{array}$$

э

We saw that the dual L^* of a \mathbb{F} -linear space L is an \mathbb{F} -linear space. The construction of the dual may be repeated, and L^{**} , the dual of the dual \mathbb{F} -linear space is an \mathbb{F} -linear space. In the case of finite dimensional linear spaces we have dim $(L^{**}) = \dim(L^*) = \dim(L)$, and all these spaces are isomorphic.

Theorem

Let L be a finite-dimensional \mathbb{F} -linear space. Then, the dual L^{**} of the dual L^{*} of L is an \mathbb{F} -linear space isomorphic to L.

The notion of linear mapping can be extended as follows.

Definition

Let L_1, \ldots, L_n, L be real linear spaces and let $L_1 \times \cdots \times L_n$ be the Cartesian product of the sets L_1, \ldots, L_n . An *real multilinear function* is a mapping $f : L_1 \times \cdots \times L_n \longrightarrow L$ that is linear in *each of its components when the other components are held fixed*. In other words, f satisfies the conditions:

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_{i-1},\sum_{j=1}^k a_j \mathbf{x}_i^j,\mathbf{x}_{i+1},\ldots,\mathbf{x}_n)$$

= $\sum_{j=1}^k a_j f(\mathbf{x}_1,\ldots,\mathbf{x}_{i-1},\mathbf{x}_i^j,\mathbf{x}_{i+1},\ldots,\mathbf{x}_n),$

for every $\mathbf{x}_i, \mathbf{x}_i^j \in L_i$ and $a_1, \ldots, a_k \in \mathbb{R}$.

Definition

Let L, M be two complex linear spaces. A function $f : L \times M \longrightarrow \mathbb{C}$ is said to be *Hermitian bilinear* if it is linear in the first variable and skew-linear in the second, that is, it satisfies the equalities:

$$f(\mathbf{a}_1\mathbf{x}_1 + \mathbf{a}_2\mathbf{x}_2, \mathbf{y}) = \mathbf{a}_1 f(\mathbf{x}_1, \mathbf{y}) + \mathbf{a}_2 f(\mathbf{x}_2, \mathbf{y}),$$

$$f(\mathbf{x}, b_1\mathbf{y}_1 + b_2\mathbf{y}_2) = \overline{b}_1 f(\mathbf{x}, \mathbf{y}_1) + \overline{b}_2 f(\mathbf{x}, \mathbf{y}_2)$$

for $a_1, a_2, b_1, b_2 \in \mathbb{C}$.

The set of real multilinear functions defined on the linear spaces L_1, \ldots, L_n and ranging in the real linear space L is denoted by $\mathfrak{M}(L_1, \ldots, L_n; L)$. The set of real multilinear forms is $\mathfrak{M}(L_1, \ldots, L_n; \mathbb{R})$.

Multilinearity is distinct from the notion of linearity on a product of linear spaces. For instance, the mapping $h : \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by h(x, y) = x + y is linear but not bilinear. On the other hand, the mapping $g : \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by h(x, y) = xy is bilinear but not linear.

Definition

Let L_1, \ldots, L_n, L be real linear spaces. If $f, g \in \mathfrak{M}(L_1, \ldots, L_n; L)$ are two multilinear functions, their *sum* is the function f + g defined by

$$(f+g)(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)=f(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)+g(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n),$$

and the product af, where $a \in \mathbb{F}$ is the function af given by

$$(af)(\mathbf{x}_1,\ldots,\mathbf{x}_n)=af(\mathbf{x}_1,\ldots,\mathbf{x}_n)$$

for $\mathbf{x}_i \in L_i$ and $1 \leq i \leq n$.

It is immediate to verify that $\mathfrak{M}(L_1, \ldots, L_n; L)$ is an \mathbb{R} -linear space relative to these operations.

Let $f : L_1 \times L_2 \longrightarrow L$ be a real bilinear function. Observe that for $\mathbf{x} \in L_1$ and $\mathbf{y} \in L_2$ we have:

$$f(\mathbf{x}, \mathbf{0}_{L_2}) = f(\mathbf{x}, 0\mathbf{y}) = 0f(\mathbf{x}, \mathbf{y}) = \mathbf{0}_L \text{ and}$$

$$f(\mathbf{0}_{L_1}, \mathbf{y}) = f(0\mathbf{x}, \mathbf{y}) = 0f(\mathbf{x}, \mathbf{y}) = \mathbf{0}_L.$$

э

Let *L* be an \mathbb{R} -linear space and let $\langle \cdot, \cdot \rangle : L^* \times L \longrightarrow \mathbb{R}$ be the function given by $\langle h, y \rangle = h(y)$ for $h \in L^*$ and $y \in L$. It is immediate that $\langle \cdot, \cdot \rangle$ is a bilinear function because

for $a, b \in \mathbb{R}$, $h, g \in L^*$, and $\mathbf{y}, \mathbf{z} \in L$. Moreover, we have $\langle h, \mathbf{y} \rangle = 0$ for every $\mathbf{y} \in L$ if and only if $h = \mathbf{0}_{L^*}$ and $\langle h, \mathbf{y} \rangle = 0$ for every $h \in L^*$ if and only if $\mathbf{y} = \mathbf{0}_L$.

Let L_1, \ldots, L_n, L be \mathbb{R} -linear spaces, $a_i \in L_i$ for $1 \leq i \leq n$, and let $g_i \in L_i^*$. Define the function $G : L_1 \times L_n \longrightarrow \mathbb{R}$ as:

$$G(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)=g_1(\boldsymbol{a}_1)\cdots g_n(\boldsymbol{a}_n)$$

for $\mathbf{a}_i \in L_i$ and $1 \leq i \leq n$. The function G is multilinear. Indeed, if $\mathbf{a}_i, \mathbf{b}_i \in L_i$ and $a \in \mathbb{R}$ it is immediate to verify that

$$G(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_i+\boldsymbol{b}_i,\ldots,\boldsymbol{a}_n)$$

= $G(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_i,\ldots,\boldsymbol{a}_n)+G(\boldsymbol{a}_1,\ldots,\boldsymbol{b}_i,\ldots,\boldsymbol{a}_n)$

and

$$G(\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_n)=aG(\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_n).$$

Note, however, that G is not a linear function because

$$G(a\mathbf{a}_1,\ldots,a\mathbf{a}_n)=a^nG(\mathbf{a}_1,\ldots,\mathbf{a}_n)$$

The function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $f(x_1, x_2) = x_1 x_2$ is bilinear because it is linear in each of its variables, separately, but is not linear in the ensemble of its arguments. Indeed, we have

$$f(x_1 + y_1, x_2) = f(x_1, x_2) + f(y_1, x_2),$$

$$f(x_1, x_2 + y_2) = f(x_1, x_2) + f(x_1, y_2)$$

for every $x_1, x_2, y_1, y_2 \in \mathbb{R}$, which shows the bilinearity of f. However, we have:

$$\begin{array}{rcl} f(x_1+x_2,y_1+y_2) &=& x_1y_1+x_1y_2+x_2y_1+x_2y_2 \\ &\neq& f(x_1,y_1)+f(x_2,y_2), \end{array}$$

which means that f is not a linear function.

Theorem

Let U, V be two real linear spaces and let $\mathfrak{M}(U, V; \mathbb{R})$ be the linear space of bilinear forms defined on $U \times V$. The linear spaces $\mathfrak{M}(U, V; \mathbb{R})$, $Hom(U, V^*)$ and $Hom(V, U^*)$ are isomorphic.

< ∃ > < ∃ >

Proof

It is immediate that Φ is a linear mapping because for $c, d \in \mathbb{R}$ and $h_1, h_2 \in \mathfrak{M}(U, V; \mathbb{R})$ we have:

$$\begin{aligned} \Phi(ch_1 + dh_2)(\mathbf{a})(\mathbf{v}) &= ((ch_1 + dh_2)^{\mathbf{a}})(\mathbf{v}) \\ &= (ch_1 + dh_2)(\mathbf{a}, \mathbf{v}) = ch_1(\mathbf{a}, \mathbf{v}) + dh_2(\mathbf{a}, \mathbf{v}) \\ &= ch_1^{\mathbf{a}}(\mathbf{v}) + dh_2^{\mathbf{a}}(\mathbf{v}) \\ &= c\Phi(h_1)(\mathbf{a})(\mathbf{v}) + d\Phi(h_2)(\mathbf{a})(\mathbf{v}), \end{aligned}$$

or

$$\Phi(ch_1+dh_2)=c\Phi(h_1)+d\Phi(h_2).$$

Note that Φ maps $h: U \longrightarrow V$ into the linear form that transforms **a** into $h^{\mathbf{a}}$ for $\mathbf{a} \in U$. Thus, if $\Phi(h_1) = \Phi(h_2)$ we have both h_1 and h_2 yield equal values for $\mathbf{a} \in U$, so $h_1 = h_2$, which proves the injectivity of Φ .

(3) A (3) A

Proof cont'd

Let $f \in \text{Hom}(U, V^*)$. For every $\mathbf{a} \in U$ there exists a linear form $g: V \longrightarrow \mathbb{R}$ such that $f(\mathbf{a}) = g$, or $f(\mathbf{a})(\mathbf{v}) = g(\mathbf{v})$ for every $\mathbf{v} \in V$. The mapping $h: U \times V \longrightarrow \mathbb{R}$ defined by $h(\mathbf{u}, bfv) = f(\mathbf{u})(\mathbf{v})$ is bilinear and $\Phi(h)(\mathbf{u})(\mathbf{v}) = h^{\mathbf{u}}(\mathbf{v}) = h(\mathbf{u}, \mathbf{v}) = f(\mathbf{u})(\mathbf{v})$, which means that $\Phi(h) = f$. Thus, Φ is also surjective and, therefore, it is an isomorphism between the linear spaces $\mathfrak{M}(U, V; \mathbb{R})$, and $\text{Hom}(U, V^*)$. The existence of an isomorphism between and $\text{Hom}(V, U^*)$ has a similar argument.

The linear space $\mathfrak{M}(U, V; \mathbb{R})$ will also be denoted by $U^* \otimes V^*$. We will refer to this space as the *tensor product* of the spaces U and V.

Corollary

Let U, V be two \mathbb{R} -linear spaces. Then, $\dim(U \otimes V) = \dim(U) \cdot \dim(V)$.

Proof.

Since dim (V^*) = dim(V) = n, we have dim $(Hom(U, V^*))$ = mn. The result follows immediately.

Let U, V, W be three \mathbb{R} -linear spaces of finite dimensions having the bases $\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_m\}$, $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n\}$ and $\{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_p\}$, respectively, and let $f: U \times V \longrightarrow W$ be a bilinear function. If $\boldsymbol{u} = \sum_{i=1}^m a_i \boldsymbol{u}_i \in U$, $\boldsymbol{v} = \sum_{j=1}^n b_j \boldsymbol{v}_j$, then

$$f(\boldsymbol{u},\boldsymbol{v}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j f(\boldsymbol{u}_i,\boldsymbol{v}_j).$$

Since $f(\boldsymbol{u}_i, \boldsymbol{v}_j) \in W$ there exist c_{ij}^k such that $f(\boldsymbol{u}_i, \boldsymbol{v}_j) = \sum_{k=1}^p c_{ij}^k \boldsymbol{w}_k$, hence

$$f(\boldsymbol{u},\boldsymbol{v}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} a_i b_j c_{ij}^k w_k.$$

Thus, the set $\{c_{ij}^k \in \mathbb{R} \mid 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq p\}$ (which contains *mnp* elements) determines a bilinear function relative to the chosen bases in U, V and W.

Unlike the case n = 1, the set of values of a multilinear function $f: M_1 \times \cdots \times M_n \longrightarrow M$ is not a subspace of M in general. Indeed, consider a two-dimensional \mathbb{R} -linear space U having a basis $\{u_1, u_2\}$, a four-dimensional \mathbb{R} -linear space W having the basis $\{w_1, w_2, w_3, w_4\}$, and the bilinear function $f: U \times U \longrightarrow W$ defined as:

$$f(\boldsymbol{u},\boldsymbol{v}) = u_1v_1\boldsymbol{w}_1 + u_1v_2\boldsymbol{w}_2 + u_2v_1\boldsymbol{w}_3 + u_2v_2\boldsymbol{w}_4,$$

where $u = u_1 u_1 + u_2 u_2$ and $v = v_1 u_1 + v_2 u_2$.

Let S be the set of all vectors of the form $\mathbf{s} = f(\mathbf{u}, \mathbf{v})$. By the definition of S there exist $\mathbf{u}, \mathbf{v} \in U$ such that

$$s_1 = u_1v_1, s_2 = u_1v_2, s_3 = u_2v_1, s_4 = u_2v_2,$$

hence $s_1s_4 = s_2s_3$ for any $s \in S$. Define the vectors z, t in W as

$$z = 2w_1 + 2w_2 + w_3 + w_4,$$

 $t = w_1 + w_3.$

Note that we have both $z \in S$ and $t \in S$. However,

$$\boldsymbol{x} = \boldsymbol{z} - \boldsymbol{t} = \boldsymbol{w}_1 + 2\boldsymbol{w}_2 + \boldsymbol{w}_4$$

does not belong to S because $x_1x_4 = 1$ and $x_2x_3 = 0$.

Let $f: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a bilinear form. Since the vectors

$$oldsymbol{e}_1 = egin{pmatrix} 1 \ 0 \end{pmatrix}$$
 and $oldsymbol{e}_1 = egin{pmatrix} 0 \ 1 \end{pmatrix},$

form a basis in \mathbb{R}^2 , f can be written as

$$f(a\mathbf{e}_1 + b\mathbf{e}_2, c\mathbf{e}_1 + d\mathbf{e}_2)$$

= $af(\mathbf{e}_1, c\mathbf{e}_1 + d\mathbf{e}_2) + bf(\mathbf{e}_2, c\mathbf{e}_1 + d\mathbf{e}_2)$
= $acf(\mathbf{e}_1, \mathbf{e}_1) + adf(\mathbf{e}_1, \mathbf{e}_2) + bcf(\mathbf{e}_2, \mathbf{e}_1) + bdf(\mathbf{e}_2, \mathbf{e}_2)$
= $\alpha f(\mathbf{e}_1, \mathbf{e}_1) + \beta f(\mathbf{e}_1, \mathbf{e}_2) + \gamma f(\mathbf{e}_2, \mathbf{e}_1) + \delta f(\mathbf{e}_2, \mathbf{e}_2),$

where

$$\alpha = \mathsf{ac}, \beta = \mathsf{ad}, \gamma = \mathsf{bc}, \delta = \mathsf{bd}.$$

Thus, the multilinearity of f implies $\alpha \delta = \beta \gamma$.

э