
CS724: Topics in Algorithms
Linear Spaces
Slide Set 2

Prof. Dan A. Simovici

Prof. Dan A. Simovici CS724: Topics in Algorithms Linear Spaces Slide Set 2 1 / 90



1 Linear Spaces

2 Subspaces

3 Linear Independence

4 Linear Mappings

5 Bases in Linear Spaces

6 Direct Sums of Subspaces

7 Dual Linear Spaces

8 Multilinear Functions
Prof. Dan A. Simovici CS724: Topics in Algorithms Linear Spaces Slide Set 2 2 / 90



The Definition of Linear Spaces - I

Let F be the field of real numbers R or the field of complex numbers C.
An F-linear space is a set L on which two operations are defined: the
addition xxx + yyy of elements xxx and yyy of L and the multiplication of an
element xxx of L with a member a of F, denoted by axxx , such that the
following conditions are satisfied:
I. Additive Conditions:

addition is associative, that is, xxx + (yyy + zzz) = (xxx + yyy) + zzz ;
addition is commutative, that is, xxx + yyy = yyy + xxx ;
for every xxx ∈ L there is an element (−xxx) in L such that
xxx + (−xxx) = 000L.

Prof. Dan A. Simovici CS724: Topics in Algorithms Linear Spaces Slide Set 2 2 / 90



The Definition of Linear Spaces - II

II. Multiplicative Conditions:
L contains an element 000L such that 0xxx = 000L;
(a+ b)xxx = axxx + bxxx ;
a(xxx + yyy) = axxx + ayyy ;
(ab)xxx) = a(bxxx);
1xxx = xxx

for every a, b ∈ F and xxx ,yyy ∈ L.
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The elements of the field F are referred to as scalars while the elements of
L are referred to as vectors.
If the field F is irrelevant, or it is clearly designated from the context we
refer to an F-linear space just as a linear space. On another hand if F is
the real field R or the complex field C we designate an R-linear space as a
real linear space and a C-linear space as a complex linear space.
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Example

If F is a field, then the one-element linear space L = {000L}, where a000L = 000L
for every a ∈ F is the zero F-linear space, or, for short, the zero linear
space.
The field F itself is an F-linear space, where the Abelian group is
(F, {0,+,−}) and scalar multiplication coincides with the scalar
multiplication of F.

Note that the zero F-linear space is the smallest linear space.
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Example

The set of all sequences of real numbers, Seq(R) is a real linear space,
where the sum of two sequences xxx = (x0, x1, . . .) and yyy = (y0, y1, . . .) is
the sequence xxx + yyy defined by xxx + yyy = (x0 + y0, x1 + y1, . . .) and the
multiplication of xxx by a scalar a is axxx = (ax0, ax1, . . .).
A related real linear space is the set Seqn(R) of all sequences of real
numbers having length n, where the sum and the scalar multiplications are
defined in a similar manner. Namely, if xxx = (x0, x1, . . . , xn−1) and
yyy = (y0, y1, . . . , yn−1), the sequence xxx + yyy is defined by
xxx + yyy = (x0 + y0, x1 + y1, . . . , xn−1 + yn−1) and the multiplication of xxx by
a scalar a is axxx = (ax0, ax1, . . . , axn−1). This linear space is denoted by Rn

and its zero element is denoted by 000n.
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Example

If the real field R is replaced by the complex field C, we obtain the linear
space Seq(C) of all sequences of complex numbers. Similarly, we have the
complex linear space Cn which consists of all sequences of length n of
complex numbers.
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Example

Let L be an F-linear space and let S be a non-empty set. The set LS that
consists of all functions of the form f : S −→ L is an F-linear space. The
addition of functions is defined by

(f + g)(s) = f (s) + g(s),

while the multiplication by a scalar is given by (af )(s) = af (s), for s ∈ S
and a ∈ F.
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Example

Let R[x ] be the set of polynomials of variable x with coefficients in R. For
example, p ∈ R[x ], where

p(x) = 3x7 − 5x3 + x − 6.

The sum of two polynomials p, q ∈ R[x ] belongs to R[x ]. Also, for every
a ∈ R, ap is again a polynomial with coefficients in R.
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Definition

Let L be an F-linear space. A subset U of L is a linear subspace of L (or
just a subspace of L) if it satisfies the following conditions:

if xxx ,yyy ∈ U, then xxx + yyy ∈ U;
if a ∈ F and xxx ∈ U, then axxx ∈ U.

If U is a subspace of a linear space L and xxx ∈ L, we denote the set
{xxx + uuu | uuu ∈ U} by xxx + U.

Prof. Dan A. Simovici CS724: Topics in Algorithms Linear Spaces Slide Set 2 10 / 90



Example

The set of polynomials P⩽k of degree less or equal to k is a subspace of
the linear space of polynomials. Indeed, p, q ∈ P⩽k their sum has degree
less or equal to k ; also, if a ∈ R and p ∈ P⩽k , then ap ∈ P⩽k .
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The following statements are immediate for an F-linear space L:
the sets L and {000L} are subspaces of L;
each subspace U of L contains 000L.
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Example

The subset {000L} of any F-linear space L is a subspace of L named the zero
subspace. This is the smallest subspace of L.
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Theorem

If L = {Li | i ∈ I} is a collection of subspaces of an F-linear space L, then⋂
L is a subspace of L.

Proof.

Suppose that xxx ,yyy ∈
⋂

L. Then, xxx ,yyy ∈ Li , so xxx + yyy ∈ Li and axxx ∈ Li for
every i ∈ I . Thus, xxx + yyy ∈

⋂
L and axxx ∈

⋂
L, which allows us to

conclude that
⋂

L is a subspace of L.

Since L itself is a subspace of L it follows that the collection of subspaces
of a linear space is a closure system C. If KKK sub is the closure operator
induced by C, then for every subset X of L, KKK sub(X ) is the smallest
subspace of L that contains X .
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Let SUBSP(M) be the collection of subspaces of a linear space M. If this
set is equipped with the inclusion relation ⊆ (which is a partial order),
then for any two subspaces K , L both sup{K , L} and inf{K , L} exist and
are given by:

sup{K , L} = {xxx + yyy | xxx ∈ K and yyy ∈ L} (1)

inf{K , L} = K ∩ L. (2)
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Let H = {xxx + yyy | xxx ∈ K and yyy ∈ L}. Observe that we have both K ⊆ H
and L ⊆ H because 000 belongs to both K and L.
If uuu and vvv belong to H, then uuu = xxx1 + yyy1 and vvv = xxx2 + yyy2, where
xxx1,xxx2 ∈ K and yyy1,yyy2 ∈ L. Since xxx1 + xxx2 ∈ K and yyy1 + yyy2 ∈ L (because
K and L are subspaces), it follows that
uuu + vvv = xxx1 + yyy1 + (xxx2 + yyy2) = (xxx1 + xxx2) + (yyy1 + yyy2) ∈ H.
We have auuu = axxx1 + axxx2 ∈ H because axxx1 ∈ K and axxx2 ∈ L. Thus, H is a
subspace of M and is an upper bound of {K , L} in the partially ordered set
(SUBSP(M),⊆).
If G is a subspace of M that contains both K and L, then xxx + yyy ∈ G for
xxx ∈ K and yyy ∈ L, so H ⊆ G . Thus, H = sup{K , L}.
We denote H = sup{K , L} by K + L.
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Next, we prove the modularity of SUBSP(M).

Theorem

Let M be an F-linear space. For any P,Q,R ∈ SUBSP(M) such that
Q ⊆ P we have P ∩ (Q + R) = Q + (P ∩ R).

Proof.

Note that Q ⊆ P ∩ (Q + R), P ∩ R ⊆ P ∩ (Q + R). Therefore, we have
the inclusion Q + (P ∩ R) ⊆ P ∩ (Q + R) =, which leaves us with the
reverse inclusion to prove.
Let zzz ∈ P ∩ (Q + R). This implies zzz ∈ P and zzz = xxx + yyy , where
xxx ∈ Q ⊆ P and yyy ∈ R. Therefore, yyy = zzz − xxx ∈ P, so yyy ∈ P ∩ R.
Consequently, zzz ∈ Q + (P ∩ R), so P ∩ (Q + R) ⊆ Q + (P ∩ R).
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Definition

If L is an F-linear space, and X is a subset of L, an X -linear combination is
an element www of L that can be written as

www =
n∑

i=1

cixxx i ,

where xxx i ∈ X .
A linear combination of L is an X -linear combination, where X is a subset
of L.

The set of all X -linear combinations is denoted by ⟨⟨⟨X⟩⟩⟩ and is referred to
as the set spanned by X .
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Theorem

Let L be an F-linear space. If X ⊆ L, then ⟨⟨⟨X⟩⟩⟩ is the smallest subspace of
L that contains the set X . In other words, we have:

⟨⟨⟨X⟩⟩⟩ is a subspace of L;
X ⊆ ⟨⟨⟨X⟩⟩⟩;
if X ⊆ M, where M is a subspace of L, then ⟨⟨⟨X⟩⟩⟩ ⊆ M.
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Proof

It is clear that if uuu and vvv are two X -linear combinations, then uuu + vvv and
auuu are also X -linear combinations, so ⟨⟨⟨X⟩⟩⟩ is a subspace of L.
For xxx ∈ X we can write 1xxx = xxx , so X ⊆ ⟨⟨⟨X⟩⟩⟩.
Finally, suppose that X ⊆ M, where M is a subspace of L and
a1xxx1 + · · ·+ anxxxn ∈ ⟨⟨⟨X⟩⟩⟩, where xxx1, . . . ,xxxn ∈ X . Since X ⊆ M, we have
xxx1, . . . ,xxxn ∈ M, hence a1xxx1 + · · ·+ anxxxn ∈ M because M is a subspace.
Thus, ⟨⟨⟨X⟩⟩⟩ ⊆ M.
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Definition

Let L be an F-linear space. A finite subset U = {xxx1, . . . ,xxxn} of L is
linearly dependent if a1xxx1 + · · ·+ anxxxn = 000L, where at least one element ai
of F is not equal to 0.
If this condition is not satisfied then U is said to be linearly independent.

A set U that consists of one vector xxx ̸= 000L is linearly independent.
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U = {xxx1, . . . ,xxxn} of L is linearly independent if a1xxx1 + · · ·+ anxxxn = 000L
implies a1 = · · · = an = 0. Also, note that a set U that is linearly
independent does not contain 000L.

Example

Let L be an F-linear space. If uuu ∈ L, then the set Luuu = {auuu | a ∈ F} is a
linear subspace of L. Moreover, if uuu ̸= 000L, then the set {uuu} is linearly
independent. Indeed, if auuu = 000L and a ̸= 0, then multiplying both sides of
the above equality by a−1 we obtain (a−1a)uuu = aaa−1000, or equivalently,
uuu = 000L, which contradicts the initial assumption. Thus, {uuu} is a linearly
independent set.
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Definition

Let L be an F-linear space. A subset W of L is linearly dependent if it
contains a finite subset U that is linearly dependent.
A subset W is linearly independent if it is not linearly dependent.

Thus, W is linearly independent if every finite subset of W is linearly
independent. Further, any subset of a linearly independent subset is
linearly independent and any superset of a linearly dependent set is linearly
dependent.
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Example

For every F-linear space L the set {000L} is linearly dependent because we
have 1000L = 000L.
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Theorem

Let L be an F-linear space and let W be a linearly independent subset of
L. If yyy is a linear combination

yyy = a1xxx1 + · · ·+ anxxxn,

for some finite subset {xxx1, . . . ,xxxn} of W , then the coefficients a1, . . . , an
are uniquely determined.
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Proof

Suppose that yyy can be alternatively written as

yyy = b1xxx1 + · · ·+ bnxxxn,

for some b1, . . . , bn ∈ F. Since W is linearly independent this implies

(a1 − b1)xxx1 + · · ·+ (an − bn)xxxn = 000L,

which, in turn, yields a1 − b1 = · · · = an − bn = 0. This, we have ai = bi
for 1 ⩽ i ⩽ n.
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Definition

Let F be a field and let L and M be two F-linear spaces. A linear mapping
is a function hhh : L −→ M such that

hhh(axxx + byyy) = ahhh(xxx) + bhhh(yyy)

for every scalars a, b ∈ F and xxx ,yyy ∈ L.
An affine mapping is a function fff : L −→ M such that there exists a linear
mapping hhh : L −→ M and bbb ∈ M such that fff (xxx) = hhh(xxx) + bbb for xxx ∈ L.

Linear mappings are also referred to as linear spaces homomorphisms, as
linear morphisms, or as linear operators.
The set of morphisms between two F-linear spaces L and M is denoted by
Hom(L,M). The set of affine mappings between two F-linear spaces L and
M is denoted by Aff(L,M).
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Example

Let h : R2 −→ R2 be the transformation defined by

h

(
x1
x2

)
=

(
x2
x1

)
This is a linear mapping h : R2 −→ R2.
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Define the mapping h : R[x ] −→ R[x ] as

h(p)(x) =

∫ x

0
p(t) dt.

For example, for p(x) = x2 + 1
3x we have

h(p)(x) =

∫ x

0
(t2 +

1

3
t) dt =

1

3
x3 +

1

6
x2.

It is easy to see that h(p1 + p2) = h(p1) + h(p2) and h(ap) = ah(p),
which means that h is indeed a linear mapping
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The notion of subspace is closely linked to the notion of linear mapping as
we show next.

Theorem

Let L,M be two F-linear spaces. If h : L −→ M is a linear mapping than
the sets

Im(h) = {h(xxx) | xxx ∈ L},

and
Ker(h) = {xxx ∈ L | h(xxx) = 000M}

are subspaces of the linear spaces M and L, respectively.
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Proof

Let uuu and vvv be two elements of Im(h). There exist xxx ,yyy ∈ L such that
uuu = h(xxx) and vvv = h(yyy). Since h is a linear mapping we have

uuu + vvv = h(xxx) + h(yyy) = h(xxx + yyy).

Thus, uuu + vvv ∈ Im(h). Further, if a ∈ F, then auuu = ah(xxx) = h(axxx), so
auuu ∈ Im(h). Thus, Im(h) is indeed a subspace of M.
Suppose now that sss and ttt belong to Ker(h), that is h(sss) = h(ttt) = 000M .
Then, h(sss + ttt) = h(sss) + h(ttt) = 000M , so sss + ttt ∈ Ker(h). Also,
h(asss) = ah(sss) = a000M = 000M , which allows us to conclude that Ker(h) is a
subspace of L.
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We refer to Im(h) as the image of h, and to Ker(h) as the kernel of h.
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Definition

Let hhh,ggg ∈ Hom(L,M) be two linear mappings between the F-linear spaces
L and M. The sum of hhh and ggg is the mapping hhh + ggg defined by

(hhh + ggg)(xxx) = hhh(xxx) + ggg(xxx)

for xxx ∈ L.
If a ∈ F, the product afff is defined as (afff )(xxx) = afff (xxx) for xxx ∈ L.

If L,M are two F-linear spaces, then the set Hom(L,M) is never empty
because the zero morphism 000L,M : L −→ M defined as 000L,M(xxx) = 000M for
xxx ∈ L is always an element of Hom(L,M).
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Note that

(fff + ggg)(axxx + byyy) = fff (axxx + byyy) + ggg(axxx + byyy)

= afff (xxx) + bfff (yyy) + aggg(xxx) + bggg(yyy)

= fff (axxx + byyy) + ggg(axxx + byyy),

for all a, b ∈ F and xxx ,yyy ∈ L. This shows that the sum of two linear
mappings is also a linear mapping.

Theorem

Hom(L,M) equipped with the sum and product defined above is an
F-linear space.

Proof: The zero element of Hom(L,M) is the mapping 000L,M .
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Definition

Let L be an F-linear space. A linear form on L is a morphism in
Hom(L,F), where the field F is regarded as a linear space.
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Definition

A basis of an F-linear space L is a linearly independent subset W such that
⟨⟨⟨W ⟩⟩⟩ = L.
If an F-linear space L has a finite basis, then we say that L is a linear space
of finite type.

Theorem

Every non-zero F-linear space L has a basis.
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Corollary

(Independent Set Extension Corollary) Let L be an F-linear space. If
W is a linearly independent set, then there exists a basis T of L such that
W ⊆ T.

Proof: Since W is a linearly independent set, if ⟨⟨⟨T⟩⟩⟩ = L, then W ∪ T is
also generating L.
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If an F-linear space L has a finite basis, then we say that L is a linear space
of finite type.

Lemma

Let L be a finite type F-linear space and let T be a finite subset of L that
is not linearly independent. If k = |T | ⩾ 2 and (ttt1, . . . , tttk) is a list of the
vectors in T , then there exists a number j such that 2 ⩽ j ⩽ k and ttt j is a
linear combination of its predecessors in the sequence. Furthermore, we
have ⟨⟨⟨T − {ttt j}⟩⟩⟩ = ⟨⟨⟨T⟩⟩⟩.
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Proof

Since T is not linearly in dependent, there exists a linear combination∑k
i=1 a

ittt i = 000L such that some of the scalars a1, . . . , ak are different from
0.
Let j the largest number such that 1 ⩽ j ⩽ k and aj ̸= 0. The definition of
j implies

a1ttt1 + · · ·+ ajttt j = 000L,

so ttt j = −
∑j−1

i=1
ai

aj
ttt i , which shows that ttt j is a linear combination of its

predecessors in the list. Consequently, the set of linear combinations of the
vectors in T − {ttt j} equals ⟨⟨⟨T⟩⟩⟩.
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Theorem

(The Replacement Theorem) Let L be a finite type F-linear space such
that the set W spans the linear space L and |W | = n.
If U is a linearly independent set in V such that |U| = m, then m ⩽ n and
there exists a subset W ′ of W such that W ′ contains n −m vectors and
U ∪W ′ spans the space L.
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Proof

Suppose that W = {www1, . . . ,wwwn} and U = {uuu1, . . . ,uuum} is linearly
independent, where m ⩽ n. The argument is by induction on m.
The basis case, m = 0, is immediate.
Suppose the statement holds for m and let U = {uuu1, . . . ,uuum,uuum+1} be a
linearly independent set that contains m + 1 vectors.
The set {uuu1, . . . ,uuum} is linearly independent, so by the inductive
hypothesis there exists a subset W ′ of W that contains n −m vectors
such that {uuu1, . . . ,uuum} ∪W ′ spans the space L.
Without loss of generality we may assume that W ′ = {www1, . . . ,wwwn−m}.
Thus, uuum+1 is a linear combination of the vectors of
{uuu1, . . . ,uuum,www1, . . . ,wwwn−m}, so we have

uuum+1 = a1uuu1 + · · ·+ amuuum + b1www1 + · · ·+ bn−mwwwn−m.
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Proof (cont’d)

We have m + 1 ⩽ n because, otherwise, m + 1 = n and uuum+1 would be a
linear combination of uuu1, . . . ,uuum, thereby contradicting the linear
independence of the set U.
The set {uuu1, . . . ,uuum,uuum+1,www1, . . . ,wwwn−m} is not linearly independent. Let
vvv be the first member of the sequence (uuu1, . . . ,uuum,uuum+1,www1, . . . ,wwwn−m)
that is a linear combination of its predecessors. Then, vvv cannot be one of
the uuui (with 1 ⩽ i ⩽ m) because this would contradict the linear
independence of the set U. Therefore, there exists k such that wwwk is a
linear combination of its predecessors and 1 ⩽ k ⩽ n −m. By a previous
lemma we can remove this element from the set
{uuu1, . . . ,uuum,uuum+1,www1, . . . ,wwwn−m} without affecting the set spanned.
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Corollary

Let L be a finite type F-linear space and let U, W be two bases of L.
Then |U| = |W |.

Proof.

Since U is a linearly independent set and ⟨⟨⟨W ⟩⟩⟩ = L we have |U| ⩽ |W |.
The reverse inequality, |W | ⩽ |U|, is obtained by asserting that W is
linearly independent and ⟨⟨⟨U⟩⟩⟩ = L. Thus, |U| = |W |.

This allows the introduction of the notion of dimension for a linear space.

Definition

The dimension of a finite type linear space L is the number of elements of
any basis of L.
The dimension of L is denoted by dim(L).
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If a linear space L is not of finite type than we say that dim(L) is infinite.

Theorem

Let L be an F-linear space of finite type having the basis B = {xxx1, . . . , xn}
and let {yyy1, . . . ,yyyn} be a subset of an F-linear space M. There exists a
unique linear mapping f : L −→ M such that f (xxx i ) = yyy i for 1 ⩽ i ⩽ n.

Proof: If xxx ∈ L we have xxx = a1xxx1 + · · ·+ anxxxn because {xxx1, . . . , xn} is a
basis of L. Define f (xxx) as f (xxx) =

∑n
i=1 aiyyy i . The uniqueness of the

expression of xxx as a linear combination of the elements of B makes f
well-defined. The linearity of f is immediate. For uniqueness, note that
the value of f is determined by the values of f (xxx i ).
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Theorem

Let L,M be two linear spaces of finite type with dim(L) = p and
dim(M) = q. Then, dim(Hom(L,M)) = pq.
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Proof

Suppose that {xxx1, . . . ,xxxp} is a basis in L and {yyy1, . . . ,yyyq} is a basis in M.
For every i such that 1 ⩽ i ⩽ p and j such that 1 ⩽ j ⩽ q there exists a
unique linear mapping fij : {xxx1, . . . ,xxxp} −→ M such that:

fij(xxxk) =

{
yyy j if i = k ,

000M otherwise,

for 1 ⩽ k ⩽ p.
Note that if xxx =

∑p
k=1 akxxxk , the linearity of fij implies:

fij(xxx) = fij

(
p∑

k=1

akxxxk

)
=

p∑
k=1

ak fij(xxxk) = ai fij(xxx i ).

We claim that the set {fij | 1 ⩽ i ⩽ p, 1 ⩽ j ⩽ q} is a basis for
Hom(L,M).
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Proof cont’d

Let f : L −→ M be a linear mapping. If xxx ∈ L we can write
xxx =

∑p
i=1 aixxx i , so f (xxx) =

∑p
i=1 ai f (xxx i ). In turn, since {yyy1, . . . ,yyyq} is a

basis in M, f (xxx i ) =
∑q

j=1 bijyyy j , for some bij ∈ F . This allows us to write:

f (xxx) =

p∑
i=1

ai

q∑
j=1

bijyyy j =

p∑
i=1

q∑
j=1

aibijyyy j =

p∑
i=1

q∑
j=1

aibij fij(xxx),

which shows that each linear mapping in Hom(L,M) is a linear
combination of functions fij .
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Proof cont’d

Furthermore, the set {fij | 1 ⩽ i ⩽ p, 1 ⩽ j ⩽ p} is linearly independent in
Hom(L,M). Indeed, suppose that

∑p
i=1

∑q
j=1 cij fij(xxx) = 000M . Then, for

xxx = xxx i we have
∑q

j=1 cijyyy j = 000M , which implies cij = 0. We may conclude
that dim(Hom(L,M)) = dim(L) dim(M).
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Theorem

If W is a subspace of a finite type linear space L, then dim(W ) ⩽ dim(L).

Proof.

If U is a linearly independent set in the subspace W , then it is clear that
U is linearly independent in L. There exists a basis V of L such that
U ⊆ V and |V | = dim(L). Therefore, dim(W ) ⩽ dim(L).
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The notion of subspace is closely linked to the notion of linear mapping as
we show next.

Theorem

Let L,M be two F-linear spaces. If h : L −→ M is a linear mapping than
Im(h) is a subspace of M and Ker(h) is a subspace of L.
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Proof

Let uuu and vvv be two elements of Im(h). There exist xxx ,yyy ∈ L such that
uuu = h(xxx) and vvv = h(yyy). Since h is a linear mapping we have

uuu − vvv = h(xxx)− h(yyy) = h(xxx − yyy).

Thus, uuu − vvv ∈ Im(h). Further, if a ∈ S , then auuu = ah(xxx) = h(axxx), so
auuu ∈ Im(h). Thus, Im(h) is indeed a subspace of P.
Suppose now that sss and ttt belong to Ker(h), that is h(sss) = h(ttt) = 000M .
Then, h(sss − ttt) = h(sss)− h(ttt) = 000M , so sss − ttt ∈ Ker(h). Also,
h(asss) = ah(sss) = a000M = 000M , which allows us to conclude that Ker(h) is a
subspace of h.
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Theorem

Let L and M be two linear spaces, where dim(L) = n, and let h : L −→ M
be a linear mapping. Then, we have

dim(Ker(h)) + dim(Im(h)) = n.
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Proof

Suppose that {eee1, . . . ,eeem} is a basis for the subspace Ker(h) of L. Each
such basis can be extended to a basis

{eee1, . . . ,eeem,eeem+1, . . . ,eeen}

of the space L. Any vvv ∈ L can be written as

vvv =
n∑

i=1

aieee i .

Since {eee1, . . . ,eeem} ⊆ Ker(h) we have h(eee i ) = 000M for 1 ⩽ i ⩽ m, so

h(vvv) =
n∑

i=m+1

aih(eee i ).

This means that the set {h(eeem+1), . . . , h(eeen)} spans the subspace Im(h)
of M.
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Proof cont’d

We show now that this set is linearly independent.
Indeed, suppose that

∑n
i=m+1 b

ih(eee i ) = 000M . This implies
h(
∑n

i=m+1 b
ieee i ) = 000M , that is,

∑n
i=m+1 b

ieee i ∈ Ker(h). Since {eee1, . . . ,eeem}
is a basis for Ker(h) there exist m scalars c1, . . . , cm such that

n∑
i=m+1

bieee i = c1eee1 + · · ·+ cmeeem.

The fact that {eee1, . . . ,eeem,eeem+1, . . . ,eeen} is a basis for L implies that
c1 = · · · = cm = bm+1 = · · · = bn = 0, so the set {h(eeem+1), . . . , h(eeen)} is
linearly independent and, therefore, a basis for Im(h). Thus,
dim(Im(h)) = n −m, which concludes the argument.
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Definition

Let L and M be two F-linear spaces and let h ∈ Hom(L,M). The rank of
h is rank(h) = dim(Im(h)); the nullity of h is nullity(h) = dim(Ker(h)).

If h : L −→ M is a linear mapping and L is a linear space of finite type,
then

dim(L) = rank(h) + nullity(h).
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Theorem

Let h : L −→ M be a linear mapping between two linear spaces. Then,
rank(h) ⩽ min{dim(L), dim(M)}.

Proof.

It is clear that rank(h) ⩽ dim(L). On the other hand,
rank(h) = dim(Im(h)) ⩽ dim(M) because Im(h) is a subspace of M, so
the inequality of the theorem follows.
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Example

Let L,M be two F-linear spaces. For h ∈ L∗ and yyy ∈ M define the
mapping ℓh,yyy as ℓh,yyy (xxx) = h(xxx)yyy for xxx ∈ L. It is easy to verify that ℓh,yyy is
a linear mapping, that is, ℓh,yyy ∈ Hom(L,M). Furthermore, we have
rank(ℓh,yyy ) = 1 because Im(ℓh,yyy ) consists of the multiples of the vector yyy .
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Definition

Let L and M two F-linear spaces. An isomorphism between these linear
spaces is a linear mapping h : L −→ M that is a bijection.
If an isomorphism exists between two F-linear spaces L and M we say that
these linear spaces are isomorphic and we write L ∼= M.

Two F-linear spaces that are isomorphic are indiscernible from an algebraic
point of view.
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If L1, L2 are subspaces of an F-linear space L, then their intersection is
non-empty because 000L ∈ L1 ∩ L2. Moreover, it is easy to see that L1 ∩ L2
is also a subspace of L.
Let L1, L2 be two subspaces of a linear space L. Their sum is the subset
L1 + L2 of L defined by

L1 + L2 = {xxx + yyy | xxx ∈ L1 and yyy ∈ L2}.

It is immediate to verify that L1 + L2 is a subspace of L and that
000L ∈ L1 ∩ L2.

Prof. Dan A. Simovici CS724: Topics in Algorithms Linear Spaces Slide Set 2 59 / 90



Theorem

Let L1, L2 be two subspaces of the F-linear space L. If L1 ∩ L2 = {000L},
then any vector xxx ∈ L1 + L2 can be uniquely written as xxx = xxx1 + xxx2, where
xxx1 ∈ L1 and xxx2 ∈ L2.

Proof.

By the definition of the sum L1 + L2 it is clear that any vector xxx ∈ L1 + L2
can be written as xxx = xxx1 + xxx2. We need to prove only the uniqueness of
xxx1 and xxx2.
Suppose that xxx = xxx1 + xxx2 = yyy1 + yyy2, where xxx1,yyy1 ∈ L1 and xxx2,yyy2 ∈ L2.
This implies xxx1 − yyy1 = yyy2 − xxx2 and, since xxx1 − yyy1 ∈ L1 and yyy2 − xxx2 ∈ L2
it follows that xxx1 − yyy1 = yyy2 − xxx2 = 000L by hypothesis. Therefore, xxx1 = yyy1
and xxx2 = yyy2.

Prof. Dan A. Simovici CS724: Topics in Algorithms Linear Spaces Slide Set 2 60 / 90



Theorem

Let L1, L2 be two subspaces of the F-linear space L. If every vector
xxx ∈ L1 + L2 can be uniquely written as xxx = xxx1 + xxx2, then L1 ∩ L2 = 000L.

Proof.

Suppose that the uniqueness of the expression of xxx holds but zzz ∈ L1 ∩ L2
and zzz ̸= 000L. If xxx = xxx1 + xxx2, then we can also write
xxx = (xxx1 + zzz) + (xxx2 − zzz), where xxx1 + zzz ∈ L1 and xxx2 − zzz ∈ L2, xxx1 + zzz ̸= xxx1
and xxx2 − zzz ̸= xxx2, and this contradicts the uniqueness property.
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Let L be an F-linear space. The set of linear forms defined on L is denoted
by L∗. This set has the natural structure of an F-linear space known as the
dual of the space L.
The elements of L∗ are also referred to as covariant vectors or covectors.
Frequently, we will refer to the vectors of the original linear space as
contravariant vectors.
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Theorem

Let B = {uuui ∈ L | 1 ⩽ i ⩽ n} be a basis in an n-dimensional F-linear
space L. If {ai ∈ F | 1 ⩽ i ⩽ n} is a set of scalars, then there is a unique
covector fff ∈ L∗ such that fff (uuui ) = ai for 1 ⩽ i ⩽ n.

Proof.

Since B is a basis in L we can write vvv =
∑n

i=1 ciuuui for every vvv ∈ L. Thus,

fff (vvv) = fff

(
n∑

i=1

ciuuui

)
=

n∑
i=1

ciai ,

which shows that the covector fff is uniquely determined by the n-tuple of

scalars aaa =

a1
...
an

.

Prof. Dan A. Simovici CS724: Topics in Algorithms Linear Spaces Slide Set 2 63 / 90



Corollary

Let L be an n-dimensional F-linear space. Then, its dual L∗ is isomorphic
to Fn, and, thus, dim(L∗) = dim(L) = n.

Proof.

The function h : Fn −→ Hom(L,F) that maps the vector

aaa =

a1
...
an


to the function fff defined as

fff (vvv) = fff

(
n∑

i=1

ciuuui

)
=

n∑
i=1

ciai ,

where B = {uuui ∈ L | 1 ⩽ i ⩽ n} is a basis in L and vvv =
∑n

i=1 ciuuui is an
isomorphism.
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A linear form fff ∈ L∗ is uniquely determined by its values on a basis of the
space L. This allows us to prove the following extension theorem.

Theorem

Let U be a subspace of a finite-dimensional F-linear space L. A linear
function g : U −→ F belongs to U∗ if and only if there exists a linear form
fff ∈ L∗ such that g is the restriction of fff to U.
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Proof

If g is the restriction of fff to U, then it is immediate that g ∈ U∗.
Conversely, let g ∈ U∗ and let B = {uuu1, . . . ,uuup} be a basis of U, where
dim(U) = p. Consider an extension of B to a basis of the entire space
B1 = {uuu1, . . . ,uuup,uuup+1, . . . ,uuun}, where n = dim(L) and define the linear
form fff : L −→ F by

fff (uuui ) =

{
g(uuui ) if i ⩽ p,

0 if p + 1 ⩽ i ⩽ n.

Since fff and g coincide for all members of the basis of U if follows that g
is the restriction of fff to U.
We refer to fff as the zero-extension of the linear form g defined on the
subspace U.
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Theorem

If {uuu1, . . . ,uuun} is a basis of the F-linear space L, then the set of linear
forms {fff j | 1 ⩽ j ⩽ n} defined by

fff j(uuui ) =

{
1 if i = j ,

0 otherwise

is a basis of the dual linear space L∗.
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Proof

The set F = {fff 1, . . . , fff n} spans the entire dual space L∗. Indeed, let
fff ∈ L∗ be defined by fff (uuui ) = ai for 1 ⩽ i ⩽ n. Then, we have:

fff (xxx) = a1fff
1(xxx) + · · ·+ anfff

n(xxx)

for xxx ∈ L. Indeed, if xxx = c iuuui , then

fff (xxx) = fff
(
c iuuui

)
= c ifff (uuui ) = c iai .

On another hand,

aifff
i (xxx) = aifff

i (uj) = aic
jfff i (uuuj) = aic

i ,

due to the definition of the linear forms fff 1, . . . , fff n. Therefore,
fff = a1fff

1 + · · ·+ anfff
n, which shows that ⟨⟨⟨F⟩⟩⟩ = L∗.
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Proof cont’d

To prove that the set F is linearly independent in L∗ suppose that
a1fff

1 + · · ·+ anfff n = 000L∗ . This implies a1fff
1(xxx) + · · ·+ anfff

n(xxx) = 000L for
every xxx ∈ L. Choosing xxx = uuuj we obtain ajfff

j(uuuj) = 0, hence aj = 0, and
this can be shown for 1 ⩽ j ⩽ n, which implies the linear independence.
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The basis F = {fff 1, . . . , fff n} of L∗ constructed before is the dual basis of
the basis U = {uuu1, . . . ,uuun} of L. We refer to the pair (U,F ) as a pair of
dual bases.

Corollary

The dual of an n-dimensional F-linear space is an n-dimensional linear
space.
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Example

Let P2[x ] the linear space of polynomials of degree 2 in x , that consists of
polynomials of the form p(x) = ax2 + bx + c . The set {p0, p1, p2} given
by p0(x) = 1, p1(x) = x , and p2(x) = x2 is a basis in P2[x ]. Note that we
have

c = p(0),

b =
1

2
(p(1)− p(−1)),

a =
1

2
(p(1) + p(−1)− 2p(0)).

If f : P2[x ] −→ R is a linear form we have

f (p) = af (x2) + bf (x) + cf (0)

=
1

2
(p(1) + p(−1)− 2p(0))f (x2) +

1

2
(p(1)− p(−1))f (x) + p(0)f (1).

Prof. Dan A. Simovici CS724: Topics in Algorithms Linear Spaces Slide Set 2 71 / 90



Example cont’d

Example

Therefore, a basis in P2[x ]
∗ consists of the functions

f 0(p) = p(0),

f 1(p) =
1

2
(p(1)− p(−1)),

f 2(p) =
1

2
(p(1) + p(−1)− 2p(0)).
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We saw that the dual L∗ of a F-linear space L is an F-linear space. The
construction of the dual may be repeated, and L∗∗, the dual of the dual
F-linear space is an F-linear space. In the case of finite dimensional linear
spaces we have dim(L∗∗) = dim(L∗) = dim(L), and all these spaces are
isomorphic.

Theorem

Let L be a finite-dimensional F-linear space. Then, the dual L∗∗ of the
dual L∗ of L is an F-linear space isomorphic to L.
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The notion of linear mapping can be extended as follows.

Definition

Let L1, . . . , Ln, L be real linear spaces and let L1 × · · · × Ln be the
Cartesian product of the sets L1, . . . , Ln.
An real multilinear function is a mapping f : L1 × · · · × Ln −→ L that is
linear in each of its components when the other components are held fixed.
In other words, f satisfies the conditions:

f (xxx1, . . . ,xxx i−1,

k∑
j=1

ajxxx
j
i ,xxx i+1, . . . ,xxxn)

=
k∑

j=1

aj f (xxx1, . . . ,xxx i−1,xxx
j
i ,xxx i+1, . . . ,xxxn),

for every xxx i ,xxx
j
i ∈ Li and a1, . . . , ak ∈ R.
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Definition

Let L,M be two complex linear spaces. A function f : L×M −→ C is said
to be Hermitian bilinear if it is linear in the first variable and skew-linear in
the second, that is, it satisfies the equalities:

f (a1xxx1 + a2xxx2,yyy) = a1f (xxx1,yyy) + a2f (xxx2,yyy),

f (xxx , b1yyy1 + b2yyy2) = b1f (xxx ,yyy1) + b2f (xxx ,yyy2)

for a1, a2, b1, b2 ∈ C.
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The set of real multilinear functions defined on the linear spaces L1, . . . , Ln
and ranging in the real linear space L is denoted by M(L1, . . . , Ln; L). The
set of real multilinear forms is M(L1, . . . , Ln;R).
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Example

Multilinearity is distinct from the notion of linearity on a product of linear
spaces. For instance, the mapping h : R2 −→ R defined by h(x , y) = x + y
is linear but not bilinear. On the other hand, the mapping g : R2 −→ R
given by h(x , y) = xy is bilinear but not linear.

Prof. Dan A. Simovici CS724: Topics in Algorithms Linear Spaces Slide Set 2 77 / 90



Definition

Let L1, . . . , Ln, L be real linear spaces.
If f , g ∈ M(L1, . . . , Ln; L) are two multilinear functions, their sum is the
function f + g defined by

(f + g)(xxx1, . . . ,xxxn) = f (xxx1, . . . ,xxxn) + g(xxx1, . . . ,xxxn),

and the product af , where a ∈ F is the function af given by

(af )(xxx1, . . . ,xxxn) = af (xxx1, . . . ,xxxn)

for xxx i ∈ Li and 1 ⩽ i ⩽ n.

It is immediate to verify that M(L1, . . . , Ln; L) is an R-linear space relative
to these operations.
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Let f : L1 × L2 −→ L be a real bilinear function. Observe that for xxx ∈ L1
and yyy ∈ L2 we have:

f (xxx ,000L2) = f (xxx , 0yyy) = 0f (xxx ,yyy) = 000L and

f (000L1 ,yyy) = f (0xxx ,yyy) = 0f (xxx ,yyy) = 000L.
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Example

Let L be an R-linear space and let ⟨⟨⟨·, ·⟩⟩⟩ : L∗ × L −→ R be the function
given by ⟨⟨⟨h,yyy⟩⟩⟩ = h(yyy) for h ∈ L∗ and yyy ∈ L. It is immediate that ⟨⟨⟨·, ·⟩⟩⟩ is a
bilinear function because

⟨⟨⟨ah + bg ,yyy⟩⟩⟩ = a⟨⟨⟨h,yyy⟩⟩⟩+ b⟨⟨⟨g ,yyy⟩⟩⟩,
⟨⟨⟨h, ayyy + bzzz⟩⟩⟩ = a⟨⟨⟨h,yyy⟩⟩⟩+ b⟨⟨⟨h,zzz⟩⟩⟩,

for a, b ∈ R, h, g ∈ L∗, and yyy ,zzz ∈ L.
Moreover, we have ⟨⟨⟨h,yyy⟩⟩⟩ = 0 for every yyy ∈ L if and only if h = 000L∗ and
⟨⟨⟨h,yyy⟩⟩⟩ = 0 for every h ∈ L∗ if and only if yyy = 000L.
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Example

Let L1, . . . , Ln, L be R-linear spaces, aaai ∈ Li for 1 ⩽ i ⩽ n, and let gi ∈ L∗i .
Define the function G : L1 × Ln −→ R as:

G (aaa1, . . . ,aaan) = g1(aaa1) · · · gn(aaan)

for aaai ∈ Li and 1 ⩽ i ⩽ n.
The function G is multilinear. Indeed, if aaai ,bbbi ∈ Li and a ∈ R it is
immediate to verify that

G (aaa1, . . . ,aaai + bbbi , . . . ,aaan)

= G (aaa1, . . . ,aaai , . . . ,aaan) + G (aaa1, . . . ,bbbi , . . . ,aaan),

and
G (aaa1, . . . , aaaai , . . . ,aaan) = aG (aaa1, . . . ,aaai , . . . ,aaan).

Note, however, that G is not a linear function because

G (aaaa1, . . . , aaaan) = anG (aaa1, . . . ,aaan)

for a ∈ R.
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Example

The function f : R2 −→ R defined by f (x1, x2) = x1x2 is bilinear because it
is linear in each of its variables, separately, but is not linear in the
ensemble of its arguments. Indeed, we have

f (x1 + y1, x2) = f (x1, x2) + f (y1, x2),

f (x1, x2 + y2) = f (x1, x2) + f (x1, y2)

for every x1, x2, y1, y2 ∈ R, which shows the bilinearity of f . However, we
have:

f (x1 + x2, y1 + y2) = x1y1 + x1y2 + x2y1 + x2y2

̸= f (x1, y1) + f (x2, y2),

which means that f is not a linear function.
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Theorem

Let U,V be two real linear spaces and let M(U,V ;R) be the linear space
of bilinear forms defined on U × V . The linear spaces M(U,V ;R),
Hom(U,V ∗) and Hom(V ,U∗) are isomorphic.
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Proof

It is immediate that Φ is a linear mapping because for c , d ∈ R and
h1, h2 ∈ M(U,V ;R) we have:

Φ(ch1 + dh2)(aaa)(vvv) = ((ch1 + dh2)
aaa)(vvv)

= (ch1 + dh2)(aaa,vvv) = ch1(aaa,vvv) + dh2(aaa,vvv)

= chaaa1(vvv) + dhaaa2(vvv)

= cΦ(h1)(aaa)(vvv) + dΦ(h2)(aaa)(vvv),

or
Φ(ch1 + dh2) = cΦ(h1) + dΦ(h2).

Note that Φ maps h : U −→ V into the linear form that transforms aaa into
haaa for aaa ∈ U. Thus, if Φ(h1) = Φ(h2) we have both h1 and h2 yield equal
values for aaa ∈ U, so h1 = h2, which proves the injectivity of Φ.
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Proof cont’d

Let f ∈ Hom(U,V ∗). For every aaa ∈ U there exists a linear form
g : V −→ R such that f (aaa) = g , or f (aaa)(vvv) = g(vvv) for every vvv ∈ V . The
mapping h : U × V −→ R defined by h(uuu, bfv) = f (uuu)(vvv) is bilinear and
Φ(h)(uuu)(vvv) = huuu(vvv) = h(uuu,vvv) = f (uuu)(vvv), which means that Φ(h) = f .
Thus, Φ is also surjective and, therefore, it is an isomorphism between the
linear spaces M(U,V ;R), and Hom(U,V ∗).
The existence of an isomorphism between and Hom(V ,U∗) has a similar
argument.
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The linear space M(U,V ;R) will also be denoted by U∗⊗⊗⊗V ∗. We will
refer to this space as the tensor product of the spaces U and V .

Corollary

Let U,V be two R-linear spaces. Then, dim(U⊗⊗⊗V ) = dim(U) · dim(V ).

Proof.

Since dim(V ∗) = dim(V ) = n, we have dim(Hom(U,V ∗)) = mn. The
result follows immediately.
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Let U,V ,W be three R-linear spaces of finite dimensions having the bases
{uuu1, . . . ,uuum}, {vvv1, . . . ,vvvn} and {www1, . . . ,wwwp}, respectively, and let
f : U × V −→ W be a bilinear function. If uuu =

∑m
i=1 aiuuui ∈ U,

vvv =
∑n

j=1 bjvvv j , then

f (uuu,vvv) =
m∑
i=1

n∑
j=1

aibj f (uuui ,vvv j).

Since f (uuui ,vvv j) ∈ W there exist ckij such that f (uuui ,vvv j) =
∑p

k=1 c
k
ijwwwk ,

hence

f (uuu,vvv) =
m∑
i=1

n∑
j=1

p∑
k=1

aibjc
k
ijwk .

Thus, the set {ckij ∈ R | 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, 1 ⩽ k ⩽ p} (which
contains mnp elements) determines a bilinear function relative to the
chosen bases in U,V and W .
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Unlike the case n = 1, the set of values of a multilinear function
f : M1 × · · · ×Mn −→ M is not a subspace of M in general. Indeed,
consider a two-dimensional R-linear space U having a basis {uuu1,uuu2}, a
four-dimensional R-linear space W having the basis {www1,www2,www3,www4}, and
the bilinear function f : U × U −→ W defined as:

f (uuu,vvv) = u1v1www1 + u1v2www2 + u2v1www3 + u2v2www4,

where uuu = u1uuu1 + u2uuu2 and vvv = v1uuu1 + v2uuu2.
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Let S be the set of all vectors of the form sss = f (uuu,vvv). By the definition of
S there exist uuu,vvv ∈ U such that

s1 = u1v1, s2 = u1v2, s3 = u2v1, s4 = u2v2,

hence s1s4 = s2s3 for any sss ∈ S .
Define the vectors zzz , ttt in W as

zzz = 2www1 + 2www2 +www3 +www4,

ttt = www1 +www3.

Note that we have both zzz ∈ S and ttt ∈ S . However,

xxx = zzz − ttt = www1 + 2www2 +www4

does not belong to S because x1x4 = 1 and x2x3 = 0.
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Let f : R2 × R2 −→ R be a bilinear form. Since the vectors

eee1 =

(
1
0

)
and eee1 =

(
0
1

)
,

form a basis in R2, f can be written as

f (aeee1 + beee2, ceee1 + deee2)

= af (eee1, ceee1 + deee2) + bf (eee2, ceee1 + deee2)

= acf (eee1,eee1) + adf (eee1,eee2) + bcf (eee2,eee1) + bdf (eee2,eee2)

= αf (eee1,eee1) + βf (eee1,eee2) + γf (eee2,eee1) + δf (eee2,eee2),

where
α = ac, β = ad , γ = bc, δ = bd .

Thus, the multilinearity of f implies αδ = βγ.
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