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The (n x n)-unit matrix on the field F is the square matrix I, € F"*" given
by

100 -- 0
010 -0
p=|00 1 - 0
000 - 1

The (m X n)-zero matrix is the (m x n)-matrix Op, , € F"*" given by

000 0
000 0
O, = |0 00 0
000 0
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The (m x n)-complete matrix is the (m x n)-matrix Jp, , given by

111 1
111 1
Jmm= |1 11 1
111 -1

The one-column matrix Op, 1 is denoted by 0,,,. Similarly, the one column

matrix having m rows
1

1

is denoted by 1,,. The subscripts are omitted whenever there is no
ambiguity.
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Definition

A diagonal matrix is a matrix D € F™ " such that i # j implies djj = 0. If

p < min{m, n}, then we denote the diagonal matrix

d 0 00 -+ 0
0 b 00 -+ 0
D=1: & ¢ @ ...
0 000 -0
0 000 -~ 0

by diag(di, ..., dp).
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Definition

Let A= (ajj) and B = (bj;j) be two matrices in F™*".

The sum of the matrices A and B is the matrix A + B having the same
format and defined by

(A+B)(i,J) = ajj + b

forl<i<mand1l<j<n.
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It is easy to verify that the matrix sum is an associative and commutative
operation on F™*"; that is,

A+(B+C) = (A+B)+C,
A+B = BHA,

for all A, B, C € F™*",
The zero matrix O, 5, acts as an additive unit on the set S™*"; that is,

A+ Omn = Omn+A,

for every A € Fm™*".

The additive inverse, or the opposite of a matrix A = (aj;) € F™*", is the
matrix —A given by (—A)(i/,j) = —aj for 1<i<mand 1< j<n.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slid 6/98




Example
The opposite of A € R?*3, given by

1 -2 3
A= (o 2 —1)
-1 2 -3
_A_(o -2 1)‘

It is immediate that A+ (—A) = Oa3.

)

is the matrix
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Definition
Let A€ F™*" and B € F"*P be two matrices. The product of the
matrices A, B is the matrix C € F™*P defined by

C(i, k) = Z a,-jbjk,
j=1

where 1 < i< mand 1< k< p. The product of the matrices A, B is
denoted by AB.

Matrix multiplication of A and B is possible only if number of columns of
A is equal to the number of rows of the second matrix B. Any pair of
matrices (A, B) that satisfies this condition is said to be conformant.
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Theorem
Matrix multiplication is associative, that is, A(BC) = (AB)C.

Theorem
If Ac F™" then I,A = Al, = A.
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The product of matrices is not commutative. Indeed, consider the
matrices A, B € Z?*? defined by

01 -1 1
A—<2 3> andB-(1 0).

10 2 2
AB = <1 2) and BA = (O 1),

We have

so AB # BA.
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Definition

A matrix A € F"™" is upper triangular if j < i implies a;; = 0 and is strictly
upper triangular if j < i implies a;; = 0.

A'is lower triangular (strictly lower triangular) if A’ is upper triangular
(strictly upper triangular).
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Example

The matrix L € Z*** given by

1 00 O
[ — -1 2 0 O
3 12 0
-7 6 1 —6

is a lower triangular matrix. The matrix U € z**4

1 2 3 4
0o -1 2 3
U= 0o 0 -1 -2
o 0 0 2

is an upper triangular matrix.
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It is interesting to compute two matrix products that can be formed
starting from the columns u and v given by

up Vi

uz V2
u=1 . and v =

Up Vn

Note that u'v € F1*1, that is,
Uv=uivi+ v+ -+ upv, = vu.

This product is known as the inner product of u and v.
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Let C be the field of complex numbers. A complex matrix is a matrix
AeCcmxn,

Definition

The conjugate of a matrix A € C™*" is the matrix A € C™*", where
A(i,j) =A(i,j) for 1<i<mand 1< <n.

The notion of symmetry is extended to accommodate complex matrices.

Definition
The transpose conjugate of the matrix A € C™*" or its Hermitian adjoint
is the matrix B € C"™*™ given by B = A’ = (A').

The transpose conjugate of A is denoted by A".
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Example
Let A € C3%2 be the matrix
1+ 2
A=12—-1i i
0 1-—2j

The matrix A" is given by

1—i 2+i 0
H __
A ‘( 2 i 142

).
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Using Hermitian conjugates several important classes of matrices are
defined.

Definition

The matrix A € C"™" is:
Hermitian if A= A";

o skew-Hermitian if Af = —A:
e normal if AA" = AYA;

o unitary if AA" = A"A = |,

%
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Example

Let «, B,7,6 and @ be five real numbers such that « — § — v+ is a
multiple of 2. The matrix

e®cosf —ePsing
eVsinf e cosh

Mss(0) =
is unitary because

Ma,ﬁ,v,é(G)HMa,ﬁry,é(e)
_ e ®cosf e Msinf\ [e“cosh —ePsinh (1 0
- —e Psing e cosh eVsind  ePcos® ) \0 1)°
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The following properties of unitary matrices can be easily verified:

@ all unitary matrices are normal;
@ a matrix A € C™" is unitary if and only if A" is unitary;

@ the product of two unitary matrices is an unitary matrix.
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We verify only the last property. Suppose that A, B € C™" are unitary
matrices, that is, AA" = BB" = [,. Then

(AB)(AB)" = ABB"A" = AA" = I,, hence AB is unitary.

If A€ R"™"is a real matrix and A is unitary we refer to A as an
orthogonal matrix or an orthonormal matrix.
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If A€ R"™"is a matrix with real entries, then its Hermitian adjoint
coincides with the transposed matrix A’. Thus, a real matrix is Hermitian
if and only if it is symmetric.

Observe that if z € C" and

21

Zn

then 2tz =Z1z1 +---+Zpz, = 27:1 |Z,'|2.
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Theorem

Let A € C"™". The following statements hold:
o the matrices A+ A", AA" and A"A are Hermitian and A — A" is
skew-Hermitian;
o if A is a Hermitian matrix, then so is A¥ for k € N;
e if A is Hermitian and invertible, then so is A™%;
o if A is Hermitian, then aj; are real numbers for 1 < i < n.

Proof.

All statements follow directly from the definition of Hermitian
matrices. []
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Theorem

If A € C"*" there exists a unique pair of Hermitian matrices (Hy, Hy) such
that A = Hy + iH>.

v

Proof.
Let

Hy = %(AJFAH) and Hy = —é(A — A%,

It is immediate that both H; and H> are Hermitian and that H; + iH, = A.
Suppose that A = Hs + iH4, where Hs and H, are Hermitian. Then, we
have

2H, = A+AH:H3+IH4+H§1—IHZ|
= 2H;s,

so Hy = H3. Therefore Hy = Hy, so the matrices H; and Ha are uniquely
determined. []

v
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Theorem

If A € C"™" there exists a unique pair of matrices (H,S) such that H is
Hermitian, S is skew-Hermitian and A= H + S.

Proof.

A can be written as A = H; + iH>, where H; and H> are Hermitian
matrices. Choose H = H; and S = iH,. S is skew-Hermitian. The
uniqueness of the pair (H, S) is immediate. O
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Next, we discuss a characterization of Hermitian matrices.
Theorem

A matrix A € C"™" js Hermitian if and only if x"Ax is a real number for
every x € C".

Proof: Suppose that A is Hermitian. Then,
xHAx = xHAXx = x' A'x = X' A'(x") = x" Ax,

so x""Ax is a real number because it is equal to its conjugate.
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Proof cont'd:

Conversely, suppose that x"Ax is a real number for every x € C". This
implies that

(x+y)"Alx +y) = x"Ax 4+ x" Ay + y" Ax + y" Ay

is a real number, so x"Ay + y"Ax is real for every x,y € C".

Let x = e, and y = e4. Then, apq + agp is a real number. If we choose

x = —iep and y = e; it follows that —iapq + iagp is a real number. Thus,
S(apg) = —S(agp) and R(apg) = R(agp), which leads to apq = agp for

1 < p, g < n. These equalities are equivalent to A = A", so A is Hermitian.
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Let A € F™*" be a matrix and suppose that m = my + - -- + m, and
n=ny+---+4 ng, where F is the real or the complex field.

A partitioning of A is a collection of matrices Apx € F™* " such that Apy
is the contiguous submatrix

A m1—|—~--+mh,1—|—1,...,m1+---+mh—1+mh
m4-+n 1 +1.0,m+ 4 ng ’

forl<h<pandl<k<qg.
If {Apk | 1< h<pand1l< k< q}isa partitioning of A, A is written as

Air A - Ay

Ar Ax - Aoy
A= . . .

Apt  Ap2 Apq
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The matrices Apy are referred to as the blocks of the partitioning. All
blocks located in a column must have the number of columns; all blocks
located in a row must have the same number of rows.

The matrix A € F>*6 given by

411 d12 413 414 4ais 416
a1 a2 a3 daz4 azxs ax
A= |a3 azx a3 a4 a3 asp
dq1l @42 A43  d44  A4s d4e
a5l ds2 ds3 ds4  dss dse

can be partitioned as

d11 d12 adi13 | d14 | 915 4di6
dajp1 a2 423 | dz4 | ax ax
d31 d32 4a33 | d34 | a3 dse

dql  d42 d43 | da4 | 45  d46
ds] ds2  as3

as4 | As5  as6 m
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Thus, if we introduce the matrices

a1l ar as ais ais a6
Air = |ax ax» a3 |, A = |au|, Az = |ax ax]|,
a1 a3 ass ass ass 36
a41 442 as3 a4s dq5  dae
Ayl = , Axp = , Az = ;
ds1 4852 as3 ass ds5  ds6

the matrix A can be written as

A:(All A1 A13)
A1 Axm Axz)

%
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Partitioning matrices is useful because matrix operations can be performed
on block submatrices in a manner similar to scalar operations as we show
next.

Theorem
Let Ac F™*" and B € F"*P be two matrices. Suppose that the matrices A, B
are partitioned as
A o A Bi -+ Bu
A= - ... andB=1 . ...
Apt o Ank Bxii oo Bre

where As € F™ X" By, e F"*Pt for 1 <r< h, 1<s<kandl<t</{ Then,
the product C = AB can be partitioned as

C:
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Definition

A matrix A € C" " is invertible if there exists a matrix B € C"*" such
that AB = BA = |,.

%
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Theorem

If A, B € C"™" are two invertible matrices, then the product AB is
invertible and (AB)~! = B~1A71.

If A € C™" js invertible, then A" is invertible and (A")~1 = (A~1)".

%
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Theorem

Let {r1,...,rn} be a basis in C".
A matrix A € C"™" js invertible if and only if the set of vectors
{Ary,..., Ar,} is a basis in C".
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Proof

Suppose that A is an invertible matrix. Note that Ax; = Ax; implies

xj = Xj, so {Ar1,...,Arp} consists on n distinct vectors. We claim that
the set {Arq,...,Ar,} is linearly independent. Indeed, suppose that
Cc1Ary + -+ + c,Ar, = 0, such that not all coefficients ¢; equal 0. Then,
by multiplying by A~! to the left we obtain cirq + - - + ¢,rn = 0,,, which
contradicts the fact that {ry,...,r,} is a basis. Thus, {Ary,..., Ar,} is a
linearly independent that consists of n vectors, which means that this set
is a basis in C".
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Proof cont'd

Conversely, suppose that for any basis {r1,...,r,} of C" the set
{Ary,...,Ar,} is a basis in C". Each of the vectors r; can be uniquely
expressed as a linear combination of Ary, ..., Ar,. In particular, for the
standard basis {e1,...,e,}, each of the vectors e; can be uniquely
expressed as a linear combination of the vectors Ae; = a1,...,Ae, = a,,
where a1, ..., a, are the columns of the matrix A. In other words, we have
the equalities

ei = bjja1 + -+ + binan

for 1 < i< n. In a succinct form, these equalities can be written as
I, = BA, where B is the matrix of the coefficients b;;, which shows that A
is an invertible matrix.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slid 34 /98



Theorem

Letei,...,e, and é1,...,€&, be two bases of an F-linear space L. There

exists an invertible matrix P € F"*" such that

(el en) = (él én)P‘
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Since é1,...,8&, is a basis of L each vector e; is a unique linear
combination of the vectors é4,...,&,, that is

e =p1i€+ -+ pni€n= (&1 --- &) | : |,
Pni
for 1 < i < n, so the equality of the theorem holds for the matrix

P = (pjj). We have to show that P is an invertible matrix.
Assume that Pt = 0,. The equality of the theorem implies

t
(e1 e,,) :(él én)PtZOL.
th
which implies t;e1 + --- + t,e, = 0,. Since e1,..., e, is a basis we obtain
ty =---=t, =0, sot =0, which implies that P is an in{gffible matrix.
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Corollary

Let z € L and assume that z can be expressed relatively to the bases
{e1,...,e,} and {&4,...,8,} as

n n
z= E Xi€p — E Yiéi,
i=1 i=1

respectively. If P € F™" s a matrix such that
(e1 --- e,) = (& --- &,)P, then

X1 i

Xn Yn

%
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Proof
We have
X1 1
z=(ey ---ey)| | =(&1 - &,)P
Xn Yn

Substituting (e1 --- ej) in the previous equality yields:

X1 Y1
(1 --- é,)P =1 :
Xn Yn
Since {&1,...,8&,} is a basis we obtain the equality
X1 i
P = :
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Thus, the components of a vector z relative to the two bases (e;
and (&1 --- &,) transform in opposite direction to the basis
transformation. We say that the set of numbers {xi,...,x,} are
contravariant components of the vector z.
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We proved that if {e1,...,e,} is a basis of the F-linear space L, then the

set of linear forms {f/ | 1 < j < n} defined by

File;) = {1 ifi=J,

0 otherwise

is a basis of the dual space L*. Furthermore, if f(e;) = aj, then
f=afl+ - +a,f"
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If we change the basis in L such that (e; --- e,) = (&1 ---

é,)P, where

P € F™", then assuming that a; = f(e;) and by = f(&;) for 1 <i,¢ < n,

we have:
aj=f(e;) = f(é1pri+ -+ &npni)

= ) f(&)pi = bupui
=1 =1

Thus, the components of f relative to the two bases (e1 - -

(é1 --- &,) transform in the same manner as these bases.
{a1,...,an} are covariant components of the covector f.
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Let C € F™*" be a matrix. If x € F™ and y € F", the function

fc : L x M — F defined by fc(x,y) = x'Cy can be easily seen to be
bilinear. The next theorem shows that all biliniar functions between two
finite-dimensional spaces can be defined in this manner.

Theorem

Let L, M be two finite-dimensional F-linear spaces. If f : Lx M — F is a
bilinear form, then there is a matrix C¢ € F™*" such that

f(x,y) =x"Cry

forallx € L andy € M.
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Proof

Suppose that B = {x1,...,xn} and B’ = {y1,...,yn}, are bases in L and M,
respectively. Let x = a;x1 + -+ - 4+ amX, be the expression of x € L in the base B.

Similarly, let y = by + -+ + b,y be the expression of y € M in B’. The
bilinearily of f implies:

fy)=f D axi,y by | =Y > abif(xi,y))-
i=1 j=1 i=1 j=1
If Cr is the matrix

f(x1,y1) - f(x1,¥n)
Cr = : : : ,
f(xmy1) -+ f(Xm Yn)
then f(x,y) = x’Cry, where
ai b1
X = andy = | :

. N %
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Let A € F™*" be a symmetric matrix. The quadratic form associated to the
matrix A is the function f4 : R” — R defined as fa(x) = x’Ax for x € F".
The polar form of the quadratic form f4 is the bilinear form fa defined by
fa(x,y) = X' Ay for x,y € F".

Since x’Ay and y’Ax are scalars they are equal and we have:

falx +y) = (x+y)Alx+y)
= X'Ax+y' Ay +x'Ay +y' Ax
= fa(x) + faly) + 2fa(x, ),

which allows us to express the polar form of f4 as

Falx,y) = 5 (falx +) — Fax) = fa(y).

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slid 44 /98




Let h € Hom(C™,C") be a linear transformation between the linear spaces
C™ and C". Consider a basis in C™, R ={r1,...,rm}, and a basis in C",
S ={s1,...,sn}. The function h is completely determined by the images
of the elements of the basis R, that is, by the set {h(r1),...,h(rm)}.
Indeed, if x = xyr1 + -+ + Xmrm and

n
h(rj) = a1j81 + azjS2 + -+ - + anjSp = E ajjSi,
i=1

then, by linearity

h(x) = xah(r1)+ -+ xmh(rm)
= ) xh(r))
j=1

m n
= Z Z XjajjS;.
j=1 i=1 m
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In a more compact form, we can write

ailz -+ dim X1

h(x) =(s1 -+ Sn)

dnl ' dnm Xm

%
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Let x € C™ be a vector such that x = xyr1 + - - - + xnrm. Then, the image
of x under h is equals Apx, where Ay, is

a1 - aim
Ap =

anl - anm

Clearly, the matrix Aj attached to h: C™ — C” depends on the bases
chosen for the linear spaces C™ and C".

%
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Let now h: C" — C" be an endomorphism of C" and let

R={r1,...,rp} and S = {s1,...,s,} be two bases of C". The vectors s;
can be expressed as linear combinations of the vectors ri,...,ry,:
Si = pitr1+ -+ Pinfn, (1)

for 1 < 7 < n, which implies

h(S,') = p,-1h(r1) +--- Pinh(rn)' (2)

for 1 < i < n. Therefore, the matrix associated to a linear form
h:C™ — C is a column vector r. In this case we can write h(x) = rx
for x € R".

%
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Theorem

matrix Ap, that is, we have Ay = Aj.

Let h € Hom(C™,C"). The matrix Ay~ € C™*" js the transposed of the

Prof. Dan A. Simovici
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By the previous discussion, if ¢1,...,¢, is a basis of the space (C")*, then
the j™ column of the matrix Ay € C™*" is obtained by expressing the
linear form h*(¢;) = £;h in terms of a basis in the dual space (C™)*.
Therefore, we need to evaluate the linear form ¢;h € (C™)*.

Let {p1,...,Pm} be a basis in C™ and let {g1,...,gm} be its dual in
(C™)*. Also, let {q1,...,qn} be a basis in C", and let {/1,...,¢,} be its
dual (C")*.

Observe that if v € C™ can be expressed as v = Zj"zl vjpj, then

m

g(V) =g | >_vipi | = D vigo(P)) = vp,
j=1

j=1
because {gi,...,8m} is the dual of {p1,...,pm} in (C™)*.

%
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On the other hand, we can write

m m n
Gh(v)) = G (D veh(pp) | =4 [ D ve > apai
p=1 p=1 i=1
m n m n
= fj Z vpa,-pq,- Z Vv, a,p
p=1i=1 p=1i=1
m m
= Z Vpdjp = Z 3jp&p(V)-
p=1 p=1

Thus h*(¢;) = Zp 1 2jp8p for every j, 1 < j < m. This means that the

™ column of the matrix Ap« is the transposed j™ row of the matrix Ay,
SO Ah* = (Ah)/-

%
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Matrix multiplication corresponds to the composition of linear mappings,

as we show next.

Theorem

Let h € Hom(C™,C") and g € Hom(C",CP). Then,

Agh = AgAn.

Proof.
If p1,...,pm is a basis for C™, then

Agn(pi) = gh(pi) = g(h(pi)) = g(Anpi) = Ag(An(pi)) for every i, where

1 <i < n. This proves that Agy, = A Ap.

O

.
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The inverse direction, from matrices to linear operators is introduced next.
Definition

Let A € C™™ be a matrix. The /inear operator associated to A, is the
mapping ha : C™ — C" given by ha(x) = Ax for x € C™.

If {e1,...,em} is a basis for C™, then ha(e;) is the i*" column of the
matrix A.

It is immediate that Ay, = A and ha, = h.

Attributes of a matrix A are usually transferred to the linear operator ha.
For example, if A is Hermitian we say that hp is Hermitian.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slid 53 /98



Attributes of a matrix A are usually transferred to the linear operator ha.
For example, if A is Hermitian we say that h, is Hermitian.

Definition

Let A€ C™™ be a matrix. The range of A is the subspace Im(ha) of C".
The null space of A is the subspace Ker(hga).

The range of A and the null space of A are denoted by range(A) and
null(A), respectively.

Clearly, Ca , = range(A). The null space of A € C™*" consists of those
x € C" such that Ax = 0.
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Let {p1,...,Pm} be a basis of C™. Since range(A) = Im(ha) it follows
that this subspace is generated by the set {ha(p1),...,ha(pm)}, that is,
by the columns of the matrix A. For this reason the subspace range(A) is
also known as the column subspace of A.

Theorem

Let A, B € C™*" be two matrices. Then

range(A + B) C range(A) + range(B).

Proof.

Let u € range(A + B). There exists v € C" such that

u= (A4 B)v=Av+Byv. If x=Av and y = Bv, we have x € range(A)
and y € range(B), so u = x + y € range(A) + range(B). O
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Definition

The rank of a matrix A is the number denoted by rank(A) given by
rank(A) = dim(range(A)) = dim(Im(ha)).

Thus, the rank of A is the maximal size of a set of linearly independent
columns of A.

A previous theorem applied to the linear mapping ha : C™ — C” means
that for A € C™™ we have:

dim(null(A)) + rank(A) = m. (3)

Observe that if A € C™*™ is non-singular, then Ax =0, implies x = 0,,.
Thus, if x € null(A) Nrange(A) it follows that Ax =0, so the subspaces
null(A) and range(A) are complementary.
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Example
For the matrix

1 0 2
1 -1 1
A= 2 1 b
1 2 4

we have rank(A) = 2. Indeed, if ¢1, ¢z, €3 are its columns, then it is easy
to see that {c1,cp} is a linearly independent set, and €3 = 2¢1 + ¢».
Thus, the maximal size of a set of linearly independent columns of A is 2.

V.
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Example cont'd

The number of linearly independent rows of

1 0 2
1 -1 1
A= 2 1 b
1 2 4

is also 2. Indeed, we have
(215)=a(102)+b(1 —11)
for a=3 and b= —1. Also,
(124)=c(102)+d(1 —11)

forc =3 and d = —2. m
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Example

Let A € C™™ and B € CP*9. For the matrix C € C("P)*(m+4) defined by

— A On»q
“~(a. 5)

we have rank(C) = rank(A) + rank(B).

Suppose that rank(C) = ¢ and let ¢y, ..., ¢, be a maximal set of linearly
independent columns of C. Without loss of generality we may assume that
the first k columns are among the first m columns of A and the remaining
£ — k columns are among the last g columns of C. The first k columns of
C correspond to k linearly independent columns of A, while the last £ — k
columns correspond to £ — k linearly independent columns of B. Thus,
rank(C) = k < rank(A) + rank(B).
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Example cont'd

Example

Conversely, suppose that rank(A) = s and rank(B) = t. Let aj,...,a;, be
a maximal set of linearly independent columns of A and let b;,,...,bj, be
a maximal set of linearly independent columns of B. Then, it is easy to
see that the vectors

aj aj, 0n On
On ) b On PR bj AR ] bJ

constitute a linearly independent set of columns of C, so
rank(A) + rank(B) < rank(C). Thus, rank(C) = rank(A) + rank(B).
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Example

Let x and y be two vectors in C" — {0}. The matrix xy" has rank 1.
Indeed, if y" = (y1,y2, ...

which implies that the maximum number of linearly independent columns

of xy" is 1.

,¥n), then we can write

xy" = (y1X yoX - ynX),
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Example

Let A, B € C™™. We have rank(A + B) < rank(A) + rank(B).
Let A=(a;a, --- ap) and B=(by by --- b,,) be two matrices, where
ai,...,am,b1,...,b, € C". Clearly, we have

A+B=(a1+brax+by --- aym+ bp).
If x € Im(A + B) we can write:
x = xi(a1 + b1) + x2(a2 + b2) + -+ - + xm(am + bm) =y + 2,
where

Yy = xa1+- -+ Xpam € Im(A),
z = xiby + - + Xpmbm € Im(B).
Thus, Im(A+ B) C Im(A) + Im(B). Since the dimension of the sum of two

subspaces of a linear space is less or equal to the dimension of sum of these
subspaces, the result follows.
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The above discussion also shows that if A € C"™™ then
rank(A) < min{m, n}.

Theorem

Let A€ C™ " be a matrix. We have rank(A) = rank(A).

Proof.

Suppose that A = (ay,...,a,) and that the set {a;,...,a; } is a set of
linearly independent columns of A. Then, the set {a;,...,a;,} is a set of

linearly independent columns of A. This implies rank(A) = rank(A). O
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Corollary

We have rank(A) = rank(A") for every matrix A € C™*".

Proof.

Since A" = A/, the statement follows immediately. O

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slid



If Ac C™*"is a full-rank matrix and m > n, then the n columns of the
matrix are linearly independent; similarly, if n > m, the m rows of the
matrix are linearly independent.

A matrix that is not a full-rank is said to be degenerate. A degenerate
square matrix is said to be singular. A non-singular matrix A € C"*" is a
matrix that is not singular and, therefore has rank(A) = n.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slid 65 /98




Theorem

A matrix A € C"™" s non-singular if and only if it is invertible.
g y
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Proof

Suppose that A is non-singular, that is, rank(A) = n. In other words the
set of columns {c1,...,cn} of Ais linearly independent, and therefore, is
a basis of C". Then, each of the vectors e; can be expressed as a unique

combination of the columns of A, that is

ej = byjc1 + bpica + -+ + bypich,
for 1 < i < n. These equalities can be written as

b1 -+ bin
b1 -+ bop

(c1 -+ ¢cp) : : =/,
bnl e bnn

Consequently, the matrix A is invertible and

%
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Proof cont'd

Suppose now that A is invertible and that
dic1+---+dyc, =0.

This is equivalent to
d1

Multiplying both sides by A~ implies

d1

-1 =0,

dn
so di = --- = d, = 0, which means that the set of cqumnm A is linearly
independent, so rank(A) = n. sAsh

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slid 68 /98



Corollary

A matrix A € C"™" s non-singular if and only if Ax =0 implies x =0 for
x eC".

Proof.

If Ais non-singular then A is invertible. Therefore, Ax = 0 implies
A71(Ax) = A710, so x = 0.

Conversely, suppose that Ax =0 impliesx =0. If A= (¢ --- ¢,) and

x = (x1,...,%n), the previous implication means that
x1€1+ -+ x,¢, =0 implies x; = - = x, =0, so {c1,...,¢,} is linearly
independent. Therefore, rank(A) = n, so A is non-singular. O

v
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Define the similarity relation “~" on the set of square matrices C"*" by

A ~ B if there exists an invertible matrix X such that A= XBX~1.

If X is a unitary matrix, then we say that A and B are unitarily similar and
we write A ~, B, so ~, is a subset of ~. In this case, we have

A= XBX". o
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Theorem

“u_ooy 1

The relations “~" and “~," are equivalence relations.

Proof.

We have A ~ A because A = I,A(l,)"}, so ~ is a reflexive relation. To
prove that ~ is symmetric suppose that A= XBX 1. Then, B = X"1AX
and, since X1 is invertible, we have B ~ A.
Finally, to verify the transitivity, let A, B, C be such that A= XBX~! and
B = YCY ! where X and Y are two invertible matrices. This allows us
to write

A= XBX 1 =XYCY 1Xx7! = (XY)C(XY)},

which proves that A ~ C.
We leave to the reader the similar proof concerning ~,. [
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Theorem

If A~, B, where A, B € C"*", then A"A ~, B"B.

Proof.

Since A ~, B there exists a unitary matrix X such that

A= XBX~1 = XBX". Then, A" = XB"X", so

A"A = XBYXHXBX" = XB"BX". Thus, A"A is unitarily similar to

B"B. Ol
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Theorem

Let A and B be two matrices in C™*". We have A ~ B if and only if
rank(A) = rank(B).

Proof: If A€ C™" be a matrix with rank(A) = r > 0, then

A ~ /r Or,nfr
Om—r,r Om—r,n—r
Thus, for every two matrices A, B € C"™™ of rank r we have A~ B
because both are similar to
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Proof cont'd

Conversely, suppose that A ~ B, that is, A= GBH, where G € C™*™ and

H € C™" are non-singular matrices. By a previous corollary we have
rank(A) = rank(B).
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Definition

A matrix A € C"*" is diagonalizable if there exists a diagonal matrix D
such that A~ D.

Let M be a class of matrices. A is M-diagonalizable if there exists a
matrix M € M such that A= MDM™1.

For example, if A is M-diagonalizable and M is the class of unitary
matrices we say that A is unitarily diagonalizable.
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Let f : C" — C be a polynomial given by
f(z) = agz" + a1z" 14+ ap,
where ag, a1,...,a, € C. If A€ C™ ™, then the matrix f(A) is defined by

f(A) = a0A" + a1 A" L + -+ aplp.

Theorem

If T € C™*™ is an upper (a lower) triangular matrix and f is a
polynomial, then f(T) is an upper (a lower) triangular matrix.
Furthermore, if the diagonal elements of T are ti1,t22, ..., tmm, then the
diagonal elements of f(T) are f(t11), f(t22), ..., (tmm), respectively.
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Proof

Any power T of T is an upper (a lower) triangular matrix. Since the sum
of upper (lower) triangular matrices is upper (lower) triangular, if follows
that £(T) is an upper triangular (a lower triangular) matrix.

An easy argument by induction on k (left to the reader) shows that if the

diagonal elements of T are tj1, t22, ..., tmm, then the diagonal elements of
Tk are tf, t5, ..., t&,,. The second part of the theorem follows
immediately.
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Theorem

Let A,B € C™ ™. If A~ B and f is a polynomial, then f(A) ~ f(B).

Proof.

Let X be an invertible matrix such that A = XBX~1. It is straightforward
to verify that AKX = XBKX~1 for k € N. This implies that
f(A) = Xf(B)X™1, so f(A) ~ f(B). then f(A) ~ f(B). O

v
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Definition

Let A and B be two matrices in C"*". The matrices A and B are
congruent if there exists an invertible matrix X € C"*" such that
B = XAX". This is denoted by A ~,, B.

The relation ~y is an equivalence on C"*". We have A ~,; A because
A= LAl If A~y B, then B = XAX", so

A= X"1B(X")" = X"1B(X~1)", which implies B ~y A. Finally, ~y is
transitive because if B = XAX" and C = YBY", where X and Y are
invertible matrices, then C = (YX)A(YX)" and YX is an invertible matrix.
It is immediate that any two congruent matrices have the same rank.
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Recapitulation

@ A and B are similar matrices, A ~ B, if there exists an invertible
matrix X such that A = XBX1:

@ A and B are congruent matrices, A ~, B, if there exists an invertible
matrix X € C"*" such that B = XAX";

@ A and B are unitarily similar, A ~, B, if there exists a unitary matrix
U such that A= UBU™!.

Since every unitary matrix is invertible and its inverse equals its conjugate
Hermitian matrix, it follows that ~, is a subset of both ~ and ~,.
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Definition
Let A€ C™*" and B € CP*9 be two matrices. The Kronecker product of
these matrices is the matrix A ® B € C™P*"9 defined by

anB apB -+ ai;xB

a1B apB -+ ay,B
A®Q B = . .

amB amB -+ am,B

The Kronecker product A ® B creates mn copies of the matrix B and
multiplies each copy by the corresponding element of A.
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Consider the matrices

N b1 bix b3
A= <a” 312> and B= [ b1 by b3
b 92 b31 b3 b33

Their Kronecker product is

ajrbir anbiz abiz | ai2bin  axbiz anbi3
aibo1r aiibx aiibes | axbor  aixbo  a12bos
A B — |2 b1 a11b32 a11bs33 | a1ob31 aiobzx  a12bssz
ar1b11 anibiz axibiz | ax2bir  axbiz  axnbiz
az1bo1  ac1bxe  aziboz | axabo1  axabao  axbos
ar1bz1 ax1bsx ax1bsz | axab31  axb32  axbs3
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Let C € C™P*" be the Kronecker product of the matrices A € C™*" and
B € CP*9. We seek to express the value of ¢j, where 1 < i < mp and
1 <j < ngq. Itiseasy to see that

cj = aréwf;]b;_p(( s1-1)d-a(rg1-1)° *
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Theorem

For any matrices A, B, C, D we have:

e (A B)Y =A®B,

e (A®B)® C=A®(B® (),

o (A® B)(C® D) = (AC ® BD),

e AR B+A® C=A®(B+ (),

e A D+B®D=(A+B)®D,

e (A B)Y =A®B,

o (A® B) = A" ® B”,
when the usual matrix sum and multiplication are well-defined in each of
the above equalities.
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Example

Let x € C" and y € C™. We have

X1y yix
x@y=| 1 |=| : |ec™
XnY YmX
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Theorem

If A€ C"™" and B € C™*™ are two invertible matrices, then A® B is
invertible and (A® B)™' = A"l @ B~ 1.

Proof.
Since
AB)AleB N)=(AA10BB ™) =1,® Iy,

the theorem follows by noting that I, ® I, = Ihm.
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Theorem

Let Ae C™" and B € C™*™ be two normal (unitary) matrices. Their
Kronecker product A® B is also a normal (a unitary) matrix.

Proof.

We can write

(A®B)(A®B) = (A®B)(A®B)
= (AA® B'B)
— (AA @ BB)
(because both A and B are normal)
= (A®B)(A® B,

which implies that A ® B is normal. O

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slid 87/98



Definition

Let A€ C™*™ and B € C"™" be two square matrices. Their Kronecker
sum is the matrix A@ B € C™™™" defined by

The Kronecker difference is the matrix A© B € C™"*™" defined by

ASB=(A® I,) — (In® B).
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Definition

Let A, B € C™*". The Hadamard product of A and B is the matrix
A® B € C™*" defined by

aitbin  awbix -+ ainbin

as1bor  axbyy - aspbog
AGB= . ; ;

am1 bml am2bm2 to amnbmn
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Definition

The Hadamard quotient A@ B is defined only if bjj # 0 for 1 < i < m and

1 <j < n. In this case

a1 a2, ain
by b2 bin
a1 a2 |, 2n
Ao B = b1 b2 by
ami  dm2 .., dmn
bml bm2 bmn

Prof. Dan A. Simovici
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Theorem

If A, B,C € C™" and c € C we have

e AOB=BGOA
o A@Jm,n = m,n®A:A;
e AO(B+C)=A0B+AGC;
e A® (cB) =c(A® B).
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Note that the Hadamard product of two matrices A, B € C™*" is a
submatrix of the Kronecker product A® B.

Example

Let A, B € C?*3 be the matrices

A— <311 ai 313) and B — <b11 b12 b13>'

a1 ax» ax b1 by bo3
The Kronecker product of these matrices is A ® B € C**9 given by:
aitbin anbi2 aubiz apbin awxbiz ahiz aizbir  azbiz
A®B — | 1 bo1 ai1bo a11baz aba1 a12box  ainbos  aizbar aizbog
asibi1  avibio axibiz  axbii axbix axnbiz axsbir  axbip
as1bo1  aniboy  aviboz  axbor  axbry  axoboz  axzbor  ax3bng
v
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Example
The Hadamard product of the same matrices is

aitbin  abip ais b13)
A @ B — 9
(821 bo1  axnbr  axbos

and we can regard the Hadamard product as a submatrix of the Kronecker
product A® B,

A@B:(A@B)[1’5’9].

4,44
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Another matrix product involves matrices that have the same number of
columns.

Definition
Let Ac C™*" and B € CP*" be two matrices that have n columns,
A=(a; --- ap) and B= (b1 --- by).

The Khatri-Rao product of A and B is the matrix

A*B:(al®b132®b2 an®bn)'
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Example

The Khatri-Rao product of the matrices

1
A:(l 2 3) andB = [ 2

0 2
1 3
4 5 6 19 1

is the matrix (a1 ® by a» ® by a3 ® b3) which equals

1 0 6
2 2 9
-1 4 3
4 0 12
8 5 18
—4 10 6
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Definition

Let u € C™ and v € C". The outer product of of the vectors u and v is
the matrix u * v € C™*" defined by u x v = uv".

The outer product of two vectors is a matrix of rank 1.

For u € C™ and v € C" we have v x u = vu' = (uvsH)" = (u x v)".
Therefore, the outer product is not commutative because for u € C™ and
vEC" we have uxv € C"™" and vxu € C"™"™,

Note that when m = n we have uv" = trace(u * v).
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Example

Let
We have
uivy
uxyv = uz vy
usvi

n

%
u= | w andv:<1).
V2
uz

uivo iU
1U1
vy | and v xu = (
Vo uy
uzva

viup viUu3
Vol wpu3)
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Example

Contrast this with the Kronecker products:

uivy viup
uiVvo viuz
uRv = e and vu = A
uzvo Vouy
usvy Voo
uz vy Vo us3

Note that the entries of the Kronecker product u ® v can be obtained by
reading the entries of u x v row-wise, or the entries of the same
column-wise. Similar statements hold for v ® u. This observation
suggested the use of the Kronecker symbol ® for outer products of
vectors. In other words, we will denote the outer products u* v and v x u
with u ® v and v ® u, respectively.
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